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We elaborate upon the “processed Husimi map” representation for visualizing quantum wave
functions using coherent states as a measurement of the local phase space to produce a vector
field related to the probability flux. Adapted from the Husimi projection, the processed Husimi
map is mathematically related to the flux operator under certain limits, but offers a robust and
flexible alternative since it can operate away from these limits and in systems that exhibit zero flux.
The processed Husimi map is further capable of revealing the full classical dynamics underlying a
quantum wave function since it reverse engineers the wavefunction to yield the underlying classical
ray structure. We demonstrate the capabilities of processed Husimi maps on bound systems with
and without electromagnetic fields, as well as on open systems on and off resonance, to examine the
relationship between closed system eigenstates and mesoscopic transport.

I. INTRODUCTION

In Mason et al.1, we introduced the “processed Husimi
map”, which extends the concept of the probability flux,
or probability current j (r,p), defined as

ĵr =
1

2m
(|r〉 〈r| p̂ + p̂ |r〉 〈r|) , (1)

where m is the mass of a particle in the system, ris the
position and p̂ is the momentum operator.

One of the limitations of the probability flux is that
it vanishes on stationary states for systems with time-
reversal symmetry making it impossible to reveal the
strong semiclassical connections between trajectory flow
and quantum eigenstate. Consider the stadium billiard
presented in Fig. 1. This wave function exhibits the

FIG. 1: A scarred eigenstate of the stadium billiard reveals
the strong influence of periodic classical orbits. The tradi-
tional flux provides no information: it is uniformly zero inside
the billiard.

strong influence of classical orbits and is known as a
scarred eigenstate2. For this bound system, the flux is al-
ways zero. Unless the system is coupled to a continuum,
the flux as a tool for examining the system dynamics pro-
vides no information, even though information about the
dynamics clearly exists before the coupling. The main
goal of this article is to describe in detail algorithms
that render processed Husimi maps, a numerical tech-
nique that is able to extract the information present in
the system but to which the probability current is blind.

The processed Husimi map addresses the problem of
the underlying dynamics encoded in stationary states by
extending the definition of the flux to coherent state pro-
jections, also known as Husimi projections3. Applying
several Husimi projections, each with a different momen-
tum direction, at each location, it is possible to render
the classical rays associated with a position and extract
semiclassical paths from a quantum wave function even
when the flux is zero. Husimi projections sampled across
a system produce a Husimi map. By processing Husimi
maps using the methods outlined in Mason et al.1, we
can show the locations and directions of classical trajec-
tories suggested by a wave function. This technique has
been used to examine the relationship between graphene
boundary types and the classical dynamics of quasiparti-
cles in each valley of the honeycomb dispersion relation,
studying states with energies both close to and far from
the Dirac point4. Although the processed Husumi ap-
proach was presented in summary before1, the level of de-
tail might be insufficient to allow non-experts to develop
their own programs. Here, we also introduce new map-
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pings that quantify how boundaries and external fields
affect those trajectories. In this paper, we also present
a complete discussion of the results summarized previ-
ously and demonstrate the processing of Husimi maps
on a wider variety of systems with and without exter-
nal fields. In particular, we show how to use processed
Husimi maps to interpret flux through open devices and
mesoscopic devices.

II. THE PROCESSED HUSIMI MAP

The properties of coherent states make them a suitable
basis for expanding the flux operator to a measurable def-
inition, which we call the Husimi function3. It is defined
as a measurement of a wavefunction ψ(r) by a coherent
state, or “test wave packet”, written as

Hu (r0,k0, σ;ψ(r)) = |〈ψ| r0,k0, σ〉|2 , (2)

where the parameter σ defines the spatial spread of the
coherent state and defines the uncertainties is space and
momentum. Weighting each of these measurements by
the wave vector produces a Husimi vector; plotting all
Husimi vectors at a point produces the full Husimi pro-
jection.

In this paper, we examine three approaches for process-
ing the Husimi projection. The first approach utilizes the
algorithm outlined in Mason et al.1, which simplifies the
full Husimi projection at each point, to give rise to the
significant classical paths within the system. The second
approach, which we describe in Section III C, identifies
key points where the system boundary deflects straight
classical paths, giving rise to the structure of the quan-
tum wavefunction. The third approach sums all Husimi
vectors at each point in space, indicating the net flow of
classical paths at each point, and resulting in the vector-
valued Husimi flux. The Husimi flux has parallels to the
traditional flux, which we describe here.

Because of the large momentum uncertainty for small
σ, coherent state projections merely reproduce the prob-
ability amplitude |ψ(r)|2 in all directions of k0. The flux
emerges as a small residual which can be retrieved by
summing each coherent state projection weighted by k0.
We call this quantity the vector-valued Husimi flux,

Hu (r0, σ;ψ(r)) =

ˆ
k0 |〈ψ| r0,k0, σ〉|2 ddk0. (3)

Several of the results in these paper display sets of Husimi
vectors for 32 equally spaced points in k-space at each
point in the system. We plot such sets of Husimi vec-
tors at many points along a system, mapping the local
phase space of the wave function. These visualizations
are known as “Husimi maps”3,5–7. We refer to the maps
that present the complete set of Husimi vectors at each
point as raw Husimi maps.

In Appendix A, we show that as σ → 0, the contribut-
ing points in the integral over k-space reduce to just the

orthogonal directions. In this limit, we can write the
Husimi flux as

lim
σ→0

Hu (r0, σ;ψ(r)) ∝
d∑
i=1

ei[|〈ψ| r0, k0ei, σ〉|2

− |〈ψ| r0,−k0ei, σ〉|2], (4)

where ei is the unit vector along the ith orthogonal di-
rection, and we sum over d dimensions. As presented in
Ref.1, both sides of Eq. 4 are proportional to the tradi-
tional flux measured at point r0 so that

〈
ψ
∣∣∣̂jr0∣∣∣ψ〉 ∝ lim

σ→0
Hu (r0, σ;ψ) . (5)

For larger σ, reduced momentum uncertainty allows
for substantial variation in the coherent state projections
between different directions of k0. The reduced momen-
tum uncertainty for larger coherent states also reduces
spatial resolution. In the intermediate regime, we can
use Husimi projections to map the local phase space of
a wavefunction. By selecting an appropriate value for σ
and taking snapshots of the local phase space at many
points across a system, we can produce a clear map of
the classical trajectories that correspond to a given wave-
function. Like the traditional flux map, Husimi maps can
be integrated over lines and surfaces to reveal the total
probability flux current.

