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The heating frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic 

planar surface heating is explained by an analytical solution to the Boltzmann transport equation.  This solution is 

obtained using a two-flux model and gray mean free time approximation, and verified numerically with a lattice 

Boltzmann method and numerical results from the literature.  Extending the gray solution to the non-gray regime 

leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the 

natural variable is mean free time, rather than mean free path as often used in previous work.  The derivation leads to 

an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007)] except 

that the most appropriate criterion involves the heater frequency rather than thermal diffusion length.  The non-gray 

calculations are consistent with Koh and Cahill’s experimental observation that the apparent thermal conductivity 

shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si.  Finally these results are 

demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain 

the apparent thermal conductivity and accumulation function. 
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I. INTRODUCTION 
The diffusion process of Fourier’s law of heat conduction breaks down whenever the characteristic length or timescale 

of a problem is smaller than the energy carrier's mean free path (MFP) or mean free time (MFT, i.e. relaxation time), 

respectively.  Understanding the corresponding MFP or MFT distributions is crucial for understanding the thermal 

conductivity in nanostructured materials1 or ultrafast process2-4, and thus would help designing and optimizing a wide 

range of applications, such as heat dissipation and chip cooling,5, 6 thermoelectric energy conversion7, 8, and 

nanomedicine9.  All studies of the thermal conductivity accumulation function to date have used MFP as the 

independent variable of the accumulation, including both modeling 1, 10-15 and experiments.2, 16-19 

 

 One approach to measuring the accumulation function is by varying the size of a small heat source, to restrict the 

range of phonons which can fully participate in the heat conduction.  In this way Minnich et al. reported direct 

measurements of the phonon accumulation function, using optical heat sources with sizes first in the range of tens of 

microns16, 20 then tens of nanometers.21  Based on a related steady-state solution to the Boltzmann transport equation 

(BTE),22 a cutoff approximation was made that phonons with MFPs larger than the spot size were fully ballistic and 

contributed negligibly to heat conduction.  Thus, the measured apparent thermal conductivity was taken to represent 

the contribution of the phonons with MFP less than the spot size. 

 

 The other method used to obtain the accumulation function is by varying the heating frequency.  Koh and Cahill2 

first measured heating frequency dependent thermal conductivity and reported the thermal conductivity per MFP, the 

derivative of the accumulation function.  For several semiconductor alloys they found that the thermal conductivity 

measured by time domain thermoreflectance (TDTR) depended on heating frequency even at frequencies below 10 

MHz.  Similar measurements were extended to higher heating frequency (200 MHz) by Regner et al. using frequency 

domain thermoreflectance (FDTR).18  In both approaches the thermal conductivity accumulation function was 

calculated using Koh and Cahill’s cutoff assumption that phonons with MFPs longer than the Fourier-law penetration 

depth would not conduct heat, evaluated using either the bulk2 or frequency-dependent18 thermal diffusivity. 

 

 This approach of using some form of truncated Fourier law is very common in the accumulation measurements 

and data interpretation2, 16-18, 23, 24.  Since these experiments are specifically designed so that nondiffusive effects are 

significant over much of the measurement range, the question arises whether the Fourier law is an appropriate 

treatment for these measurements.  A quantitative assessment of Koh and Cahill's cutoff assumption2 by comparison 
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with a more rigorous analysis is still needed.  Thus, nondiffusive solutions to the BTE have attracted great attention 

recently.  There are numerical efforts on solving the BTE to obtain the accumulation function.20, 25, 26  Most recently, 

to deeply understand the nondiffusive transport, there are also reports on analytical solutions.  Collins et al.27 and 

Hua et al.28 analytically solved the BTE for transient thermal grating.  Regner et al.29 obtained analytical solutions to 

the BTE for time-periodic surface heating in both planar and spherical geometries.  They applied this solution to 

investigate the effects of penetration depth and heating source size, as well as the suppression function. 