The raw Husimi maps present snapshots of the phase
space along the system. We can process the results to
produce a semiclassical map exposing the dominant clas-
sical paths contributing to a given wave function. Thus,
the term processed Husimi map1.

A question arises regarding the handling of boundaries
in the system, beyond which the wavefunction goes to
zero. Our definition reduces the magnitude of Husimi
projections within distance σ of the boundary. When a
coherent state interacts with a boundary, an image wave
packet moving in the opposite direction can replace the
boundary. On a curved boundary, a superposition of re-
flected image wave packets can be found that gives zero
along a section of the curve. In both cases, reflections off
the boundary amount to scattering between wave pack-
ets with different wave vectors. Thus, the reduction in
the Husimi projections near the boundaries is the result
of wave packet scattering, making it possible to process
Husimi maps to compute scattering metrics along the
boundary, such as angular deflection presented in Sec-
tion III C.

III. HUSIMI MAPS IN CLOSED SYSTEMS

A. Eigenstates of the Circular System

The circular well is an ideal system for demonstrating
the power of processing the Husimi map since its classical
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(a)

(b)

(c)

(d)

FIG. 2: Raw Husimi maps (left), processed Husimi Maps
(middle), and the wavefunction (right) for eigenstates of the
circular well (a-c) and the harmonic oscillator (d). Double-
arrows at far right indicate the spread of the coherent state
(∆k/k = 10%). The states in (c) and (d) correspond to the
classical paths in Figs. 14a and b respectively.

dynamics are simple and can be analytically determined.
The Schrödinger equation in radial form is

d2R(r)

dr2
+

1

r

dR(r)

dr
+

(
k2 − m2

r2

)
R(r) = 0. (6)

Solutions to this equation are simultaneous eigenstates
of energy and angular momentum, and thus n (number
of nodes in the radial direction) and m (number of angu-
lar nodes) are good quantum numbers . Fig. 2a-c shows
three such states, the first with n = 0, the second with
n� m, and the third with n ≈ m. The processed Husimi
map in each shows the clear distinction between angu-
lar and radial components of the wavefunction, and how
they correlate with classical paths with similar properties
(further discussion of the classical correspondence can be
found in Ref.8).

To examine the harmonic oscillator state in Fig. 2d, the
Husimi projection at each point must be modified. For
the circular well, the dispersion relation is ~k =

√
2mE.

However, due to the harmonic potential, the disper-
sion relation changes to ~k(r) =

√
2m(E − V (r)). This

means that a different sweep in k-space must be made at
each point to produce an accurate Husimi map. Fig. 2d
shows such a state with V (r) = V0r

2.

The Husimi vectors in Fig. 2c align to suggest straight
trajectories, but the vectors in Fig. 2d do not, suggest-
ing the presence of curved paths. Moreover, projections
near the boundaries of both systems indicate that the
paths of the circular well scatter off the boundary with
a consistent and acute angle, while for the harmonic os-
cillator system the trajectories lightly strike the “edge”
at the classical turning point position, where a classical
particle would return towards the center of the harmonic
system for that particular initial energy. As seen in this
example, the processed Husimi flow markedly elucidate
the dynamics present, but not always apparent in wave
functions.

If we center the Husimi projections on points that cor-
respond with the predicted classical paths, clear trajecto-
ries can be seen without processing the raw Husimi map.
This makes it possible to identify the source of slight
deviations from the classical paths that are exhibited to-
wards the center of the system. We explore both issues
in appendix D.

B. Magnetic Field

In comparison to the traditional flux, processed Husimi
maps extract more information from systems without
time-reversal symmetry, such as those in the presence
of a magnetic field. To properly represent these states,
both the momentum operator in Eq. 1 and the momen-
tum term ik0 ·r0 in Eq. 3 must be modified to reflect the
canonical transformation

p→ p− qA/c, (7)

where the magnetic potential A is defined in Appendix
B.

The circular well states without magnetic field in Fig. 2
exhibit cross-hatching nodal patterns which are absent
from the states in the magnetic systems. In the pres-
ence of a magnetic field the wave functions (see Fig. 3)
exhibit circular nodal patterns with complex phase argu-
ments. The processed Husimi maps for each state indi-
cate circular classical trajectories with radii correspond-
ing to the cyclotron radius. At the magnetic fields used
here, the cyclotron radius is smaller than the system size
(see App. B), as presented in Fig. 3.

Figure 4 present maps of the current flow and the clas-
sical trajectories corresponding to the magnetic systems
depicted in Fig. 3. The trajectories correlate strongly
with the processed Husimi map. Like the circular well
states, the presence of multiple trajectories at each point
in Fig. 4 can be explained by the intersection of rotated
classical trajectories that arise from rotational symme-
try. For the state in Figs. 3a and 4a, we have artificially
removed rotational symmetry to highlight fewer paths.

The approach of mapping the flow using the flux opera-
tor on a wave function is rather unreliable. The flux map
in the left column of Fig. 4, obtained by integrating the
flux with a Gaussian kernel corresponding to the coherent
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(a)

(b)

FIG. 3: Raw Husimi map (left), processed Husimi maps (mid-
dle), and wave function (right) for two eigenstates of the cir-
cular well with magnetic field coming out of the plane. The
magnetic field strength is set so that the cyclotron radius is
approximately 1/2(a) and 1/3(b) the radius of the system.
Double-arrows at far right indicate the spread of the coherent
state (∆k/k = 10%). Both states correspond to the classical
paths presented in Fig. 4.

(a)

(b)

FIG. 4: Maps of the flow for the two states presented in
Fig. 3(a-b). (left) the flux map, (center) the processed Husimi
map, and (right) classical paths. The traditional flux corre-
lates strongly with Husimi flux (Eq. 3) but fails to show the
classical paths suggested by the wavefunction.

state used to generate the processed Husimi map, does
not follow the classical paths (right column) correspond-
ing to the system. The traditional flux map j(r) averages
over all trajectories at each point. As seen in Figure 4,
the particle flow at a point obtained from the flux aver-
ages over the two main directions of flow obtained from
the processed Husimi. The flux operator fails to indicate
the full classical dynamics underlying a quantum wave-
function. In contrast, the processed Husimi map (middle
column of Fig. 4 ) reproduces the classical paths with re-
markable fidelity. The flux is able to instead measure the
total drift flow, which might be the desired quantity in
some circumstances. The total drift flow is also obtained

from the summation of all vectors at each point in the
processed Husimi map.

C. Processing Husimi Maps to Determine Angular
Deflection

To identify points along the boundary where path de-
flections occur, we process the Husimi map to extract a
quantity we call angular deflection. In subsection (IIID)
we demonstrate how processed Husimi maps can provide
insight into to the semiclassical underpinnings of quan-
tum wave functions in stadium billiard eigenstates. Of
particular interest are boundary reflections, which play
a key role in the structure of the wavefunction and its
underlying classical paths.

We begin by considering the Husimi function for one
point in k-space measured at equally spaced points on
a grid that covers the system. The scalar field yields a
spatial map of the presence of an individual trajectory
angle and fluctuations in the map indicate points where
classical paths deflect away from and towards the angle.
Summing the results for all wave vectors along the con-
tour line defined by the system energy in the dispersion
relation, we can derive a measurement of angular deflec-
tion Qang. (r; Ψ) written as

Qang. (r; Ψ) =

ˆ
Dabs.(r,k; Ψ)kddk. (8)

Dabs.(r,k; Ψ) is the Gaussian-weighted absolute diver-
gence of the Husimi map for wavevector k written as

Dabs.(r,k; Ψ) =

ˆ d∑
i=1

∣∣∣∣Hu (k, r′; Ψ)−Hu (k, r; Ψ)

(r′ − r) · ei

∣∣∣∣
× exp

[
(r′ − r)

2

2σ2

]
ddr′, (9)

where the sum is over the d orthogonal dimensions asso-
ciated with the appropriate unit vector ei.

Processing the Husimi map to measure angular de-
flection has close ties to its initial implementation as a
measurement state for building phase diagrams3. For in-
stance, it is possible to use the divergence of the Husimi
map for each wave vector to compute the quantum analog
of a state’s Poincare map9. This form of the Husimi map
has been used to examine the angle of impact against a
coordinate along the boundary9 to study chaotic behav-
ior in stadium billiards10,11. Angular deflection can also
be used to examine the case where external fields cause
path deflection, such as in the presence of a strong mag-
netic field, although we do not explore such use in this
paper.

D. Stadium Billiard Eigenstates

The classical dynamics of circular stadia are integrable
while those of the Bunimovich stadium12 are chaotic. As
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(a)

(b)

(c)

FIG. 5: Eigenstates of the stadium billiard system with
Dirichlet boundary conditions at three increasing energies,
with the raw Husimi map (left), processed Husimi map (mid-
dle) and wavefunction (right). Angular deflection is indi-
cated in blue in the left column. Double arrows indicate
the spread of the coherent state used in the calculations
(∆k/k = 20%(a), 15%(b) and 10%(c)).

a result, the stadium has been featured in many studies
of quantum chaology9,13–19. In addition, stadium bil-
liards provide another perspective on the utility of the
processed Husimi map. Unlike the circular system al-
ready presented, where the trajectories accumulating at
a particular point are fairly regular and predictable, all
points in a stadium billiard eigenstate are rife with many
unpredictable trajectories. In this regime, the processed
Husimi map validates its use as an ideal tool for lifting
the veil on the underlying classical dynamics. This is
particularly true once issues regarding the selection of
the width parameter σ are addressed, which we discuss
in Appendix E.

In Fig. 5, we present raw and processed Husimi maps
for three eigenstates of the closed stadium billiard sys-
tem. For each calculation, the size of the coherent state

is kept constant, but because the energy of the eigen-
states increases from top-to-bottom, the momentum un-
certainty for each Husimi projection also increases. This
is reflected in the clarity of the suggested classical paths
at higher energy as well as the reduction of angular de-
flection in the bulk (which exhibits small positive values
in the top figure due to uncertainty, not because there is
actual deflection at these points).

To the untrained eye, the wave functions in Fig. 5
do not appear to emphasize isolated classical trajec-
tories, the scars found in the high-energy stadium
states11,14,16,17,19, and explored in Appendix E, specifi-
cally since at low energies the system only accommodates
a few wavelengths along its diameter. In the processed
Husimi map, however, it is quite clear that a very lim-
ited set of classical trajectories are largely responsible for
these wave functions, suggesting that Husimi projections
could be used to study the properties of low-energy scar
states2.

Sections with high angular deflection show which parts
of the system boundary are responsible for the creation
of each state and indicate where adiabatic changes in
the boundary conditions are most likely to affect the
state19,20. This can be imagined as a quantum force on
the boundary. Because the size of the coherent state used
to generate each Husimi map is kept constant, the angu-
lar deflection penetrates into the bulk to the same extent
for each state. However, the locations of high angular
deflection along the boundary form a unique fingerprint
for each state.

IV. FLUX THROUGH OPEN SYSTEMS

A. Sub-Threshold Resonance

The previous section used processed Husimi maps to
examine the semiclassical dynamics of closed systems di-
rectly from their wave functions, providing substantial
benefits over the usual flux operator, which vanishes for
time reversal symmetric systems, and averages all tra-
jectories (thus missing crisscrossing trajectory paths, see
Fig. 4) when a magnetic field is present. Moreover, the
spread of the coherent state used to generate the Husimi
map provides flexibility to examine dynamics at a variety
of scales, while the flux operator is confined to the limit
of infinitesimal spread. In its traditional guise (Eq. 1),
the flux operator is most often employed in scattering
problems which arise when a closed system is coupled to
leads or baths. Is it possible to connect the semiclassical
dynamics of the closed system to the open system using
an extended Husimi flux?