 

 For such periodic heating experiments, an important research topic is developing more rigorous analytical tools to 

relate the measured macroscopic properties to the fundamental microscopic properties.  For example, in FDTR18 the 

goal is to use the measured phase lag between surface temperature and heat flux to obtain a phonon accumulation 

function.  An additional challenge in the extraction of accumulation functions from some TDTR2, 16 or FDTR18 

experiments is that the measurements potentially involve subcontinuum phenomena in both timescale (modulation 

frequency) and lengthscale (laser spot size).  Isolating the effects of each mechanism also needs to be explored.  For 

steady-state problems where only lengthscales matter, rigorous BTE solutions are known, and yield a Fredholm 

integral equation that connects measurements to a MFP-based accumulation function.15, 26  Here, we consider the 

complementary case where the subcontinuum phenomena arise purely from a periodic timescale effect, by using an 

infinite plane source to eliminate any spot size effects.  

 

 Below, we build up a BTE-based framework to interpret the experimental quantities and bridge them to the 

nondiffusive properties, as shown in Fig. 1.  We first obtain an analytical solution to the gray BTE with a planar heat 

source.29  Then, we extend this gray model to the non-gray regime, which helps explain the heating frequency 

dependent thermal conductivity observed for semiconductor alloys2.  Next we present a scheme by which transient 

measurements can be analyzed using the BTE rather than Fourier’s law, summarized in Fig. 1 and discussed in Sec. 

IIC.  Finally, a virtual experiment is considered.  For periodic planar heating, the results show that the phonon 

accumulation function is more appropriately expressed with respect to MFT than MFP; similarly, if a cutoff 

approximation is used in analyzing the measurements, it is more appropriate to use the heater timescale directly rather 

than the corresponding Fourier-law penetration depth.  
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FIG. 1  Conceptual comparison between Fourier (traditional)18 and BTE (this work) approaches for obtaining the phonon 

accumulation function from measured temperature phase lag data in FDTR. 

 

II. DESCRIPTION OF MODEL 
 For brevity, here we present the problem statement, outline the solution, and give the key theoretical results.  

Derivation details are deferred to the Appendixes, including the two-flux BTE (Appendix A); solutions for 

temperature, heat flux, penetration depth, and phase lag (Appendix B); the relationship between effective carrier 

velocities in one-dimensional (1D) and three-dimensional (3D) models (Appendix C); and the solution using the 3D 

velocity treatment (Appendix D). 

 

A. Periodic heating problem and BTE 

 We consider heat conduction in a semi-infinite solid with periodic plane-source heating on the surface, including 

the case where the heating frequency is high enough that nondiffusive effects cannot be neglected.  In current TDTR 

and FDTR experiments the fastest heating frequencies (~10 to 200 MHz,2, 17, 18) are still several orders of magnitude 

smaller than typical semiconductor phonon vibrational frequencies ω.  Thus, quantum wave effects should be 

negligible and phonon wave packets can be treated as particles, so that the BTE is applicable.30  

 

 We start from the transient 3D BTE, which is complicated and time consuming to solve for an arbitrary geometry.  

However, as indicated in Fig. 2 the present problem is greatly simplified.  The translational symmetry of the planar 

heating eliminates the y and z spatial coordinates from consideration.  The two-flux treatment, which assumes 

isotropic phonon intensities over the forward and backward hemispheres but with two different amplitudes,31 greatly 

simplifies the wavevector dependence.  Furthermore, the time dependence is simply steady-periodic in response to 

the heater frequency ωH.  

Expt. input: 
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Apparent thermal 
conductivity

 κapp,Fourier ( ωH )

Boltzmann Transport Equation

Dispersion 
relations
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This work

1 nDωτ ω− =

Accumulation function
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cutoff 
postulate
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Approx.
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FIG. 2 (Color online) Schematic of two-flux BTE model of a semi-infinite solid with a planar periodic heat source of angular 

frequency ωH.  The distribution of equilibrium BTE temperature (solid purple line) is depicted for one instant in time, as well the 

envelope of its amplitude (dashed black line). 

 

 

 Taking full advantage of the 1D nature of the transport depicted in Fig. 2 involves some modeling subtleties.  

For details see Appendix D.  In general, the group velocity for a single polarization depends on the phonon frequency 

and direction: ),,( φθωvv = , where θ is the polar angle measured from the x axis and φ is the azimuthal angle.  