In this section, we demonstrate how the Husimi flux
can help interpret the traditional flux and deepen our
understanding of transport across a device. We consider
sub-threshold resonance for a waveguide that is slightly
widened along a short section (see inset, Fig. 6). In an
unperturbed waveguide, transport occurs through trans-
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FIG. 6: Top: An infinite waveguide schematic with a slight
bulge in the middle (grey). This system can be modeled as
two waveguides of different widths (blue and red). Bottom:
In an infinite waveguide, the transmission curve has a series
of plateaus as each transverse mode opens up (blue trans-
mission curve). In a wider waveguide, each mode opens up
at lower energies (red curve). If only a small segment of the
waveguide is widened, then sub-threshold resonances occur
in between the energies of the narrow and wide waveguides
(grey transmission curve). These resonances correlate with
sub-threshold resonant states which peak in the density of
states (DOS) at those energies. Energy is given in units of t
where 4t is the band edge.

verse modes, which open for transport when the system
energy exceeds the transverse energy of the mode. At
these energies, the transmission function exhibits dis-
tinct plateaus as seen in Fig. 6, where the plot of the
transmission for a wide(narrow) waveguide is presented
in red(blue).

If a section of a narrow waveguide is widened, the
transverse energy of each mode diminishes in the wider
section. Thus, for each mode, there is a range of energies
bounded above by its transverse energy in the unper-
turbed waveguide, and below by its energy in the wider
region. In this energy range, the mode can reside in
the wider region but cannot propagate through the nar-
rower leads where it is an evanescent wave. This forces
the system into a quasi-bound state which is trapped
in the wider region and is only weakly coupled to the
environment, causing a striking peak in the density of
states, commonly known as a Feshbach resonance21. In
the quasi-bound state, the particle bounces vertically be-

(a)

(b)

FIG. 7: The raw Husimi map for the resonant state (see inset)
is plotted using (a) ∆k/k = 100% and (b) ∆k/k = 20%. The
spread of the test wave packet is indicated by the respective
double-arrows. A single Husimi projection (circled in red) for
each map is magnified at right. The vector sums of each map
are shown in Figs. 9b.

tween the walls of the perturbed region and is unlikely
to escape.

At certain energies, a particle propagating in a lower
energy mode corresponding to the narrow section inter-
acts with the wider region and becomes trapped in the
quasi-bound state. This causes the quasi-bound state to
hybridize with the propagating mode and interfere with
the transmission in the device, as seen in Fig. 6. The sup-
pression of transmission appears as a pair of sharp dips,
accounting for symmetric and antisymmetric versions of
the Feshbach resonance. Since the resulting wavefunc-
tion is the hybridized state that inhabits the system at
resonance, we refer to it as the resonant state.

We compute the wavefunction of the resonant state
corresponding to the first dip in the transmission shown
in Fig. 6 (indicated by the arrow in the transmission func-
tion) according to the method outlined in Appendix C.
This method allows the extraction of the pure resonant
state without the second-lowest propagating mode, which
is also present at these energies. Fig. 7 shows two raw
Husimi maps for this wave function produced using co-
herent states with uncertainties of ∆k/k = 100% and
20%, respectively. Spatial variations in the Husimi map
decrease as the size of the coherent state increases, as we
present later in Fig. 15.

The raw Husimi map is indistinguishable from the
quasi-bound state and the resonant state, which is ex-
pected since the resonant state is only slightly perturbed
by the propagating mode. The flux of the quasi-bound
state is zero. Moreover, as the energy is increased across
resonance, the wavefunction doesn’t substantially change
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(a)

(b)

FIG. 8: (a) The raw Husimi map for the wave function of the
lowest propagating mode (see inset) of the waveguide in Fig. 6.
The energy of the state is well above resonance (E = 0.02745).
The uncertainty for this map is ∆k/k = 20%. A magnified
view of the projection circled in red is presented at right. (b)
The Husimi flux. This is the mode which hybridizes with the
resonant state to produce Figs. 7 and 9.

in appearance, while the flux patterns alter dramatically.
At first, these behaviors appear to contradict the Husimi
map, but below we show that the flux patterns corre-
late with subtle changes in the Husimi maps that can be
retrieved by adding all their vectors.

We can begin to understand these subtle changes by
examining the lowest propagating mode. The raw Husimi
map far away from resonance, shown in Fig. 8 using a
moderate size coherent state, corresponds to a complex
plane wave with a single wave vector. In the Husimi
flux, the left-to-right flow appears unchanged within the
central region of the system. The flux operator for this
mode, not shown, is similar. In contrast, the vector-sum
and the flux of the bound state is always zero. So what
happens when it interacts with the lowest propagating
mode to produce the resonant state?

In Fig. 9 we address this question by showing the tra-
ditional flux, wave function, and the Husimi flux. The
energy for each state is (a) above, at (b), and below (c)
resonance. The flux operator is integrated over a Gaus-
sian kernel corresponding to a coherent state spread of
∆k/k = 100% and is identical to the Husimi flux with the
same coherent state spread. In the flux operator we see
the characteristic vortex patterns shift in direction above
and below resonance, as expected when the bound state
passes through a phase of π over resonance. Moreover,
while it is clear that the presence of the lowest propa-
gating mode is stronger away from resonance, the wave-
function representation at all three energies are strongly
influenced by the bound state. Similarly, probability flux
is strongly localized in the center of the system, and it
is unclear how the vortices correlate with the fact that
transmission for this mode goes to zero on resonance.

(a)

(b)

(c)

FIG. 9: The traditional flux (left column) and the Husimi flux
(right column) for the resonance state in Fig. 6 slightly above
resonance (a, E = Eres.+0.00005), at resonance (b, E = Eres.)
and slightly below resonance (c, E = Eres. − 0.00005). The
coherent state for the Husimi flux corresponds to ∆k/k =
0.2. The transmission function for this mode corresponds
to (a) T = 0.99, (b) 0.06, and (c) 0.99 for the respective
energies. Even though the raw Husimi maps (not shown) at
each energy are indistinguishable from Fig. 7, their vector
additions (Husimi flux) vary substantially. Energies are in
arbitrary units, scaled to Fig. 6.

In the Husimi flux, however, the correlation is obvious:
above and below resonance, vortices cancel out and leave
behind the drift velocity of the mode. For these energies,
the Husimi flux is quite similar to the lowest propagating
mode in Fig. 8, and the left-to-right flow extends through
the semi-infinite leads, although there are slight changes
in the central region. At resonance, however, the vortices
no longer interfere to produce flow from left-to-right, but
instead persist as larger vortices across the central region,
which counteract the left-to-right flow from the leads, re-
sulting in zero transmission for this mode. The second-
lowest propagating mode (not shown), which is antisym-
metric along the transverse direction, does not interact
with the resonance and maintains full transmission.

At all energies, the raw Husimi map shows the simple
vertical bouncing trajectories that are identical to the
bound state (Fig. 7), while the left-to-right flow of the
lowest propagating mode (Fig. 8) interferes with these
paths to produce the residual flux vortices. The classi-
cal dynamics of the resonance therefore indicate a subtle
shift in the overall contribution of classical trajectories
that give rise to the resonance. Because the vertical tra-
jectories can easily cancel each other out, the residual
becomes exquisitely sensitive to the initial conditions of
such classical paths, which are determined solely by the
energy of the lowest-propagating mode.
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Examining this system using the Husimi flux allows us
to extract details at small spreads similar to the informa-
tion found using the flux operator. Yet, the Husimi flux
also can indicate larger drift flows when utilizing larger
spreads. Important information about the resonance can
be retrieved at all scales, since the flow can be under-
stood as the slight residuals of the full Husimi projection
found at different coherent state spreads. By adding the
Husimi projection and the Husimi flux to the wave analy-
sis toolset, we can examine the problem at various scales
and construct a more nuanced and complete story.

B. Transport Through Complex Geometries and
the Nature of Flux Vortices

In the previous section we explored different scales of
flow patterns by varying the spatial spread of the coher-
ent states (σ) used to generate a Husimi map. In this
section, we vary the σ parameter to reveal the behavior
of the probability flux at arbitrary scales in systems with
geometries more complex than a simple wave-guide: a
square system with two small leads and a half stadium
with two attached leads.

In the square system, the size of the square is much
larger than the characteristic wavelength at the energies
of interest. The leads are displaced vertically from the
center towards the bottom-left and upper-right corners.
Further, there is an obstruction in the middle of the sys-
tem that constrains transport towards the central region.
As a result, transmission in this device requires that par-
ticle trajectories must reflect off the boundaries several
times.

In Fig. 10, we present a scattering state wavefunction
for this system, a magnified view of the traditional flux,
the Husimi flux, and the processed Husimi map. The
scattering wave function (Fig. 10(a)) acts as a mode of
unit transmission for a square system with two small
leads. The nodal lines appear along the 45◦ diagonals,
which is corroborated by trajectories favoring those di-
agonals in the processed Husimi map (Fig. 10(c)). This
arises because all boundary conditions are vertical or hor-
izontal walls; since each mode of the unperturbed waveg-
uide leads is associated with a distinct pair of trajectory
angles, the vertical and horizontal walls therefore reflect
all trajectories back onto the same pair rotated at 45
degrees. At the energy selected, the pair of trajectory
angles for the incoming mode are at perfect 45◦ diago-
nals, so that their rotations from reflecting off the walls
also point along the diagonals, resulting in standing wave
patterns.

The Husimi flux (Fig. 10(b)) for this state presents a
conductance pathway where it is clear that transport fol-
lows primarily through a narrow channel. Here, most of
the particle flow is from the lower-left to the upper-right
corners. By comparison, the traditional flux map (not
shown) is rife with vortices throughout the entire sys-
tem, dramatically limiting our ability to identify overall

(a)

(b)

(c)

FIG. 10: A scattering wavefunction associated with full trans-
mission through a partially obstructed square device. (a)
Wavefunction of the system, (b) the Husimi flux, and (c) the
processed Husimi map. The coherent state spread used is
∆k/k = 10%, indicated by the double arrows. The inset
shows the traditional flux over the part of the system indi-
cated by the black squares.

flow. The conductance pathway does not have to be clas-
sical, since it is an aggregate phenomenon formed from
many trajectories; as a result, it is able to curl in the
bulk without external forces, as seen in Fig. 10(b). Pairs
of vortices form as the pathway moves from the central
part of the device towards the region where perpendicular
classical paths (indicated by the processed Husimi map)
dominate. We highlight one such region with a black box
and present in the inset of Fig. 10 the traditional flux
for this region. These vortex pairs are a direct analog
to those found in sub-threshold resonance as the left-to-
right conductance pathway passes through perpendicular
trajectories in the perturbed waveguide (See Fig. 9 and
the surrounding discussion).

We now proceed to another complex geometry (Fig. 11)
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(a)

(b)

(c)

FIG. 11: A scattering wavefunction associated with full trans-
mission through the half-stadium. (a) Wave function repre-
sentation, (b) the Husimi flux, and (c) the processed Husimi
map. The coherent state spread used is ∆k/k = 10%, indi-
cated by the double arrows. Black and red squares highlight
regions of particular interest (see text). The traditional flux
from the respective highlighted regions of the system is shown
magnified in the insets.

and examine a full-transmission scattering state for a
large half-stadium with two leads attached at its sides.
Given that scar orbits must self-loop but be otherwise
unstable2, scar states can only participate in transport
when the leads attach at points that are slightly dis-
placed from one of the orbit’s reflection points; otherwise,
the classical orbit leaks out the system too quickly. The
wavefunction in Fig. 11 shows strong scarring, and the
processed Husimi map corroborates the scarring with an
identifiable classical orbit which just misses the leads.