Due to the symmetries and material isotropy of our problem, there clearly is no φ dependence.  To further simplify 

the θ dependence, we use a two-flux approach, which is common in the radiation literature31 and detailed in Appendix 

A.  Within a two-flux approximation, there are still two slightly different ways to treat the group velocity vectors.  

For transient modeling, the most common treatment18, 32 [Fig. 3(a)]  approximates all group velocity vectors as lying 

purely in the + x̂  or - x̂  directions, with a speed v1D(ω).  A more realistic Schuster-Schwarzschild or 

Milne-Eddington approach31  [Fig. 3(b)] uses an isotropic dispersion relation where all phonons of a given frequency 

share the same speed ωv .  Below, we first develop the BTE solution using the scheme of Fig. 3(a) and verify it 

using a numerical lattice Boltzmann (LBTE) method, followed by extension to the scheme of Fig. 3(b). 

 

 
FIG. 3. (Color online) Two different implementations of the two-flux model of phonon radiation, as applied to the nominally-1D 
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problem of Fig. 2.  (a) Phonons can travel only in the x̂±  directions.  (b) Phonons travel isotropically with speed vω, while 

the net transport remains 1D along x̂± . 

 

 The BTE solutions in the Appendix are first solved using a gray approximation, whereby all phonons have the 

same MFT.  Then, to allow for materials where the phonons have a broad distribution of MFTs,1, 10, 15, 16, 18 the 

solution is extended to the non-gray regime in Sec. IIB using a similar method as Ref. 33.  In both cases we use an 

isotropic Born-von Karman (BvK) dispersion.33  Optical modes are neglected due to their small group velocity; since 

this also neglects their potential role as a thermal reservoir it is only appropriate below the corresponding Einstein 

temperatures.32, 34   We lump the three acoustic polarizations into a single branch, a common approximation15, 32, 35, 36 

which has previously been shown to give good agreement with experiments for both bulk37 and nanowires.35 

 In the single mode relaxation time approximation, the BTE has the form38, 39 

         
0f f f fv

t x
ω ω ω ω

ω
ω

μ
τ

∂ ∂ −+ =
∂ ∂

,         (1) 

where fω  is the distribution function, 
0fω  is the equilibrium distribution function, vω is the magnitude of the 

group velocity, μ = cosθ is the direction cosine, τω is the MFT, and the subscript ω indicates quantities which depend 

on ω.  In the first scheme of Fig. 3(a), μ = ±1 = constant.  We have also performed the derivation following the 

more general scheme of Fig. 3(b), with key results given in Appendix D.   

 As exemplified by FDTR18, 40, an important class of experiments is based on the periodic surface heating of a 

semi-infinite material, which obviously causes the surface temperature to fluctuate at the same frequency, ωH.  For 

mathematical convenience, we prefer to solve the BTE using surface temperature as the forcing and thus the surface 

heat flux is the response.  Since the solution is unique, once the relationship between temperature and flux is found, 

the solution applies just as well to the experimental situation.  Specifically, we choose to force the two-flux problem 

using the boundary condition 

         ( ) ( )0, exp HT x t T T i tω+
∞= = +Δ ,        (2) 

where the superscript "+" means forward direction (later the superscript "−" means backward direction), T∞ is the 

ambient temperature, and ΔT << T∞ is the amplitude of the T+ oscillation.  Building on this boundary condition, the 

BTE of Eq.(1) can be solved for the gray two-flux model, as detailed in Appendices A and B.  The key results are the 

equilibrium temperature eqT  and surface heat flux 
"
netq , given in Eqs. (B3) and (B6), respectively. 

 



 

7 
 

 

B. Apparent thermal conductivity: gray and non-gray model 

 We define an apparent thermal conductivity using the ratio of heat flux to equilibrium temperature gradient,  

         ( ) ( )
( )

"

,

, ,
,

net H
T x teq

x

q x t
app gray Hk ωω ∂

∂

= .          (3) 

Reassuringly, in the detailed solutions of ( )" , ,net Hq x tω  and Teq(x,t) we find that the dependencies on x and t appear in 

exactly the same form, and thus cancel out of grayappk , .  Clearly, the definition in Eq. (3) simply approaches the bulk 

value kFourier whenever Fourier’s law of heat conduction holds.  Substituting the relevant results from Appendix B, we 

find  

        ( ) ( ),app gray H t H gray Fourierk B kω ω τ= ,         (4) 

where τgray is the gray MFT, and Bt(ωHτgray) captures the subcontinuum effects of periodic heating and is found to be  

         ( ) 2

2 2 2

1 2 cos 1
1 2 cos

d d
t H gray d d a b

B φ
φ

ω τ + −
+ + +

= .        (5) 

Here a, b, φ, and d themselves are functions only of ωHτgray, and are defined and explained in Appendix A and Table II.  