Like the partially obstructed square device in Fig. 10,
the traditional flux also occurs most strongly along a nar-
row conductance pathway which, in this case, flows along
the bottom of the device while deviating into the bulk at
its middle. In addition, flux vortices occur throughout
the system, making interpretation of the dynamics diffi-
cult without applying our methods. In contrast with the
square device, these vortices no longer form identifiable

pairs. In the half-stadium state, classical paths do not
intersect at 90◦ angles, but take on a range of oblique
angles. As a result, the vortices take on forms that are
consistent with the processed Husimi map at each inter-
section. For instance, in the black inset, there is strong
flow from bottom-left to upper-right, with other near-
vertical flows forming vortices. In the red inset there are
three primary flows propagating at 60◦ to each other,
forming the triangular arrangement of vortices shown.

V. CONCLUSIONS

The processed Husimi map algorithms for the visual-
ization and extraction of the dynamics of wave functions
presented here are powerful tools. They provide an ex-
tremely accurate way to reveal the dynamics and classi-
cal ray structures of a quantum wave function. Also, this
technique can be used in a wide variety of systems and to
calculate properties such as angular deflection, boundary
reflections, and the flux. The results and examples pre-
sented in this paper demonstrate the technique as invalu-
able for informing a design principle in quantum systems,
since it provides a map of how boundaries affect individ-
ual quantum states (Sec. IIID), as well as the impact of
potentials (Sec. 2), and magnetic fields (Sec. III B). In
addition, we have shown its utility for illuminating the
phenomena underlying resonance when a closed system
interacts with an environment (Sec. IVA), while explain-
ing the source and properties of flux vortices (Sec. IVB).
Because of its ability to contextualize the flux operator
and identify the primary conductance pathway in large
systems, the processed Husimi map is an ideal tool for
interpreting quantum conductance simulations.

This paper focuses on two-dimensional systems, since
they are ideal for demonstrating the significant physi-
cal intuition that the Husimi tools are able to provide.
However, its definition is not limited to such systems. It
is equally well suited to three-dimensional systems, and
may be able to provide a significant contribution to inter-
preting molecular orbitals, augmenting such technologies
as Bader surfaces analysis22 and local currents23.
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Appendix A: Uncertainty Propagation for Husimi
Vector Addition

When integrating over the available k-space in Eq. 3,
the resulting Husimi flux vector has lower uncertainty
than the individual terms in the integral, but by how
much? Understanding this detail is key to appreciat-
ing why the Husimi projection is valuable when extend-
ing the flux operator to an operator with defined uncer-
tainty. Moreover, understanding the behavior of uncer-
tainty propagation in this integral makes it possible to
confidently approximate the result with a discrete sum,
offering both visual and computational advantages.

We begin by considering the extreme cases. If the wave
vector orientation remains unchanged for each measure-
ment, summing up identical measurements has no effect
on the final relative uncertainty. On the other hand,
when either the spatial coordinates or the wave vectors
are sufficiently separated, each Husimi vector constitutes
an independent measurement; the uncertainty of the re-
sult will reduce by the square root of the number of mea-
surements. In general, calculations fall in between these
two extremes. This analysis is performed in only one di-
mension since to obtain the variance in more than one
dimension we would just need to add the variance along
each orthogonal axis. First, the coherent state is ex-
pressed in the momentum basis as

〈k| r0,k0, σ〉 =

(
2σ√
π/2

)1/2

×e−σ
2(k−k0)

2+i(k−k0)·r0 . (A1)

Most generally, the Husimi projection in Eq. 3 is the
integral of Husimi functions over all of k-space. In this
appendix, and in the figures throughout this paper, the
integral is replaced with a finite sum of test wave vectors
{ki} which satisfy the dispersion relation at a particular
energy.

The variance of the integral in Eq. 3 (the vector-valued
Husimi flux) can be obtained by building on intuition
about coherent states. The k-space variance of the co-
herent state can be derived by integrating the coherent
state probability amplitude over k-space, weighting the
integrand by (k− k0)

2. Using the notation in Eq. A1,
this gives σ2

k = 1
4σ2
x
, where σk and σx are the spread in

momentum and real space of the coherent state. The
properties of coherent state yield the relation σxσk = 1

2 .
This can be thought of in the Husimi formulation as a
statistical result where the quantity σk is the variance of
each individual term in the Husimi vector summation. In
this representation, the variable is the wave vector and
the probability function is the probability amplitude of
the coherent state. Because the probability function is
complex, we take the absolute sum squared.

Factoring in more than one Husimi function into the

FIG. 12: The second term in Eq. A3 is plotted for the addition
of two vectors in the Husimi projection. This term represents
the covariance between the two vectors, and is bounded above
by 2 and below by − 4

e3/2
for all choices of σ.

Husimi projection results in the expression

2σ√
π/2

ˆ ∞
−∞

∣∣∣∣∣∑
i

(k − ki) e−σ
2(k−ki)2+i(k−ki)x0

∣∣∣∣∣
2

dk,

(A2)
where the integral is over the set {ki} of test wave vec-
tors, projected onto the given axis, x0 is the spatial point
being tested, and σ is the chosen spatial Gaussian spread.
By setting the coherent states to the same phase at their
centers, x0 = 0, the above integral can be evaluated and
the spread in momentum is

σ2
k =

1

4σ2

N + 2
∑
i,j>i

e−
σ2

2 (ki−kj)2
(

1− σ2 (ki − kj)2
) .

(A3)
Already it is possible test this result against intuition.

If each wave vector is identical, then ki − kj = 0 and
the sum of N measurements results in the uncertainty
σ2
k = N2

4σ2 which would provide no reduction of relative
uncertainty. When |ki − kj | � σ, the exponential term
will overwhelm the quadratic term and the uncertainty
becomes σ2

k = N
4σ2 , a reduction in the relative uncertainty

of
√
N .