The Bt function is plotted in Fig. 4(a).  For ωHτgray <<1, Bt(ωHτgray) →1, correctly recovering the Fourier limit. 

 

 Importantly, this Bt function depends only on ωHτgray and not on any other material properties.  As will be seen 

below in Sec. IID, Bt also serves as a kernel in an important integral transform that relates continuum (short MFT) and 

subcontinuum (long MFT) behaviors.  Clearly the key physics separating the two regimes of Bt is the timescale of the 

heating period as compared to the MFT.  Interestingly, a closely analogous kernel (also known as a suppression 

function25-27, 29) was previously identified for a related integral transform in steady-state problems,15, 26 where the 

physics separating continuum and subcontinuum regimes is the lengthscale of a small heater as compared to the bulk 

MFP.  This analogy is further detailed in Table I.   

 

TABLE I.  Comparison of integral transform results for the small timescale effect (present work) and the small lengthscale 

effect.15, 26  Analogous results also exist in terms of the accumulation functions [Eq. (14)].  Consistent with Ref. 15, Λbulk is the 

bulk MFP, Lc is the characteristic size, and Λeff is the effective MFP.  τω is analogous to Λbulk, since both represent the intrinsic 

scattering in an infinite sample at steady state for a phonon of frequency ω.  

 



 

8 
 

 
Timescale effect 

(infinite sample size) 

Lengthscale effect 

(steady state) 

Essential characteristic of 

subcontinuum forcing 
High heating frequency: ωH

 Small characteristic size: Lc 

Input function 

(property of bulk material)
 

( )τ ωτΚ   

Thermal conductivity per MFT [W/m-s-K] 

( )ΛΚ Λbulk   

Thermal conductivity per MFP [W/m2-K]  

Kernel function 

(captures subcontinuum 

phenomena) 

( ) ,eff

t HB ω

ω

τ
ω τω τ =  

Characteristic time effect 

 ( ) ΛΛ
Λ= effbulk

c bulkt LB  

Characteristic size effect 

Apparent thermal conductivity  

(integral transform) 
( ) ( ) ( )

0
app H t Hk B dτ ω ω ωω τ ω τ τ

∞

= Κ∫  ( ) ( ) ( )
0

bulk

capp c bulk t bulkLk L B d
∞

Λ
Λ= Κ Λ Λ∫  

 

 

 All of the discussion above is based on the gray MFT model.  However, in real materials the phonon MFTs (or 

MFPs) have a broad distribution, typically spanning two to three orders of magnitude,1, 10, 15, 16, 18 necessitating a 

non-gray model.  Beginning from kinetic theory, in close analogy to Refs.[1, 15] we make a simple change of 

variables to write  

          ( )
0

bulkk dτ ω ωτ τ
∞

= Κ∫ .          (6) 

Here Kτ(τω) is the thermal conductivity per MFT,  

         ( ) ( ) 121
3

d
dC v ωτ

τ ω ω ω ω ωτ τ
−

Κ =− ,         (7) 

where the negative sign arises from swapping the limits of integration from ω to τω, Cω is the specific heat per phonon 

frequency, and polarization is lumped into Cω. 

 

 Next, to construct an apparent thermal conductivity for this non-gray model, the phonon population is broken into 

numerous bands Δτω, each of which is approximated as gray using Eq. (4).  Summing up all the band-wise 

contributions33 yields the apparent thermal conductivity 

        ( ) ( ) ,
121

3
0

effd
app H dk C v dωω

ω

ττ
ω ω ω ωω τω τ τ

∞ −⎡ ⎤= −⎢ ⎥⎣ ⎦∫ ,       (8) 
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which can also be written down directly from kinetic theory.15  Here τeff,ω is the effective MFT of the phonon mode of 

vibrational frequency ω.  For low heating frequencies ωH << ω, the continuum limit is recovered and 

, ( ) ( )eff ω ωτ ω τ ω= , while this equality breaks down severely for ωH >> ω.  Comparing Eqs. (8) and (4) reveals the 

convenient identity ( ) ,eff

t HB ω

ω

τ
ω τω τ = , and finally the apparent thermal conductivity of the non-gray model simplifies 

to 

         ( ) ( ) ( )
0

app H t Hk B dτ ω ω ωω τ ω τ τ
∞

= Κ∫ .       (9) 

 Equation (9) is one of the major results of this work.  It is a Fredholm integral equation of the first kind, and is 

closely related an analogous result for the steady-state size effect in a nanostructure [e.g., Eq. (10) of Ref. 15 and Eq. 