The second term in Eq. A3 quantifies the covariance
between measurements. In Fig. 12 we plot this quantity
for two vectors which can actually be negative. The lower
bound of Q(k1, k2, σ) = 2e−

σ2

2 (k2−k1)2
(
1− σ2 (k2 − k1)

)
is − 4

e3/2
≈ −0.893, achieved at |k2 − k1| =

√
3/σ.

The terms in Eq. A3 suggest that when additional vec-
tors are added, the uncertainty can be reduced arbitrarily
by setting the correct separations between the test wave
vectors (Q is zero for some vector combinations). It even
suggests that for three or more vectors we could possibly
produce results with negative uncertainty, but intuitively
that cannot be possible. To appreciate why, Fig. 13 plots
the results of σ2

k for the addition of three wave vectors.
The minima that occur from maximizing the separa-

tion between each pair of wave vectors is indicated by
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FIG. 13: Uncertainty obtained by summing three vectors of
a Husimi projection, as written in Eq. A3. The uncertainty is
bounded above by 9/4σ2 and below by ∼ 1.017/4σ2. The
dashed white lines indicate local minima that result from
spacing each pair of vectors by

√
3/σ, which would give a

minimum uncertainty for two-vector addition (see Fig. 12).

the white dashed lines. At the center of the graph, a
peak exists at σ2

k = 9/4σ2, which falls to 3/4σ2 for re-
gions beyond the area bounded by the white dashed lines,
consistent with earlier observations. There is also a min-
imum (positive) uncertainty arising from the fact that
the separation between all pairs of points on a line can-
not be equal. as shown in Fig. 13 where there are no
points where three dashed lines intersect. For two vec-
tors the minimum occurs at σ2

k ≈ 0.981/4σ2, for three
σ2
k ≈ 1.017/4σ2 and for four σ2

k ≈ 1.036/4σ2. We can
generalize and state that for Nmin vectors that fall on
separate minima, the uncertainty of their sum will be
σk ≈ 1

2Nminσ
. Moreover, even if vectors are added that

do not fall on the uncertainty minima in Figs. 12 and 13,
they will have a negligible impact on the total relative
uncertainty. To summarize, no matter how many vectors
contribute to the sum, only the vectors on the minima
will reduce the relative uncertainty. This shows that the
key quantity is not the total number of vectors that are
added, but the number that have sufficient separation to
fall on the uncertainty minima.

How many vectors is this? We know, for instance,
that this minimum occurs when the maximum number
of vector pairs has a separation near

√
3/σ. Further,

this is likely to occur when the vectors are evenly spaced
on a line at that separation. Thus we propose that the
number of vectors that can fall on the minima is given by
Nmin = floor

(
2k(E)σ/

√
3
)
, and using ~k =

√
2mE, we

can rewrite this as Nmin = floor
(
σ
√

8mE
3~2

)
. Substituting

this value results in the proportionalities

∆k/k ∝ 1

Nminσ
∝
(σ
~
√
mE

)−1
. (A4)

This makes sense intuitively: the relative uncertainty of
a finely sampled Husimi vector addition goes down with
larger σ and energy.

This result deepens the connection between the flux op-
erator and the Husimi function for small σ, since for very
small coherent states, the uncertainty minima, which are
separated by σ−1, grow increasingly far apart. There
is only a finite range of wave vectors which satisfy the
dispersion relation at a given energy, meaning that as
the coherent states get smaller, fewer and fewer samples
in k-space minimize the uncertainty. In fact, at the ex-
treme limit of σ → 0, the uncertainty cannot be mini-
mized beyond a single measurement in each orthogonal
direction, indicating that results for these small coherent
states have undefined uncertainty, just like the flux op-
erator. An alternative proof of this result can be found
in Mason et. al.1.

Appendix B: The Hamiltonian

The numerical simulations presented in this paper use
a free-particle Hamiltonian H = − p2

2m + U(r) sampled
on a square grid with spacing a and where U(r) = 0
at all points unless otherwise stated. This Hamiltonian
can be expressed in more familiar language by using the
tight-binding approximation. The effective mass enve-
lope function Hamiltonian becomes H =

∑
i εia

†
iai −

t
∑
〈ij〉 a

†
iaj where ai is the annihilation operator for the

ith site, εi is the energy of the system plus the disor-
der potential, and the set 〈ij〉 cycles through all nearest-
neighbor pairs. The hopping term is t = ~2

2ma2 and
εi = 4t+ Ui, where Ui is zero unless otherwise stated.

Sec. III B uses the Peierls substitution24 to incorporate
magnetic fields, using the language of the tight-binding
model. The magnetic field contributes a phase to the
hopping potential t:

tij = t exp [iφ] , φ = qA · (ri − rj)/~, (B1)

where ri is the position vectors of the site corresponding
to the ith column of the Hamiltonian, ~ is Planck’s con-
stant, and q is the electron charge. Calculations in this
paper assume that the magnetic field is perpendicular to
the plane on which the system sits and is bounded by a
cylinder centered on the system’s center. The radius of
this column is chosen to be greater than the size of the
system. Accordingly, the gauge of the magnetic potential
for an out-of-plane magnetic field is defined such that

A(r) =
eθ

2πr

ˆ
Bzdxdy, (B2)

where the integral is over a disc centered on the origin
and limited by radius r.

The cyclotron radius can be determined by the follow-
ing relation

r =
~k
B0q

. (B3)
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For a free particle, ~k =
√

2mE, giving

r

a
=

√
2mE

B0qa2
. (B4)

This means that at E = 0.2 ~2

ma2 , the energy used in
Sec. III B, a magnetic field strength of B = 2× 10−3 ~

qa2

is sufficient to produce a cyclotron radius that is 2/3 of
the system radius.