(2) of Ref. 26].  Here the short timescale effect of periodic heating reduces τeff,ω and thus kapp, just as the small 

lengthscale effect of nanostructure boundary scattering15 reduces Λeff and kapp, an analogy further detailed in Table I.  

Thus, the physical meaning of Bt is to describe the strength of the periodic heating effect in reducing kapp, as shown in 

Fig. 4(a).  More detailed discussion of the Bt function is in Sec. IID.  

 

 

FIG. 4 (Color online) (a) The suppression function Bt from Eq. (5), and (b) the integral transform kernel ∂Bt/∂(ωHτω), as functions 

of dimensionless heater frequency.  These curves depend only on the product ωHτω and are general to all materials.  Panel (b) 

also shows the MFT accumulation function Α calculated for natural Si at 300 K at two particular heater frequencies.  Since A is a 

function only of τω , in this plot ωH simply shifts the curve.  The circle, square, and diamond indicate the values at ωHτω=1.73, 

chosen so that Bt = 2
1  to facilitate a simplified cutoff algorithm to recover the MFT accumulation (see Sec. IID). 

 

C. Experimental determination of kapp(ωH) from phase lag 
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 Experimentally, kapp(ωH) is usually studied by analyzing the phase,40 and occasionally amplitude,41 of the surface 

temperature response to periodic surface heating.  In this work we consider the phase.  A detailed example is 

presented below in Sec. IIIC using a virtual experiment which is calculated as follows.  Extending the gray BTE 

result of Appendix B [Eq. (B5)] to include non-gray phenomena, the total heat flux at the surface is 

      ( ) ( ) ( )" 1
12

0

0, 1 exp expnet D Hq x t v C T d i i t dω φ ω ω
∞

⎡ ⎤= = Δ −⎣ ⎦∫ .      (10) 

Similarly, for the equilibrium temperature at the surface, the non-gray extension of Eq. (B1) is 

       ( )
( ) ( )1

12
0

1
0

1 exp exp

0,
D H

D

v C T d i i t d

eq
v C d

T x t T
ω

ω

φ ω ω

ω

∞

∞

Δ ⎡ + ⎤⎣ ⎦

∞

∫
= − =

∫
.       (11) 

Thus, the surface phase lag ψ of the equilibrium temperature with respect to the heat flux at the surface is obtained 

from  

         ( )
( ) [ ]
" 0,

exp
0,

net

eq

q x t
R i

T x t T
ψ

∞

=
=

= −
,         (12) 

where both R and ψ are real numbers. 

 

 The physical origin of the phase lag in Eq. (12) is purely due to subcontinuum effects, whereas the phase lags 

reported in FDTR literature18, 40 involve both subcontinuum and continuum effects.  Those FDTR measurements use 

a small (~microns) spot size, and as the angular heating frequency ωH increases the thermal penetration depth 

decreases, causing the classical heat diffusion problem to transition from a spherical point source regime to a plane 

source regime.  The corresponding phase lag thus increases from 0° (spherical source) to 45° (plane source) due to 

purely Fourier-law effects.  In addition, at large ωH nondiffusive effects also become important, causing the phase to 

roll off even more quickly, the effects of which have been analyzed using modified Fourier-law models.18, 40  In 

contrast, the present work considers a planar heat source, removing a lengthscale from the problem and ensuring that 

the continuum Fourier Law solution exhibits a constant phase of 45° for all frequencies.  Any deviations from 45° 

correspond unambiguously to nondiffusive effects Eq. (12), which we analyze using a BTE rather than Fourier 

treatment.  