Appendix C: Scattering Wavefunctions

Diagonalizing the Hamiltonian to examine eigenstates
of a closed system is straightforward. Sec. IVA, how-
ever, examines an open system in a standard ballistic
conductance calculation. The numerical Green’s function
formalism is used to obtain the scattering wavefunction
for these calculations, for which modern implementations
are outlined in several texts25–27. In this formalism, the
Hamiltonian is divided into a left-lead, central region,
and right-lead projections

H =

 HL VLC 0

V †LC HC VRC
0 V †RC HR

 . (C1)

The semi-infinite Green’s function at the surface of
each lead is calculated using the Lopez-Sancho method,
gL,R(E) for the left (L) and right (R) (identical) leads.
To compute the complete Green’s function, the device
G(E) and the semi-infinite surface Green’s functions
g(E) for each lead28,29 are first computed and matched
to the surface Green’s function of the device region, using
the numerical technique outlined in Mason et. al.30.

The coupling matrix for the left lead to the central re-
gion is then defined by ΓL(E) = 2Im

[
V †LCgL(E)VLC

]
.

This results in a density matrix of coherent scattering
wave functions ρ(E) = G(E)ΓL(E)G(E). Each coherent
scattering wavefunction in the system can be obtained
by diagonalizing ρ. Associated with each eigenvector of
ρ will be an eigenvalue equal to the likelihood of measur-
ing the wavefunction within the system. Since there are
generally more basis sets within the central region than
modes available to the system through the semi-infinite
leads, the vast majority of the eigenvalues will be zero,
and the number of non-zero eigenvalues will be equal to
the number of modes available to the system at the given
energy. This number determines the maximum transmis-
sion across the device.

Since a resonant state “traps” the wavefunction at a
specific energy, it creates a striking peak in the density of
states. As a result, the resonant state can be easily iden-
tified among the eigenvectors of the density matrix since
it will be associated with the largest eigenvalue near the
resonance energy. When discussing resonant wave func-
tions, it is assumed that we are using a density matrix

(a)

(b)

(c)

FIG. 14: Quantum-classical correspondence from Husimi
maps by sampling along classical trajectories. In part (a),
the Husimi map for the two eigenstates in Fig. 2c-d, where
Husimi projections are sampled along a grid. In part (b), pro-
jections are instead sampled along classical paths that corre-
spond to the wavefunction. Because of rotational symmetry,
however, the wavefunction is actually created by the sum of
many rotations of such paths, as indicated in part (c).

near the resonance energy and examining the eigenvector
associated with the largest eigenvalue (and measurement
probability) at that energy. This makes it possible to dis-
tinguish the resonant wave function from the ones that
are propagating through the system but are unaffected
by the resonance.

Appendix D: Considerations Regarding the
Multi-Modal Algorithm and Classical Paths

Processing the Husimi map makes it possible to pro-
duce robust visualizations of the underlying classical
paths. It is possible to sample the Husimi projections
at equally-spaced points along a grid to produce plots.
It is also possible to compute quantities such as the an-
gular deflection described in Section III C. However, If we
instead sample along one of the classical paths that corre-
late with regions of high density in the wave function, the
processing is not necessary since we find a set of Husimi
vectors which align themselves perfectly with the classi-
cal path. We show these two approaches in Figs. 14a and
14b, which correspond to the wavefunctions in Figs. 2c
and 2d, respectively.

Each Husimi projection in Fig. 14b contains an ad-
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(a) (b) (c) (d)

FIG. 15: Raw Husimi maps for the scarred stadium bil-
liard eigenstate. Each map uses a different spread of the
measurement wave packet. The spread is indicated by the
double-arrows on the bottom, with relative uncertainties of
∆k/k = 5%(a), 20%(b), and 50%(c). A single Husimi pro-
jection, circled in red, is magnified at the bottom of each
representation.

ditional set of Husimi vectors which do not align with
the path. These vectors can be understood by consid-
ering that wave functions for the circular well and har-
monic oscillator actually correspond to infinitely many
such paths rotated in space due to the circular symme-
try of these systems, which we indicate in Fig. 14c. The
“cross-hatching” patterns in Fig. 14a-b arise because two
rotated classical paths intersect at any point.

Towards the center of the system, a large number of
paths come into close proximity. Even though an in-
finitesimal point is intersected by only two paths, the
finite spread of the coherent state is sensitive to other
paths nearby, giving rise to Husimi projections show-
ing a large number of trajectories with similar angles.
These points in a wavefunction can violate assumptions
of the Multi-Modal Algorithm used to process the Husimi
map1, since the different trajectory angles cannot be re-
solved by the finite spatial and momentum uncertainties
of each Husimi projection. As a result, the processed

Husimi maps at the centers of Figs. 2c and 2d show slight
deviations from the classical path. The processed Husimi
maps show the average classical trajectory at that point
and approximations on both sides of the average.

Appendix E: Considerations Regarding the Width
Parameter σ

We begin by examining raw Husimi projections for sta-
dium billiard eigenstates, to demonstrate their sensitivity
to the width parameter σ. This sensitivity has meaning.
Fig. 15 shows three Husimi maps for a billiard eigenstate.
The wavelength at the energy of the eigenstate is much
shorter than the size of the system, allowing well-defined
scars to form, which are spawned by modestly unstable
and infinitely rare (among all the chaotic orbits) classical
periodic orbits2.

In Fig. 15a, an extended coherent state is used to
generate the raw Husimi map, so that many fine fea-
tures of the wavefunction are washed out. Only the scar
path (seen as a rotated “v” pattern in the depiction) is
clearly visible. The sharply peaked Husimi sunburst re-
flects both the low momentum uncertainty of the Gaus-
sian used and the strong dominance of the periodic orbit
pathway in the eigenfunction.

Compare this to the Husimi map in Fig. 15c which
is generated by a small coherent state with larger mo-
mentum uncertainty. Here, each Husimi projection is
more ambiguous, and local variations in the wavefunction
probability amplitude have a large impact on the repre-
sentation since they are no longer smoothed over. As
a result, the trajectories implied by the map no longer
continue from one projection to its neighbors and ap-
pear somewhat irregular. In general, a compromise can
be made by choosing an intermediate momentum uncer-
tainty, as shown in the Husimi map presented in Fig. 15b.
Trajectories are fairly well-resolved, and local variations
are easy to follow. Coherent states of this size provide
the clearest representation of semiclassical paths.
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