 Taking the phonon dispersion relation [and thus Cω(ω) and vω(ω)] as known, Eqs. (10) to (12) show how to 

calculate ψ from ωHτω.  In an experiment it is natural to attempt the inverse problem: Given a set of measured ψ, 

what is the best estimate of τω distribution?  This is challenging but possible for a single Fredholm integral 

equation.26, 42  However, inversion of Eq. (12) to estimate τω is much more complicated because it involves the ratio 
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of two integrals.  Thus, instead of solving the general inverse problem, as shown in Fig. 1 here we use the forward 

solution to fit a simple τω function with a small number of adjustable parameters.  For example, assuming a scattering 

law like 
1 nDωτ ω− = , fitting experimental ψ yields D and n.  Finally, intermediate quantities such as Kτ(τω) and 

kapp(ωH) are then calculated from Eqs. (7) and (9), as shown in more detail in Sec. IIIC.  A key difference compared 

to previous work2, 16 is that here the subcontinuum effects seen in the measurements are analyzed self-consistently 

using a subcontinuum BTE solution rather than a modified continuum Fourier's law. 

 

 

D. k accumulation with respect to MFT 

 We now consider the different approaches to quantifying the broad distribution of scattering strengths 

experienced by phonons.  Previously this has been described with an accumulation function with respect to MFP, 

using a characteristic size to provide confinement to MFP, such as heating laser spot size16  or Fourier-law penetration 

depth2, 18  However, for the periodic heating problem here we find the analysis to be more natural and rigorous for 

accumulation with respect to MFT rather than MFP.  Fundamentally this is because the key quantities in the BTE 

solution depend most directly on ωHτω.  In particular, for the planar source problem non-Fourier behavior is clearly 

due to the Bt(ωHτω) suppression function given in Eq. (5).  This is physically expected because the forcing that drives 

sub-continuum behavior is fundamentally a timescale, the heater frequency ωH, and thus should be compared to 

another timescale representing the phonon scattering, for which the most natural choice is τω. 

 It is also possible to re-cast Bt in terms of lengthscales.  Previous work2 implicitly did this by converting ωH to a 

Fourier-law penetration depth using Hp CkL ω/2= , where k is the bulk thermal conductivity and C is the total 

volumetric specific heat, and converting 1bulk Dv ωτΛ = , so that 2
1

2 bulk

D p

k
H Cv Lωω τ Λ→ .  This last form may be considered 

less physically satisfying for several reasons: it involves a greater number of material parameters including some from 

the dispersion relation; it invokes Fourier-law concepts for a strongly non-Fourier regime; and there is ambiguity 

about whether the k and C used should represent the full phonon population or only a subset thereof (e.g., acoustic or 

acoustic + optical modes).  In contrast, expressing the dimensionless function Bt directly as a function of H ωω τ  

makes it a universal function general to any material.  The Bt function depends only on the combination ωτω H , and 

is independent of the dispersion relation and the specific scattering laws (D, n) separately.  Thus, for the heating 

frequency dependent measurement, we conclude that the accumulation function with respect to MFT is more suitable 

to capture the physics of the distribution of phonon scattering.  A more detailed comparison between MFT- and 
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MFP-based analyses is given in Sec. IIIC. 

 

 Similar to thermal conductivity accumulation with respect to MFP1, 10, 15, 16, A( )bulkΛ , we introduce the 

accumulation function with respect to MFT as 

         ( ) ( )1

0
Fourierk d

τ

τ ω ωτ τ τ
Α

ΑΑ = Κ∫ ,         (13) 

where A(τA) represents the fraction of the total thermal conductivity contributed by phonons with MFTs less than τΑ, 

and  kFourier is the bulk thermal conductivity.  After some manipulations and integrating by parts,15 the apparent 

thermal conductivity in Eq. (9) can be expressed as  

        ( ) ( ) ( ) ( )
0

app H t

Fourier H

k dB
Hk d d

ω

ω
ω ωω ττ ω τ

∞

= − Α∫ .        (14) 

Like Eq. (9), this integral equation shows how to convert between the bulk MFT spectrum represented by A(τω) and 

the apparent frequency-dependent thermal conductivity kapp(ωH), via the kernel Bt, and has an analogous counterpart 

for length-scale effects in steady state problems.15, 26 This integral equation separates the bulk material properties, 

contained in A(τω), from the effect of periodic forcing, contained in the universal function ( )
t

H

dB
d ωω τ  (or Bt function).  

 

 Equations (9) and (14) also permit a graphical explanation of why the apparent thermal conductivity depends on 

heating frequency ωH.  For example, from Eq. (14) we see that ( )
t

H

dB
d ωω τ−  acts as a sampling window [red dashed 

curve in Fig. 4(b)] which multiplies A(τω), with the area under the product proportional to kapp.  Since A(τω) is strictly 

a function of τω, plotting A(τω) on an ωHτω axis requires specifying the heating frequency, with larger ωH shifting the 

curve to the right [compare blue and black curves in Fig. 4(b)].  Thus, as ωH increases, there is less area under the 

product of the red and black curves than under the product of the red and blue curves corresponding to lower kapp at 

higher ωH.  

 

 Solving the inverse problem to estimate accumulation functions from the measured apparent thermal conductivity 

has also attracted much attention recently.2, 18, 26, 29, 42  To obtain a simple analytical expression which still captures the 

main physics, we develop an approximation method here.  Referring to Fig. 4(a) we approximate Bt as a Heaviside 

step function,  

       ( ) ( ) ( )1.73 0.28t H H HB H H fω ω ωω τ ω τ τ≈ − ≈ − .       (15) 
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We elect to place the step edge at ωHτω=1.73, found numerically, because that is where Bt = 2
1 , as indicated by the 

circle in Fig. 4(a).  Equation (15) makes the sampling window ( )
t

H

dB
d ωω τ−  a Dirac delta function, and thus from Eq.  

(14) 

         ( ) ( )app c

Fourier

k t
ck tωτ≈ Α = .           (16) 

where 1.73 0.28
H Hc ft ω≈ ≈  is a characteristic time.  This means with kapp(ωH), we can directly recover ( )A ωτ , the 

accumulation function with respect to MFT, without inverse integral transforms, numerical manipulation, or 

knowledge of the dispersion relation.  This approximation will be shown to give reasonable results for model 

calculations of pure materials and alloys, as detailed in Sec. IIIB. 

 A physical interpretation of Eq. (15) is that phonons with ct>τ  contribute nothing to heat conduction, while 

phonons with ct<τ  contribute fully.  Thus Eq. (15) is a cutoff approximation, similar in spirit to Koh and Cahill’s 

postulate comparing the bulk phonon MFP to the Fourier-law penetration depth.2  However as noted above, for 

systems where the subcontinuum forcing is periodic heating, it is more physical to define any cutoff condition in terms 

of the timescales rather than lengthscales. 

 

E. Numerical LBTE for verification of gray model 

 To verify the analytical BTE solutions of our gray model we use a numerical method, the lattice Boltzmann 

transport equation (LBTE).32   A detailed explanation can be found in Ref. 32 .  The essence of this method is to 

constrain the phonons by lattice site.  The time step Δt and space step Δx are related by Δx = v1DΔt.  We use 

Δx=0.025Λgray and represent the semi-infinite domain with a large but finite thickness 20Λgray .  This is sufficient 

because at even the lowest ωH of interest (e.g. ωHτgray = 10-2 which approaches the diffusive limit), 20Λgray is still at 

least double the penetration depth.  The chosen simulation time is 10
H

π
ω  which has been verified as long enough to 

reach the steady-periodic solution independent of the initial condition. 

 

 

III. CASE STUDY: Si and SiGe  

 Silicon has been chosen as the main example.  For the gray LBTE, to make a direct comparison with Regner et 

al.18 we use the same parameters: a gray MFP of 41 nm, specific heat of 1.66×106 J/m3-K, and 3D sound velocity of 
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6733Soundv = m/s.  For the non-gray model we use the same Born-von Karman dispersion and scattering parameters 

as our previous work.15  

 

A. Gray model 

1. Equilibrium temperature and penetration depth 

 Detailed derivations for the gray model are given in Appendices A and B.  The equilibrium temperature 

amplitude is 
( ) ( )1

21
2 1 2 cos expeq

D gray

T x T b
T vd d x τφ∞−

Δ = + + − , from Eq. (B2), with 1
1 3Dv vω=  as discussed in 

Appendix C.  This spatial profile is compared to the Fourier limit in Fig. 5.  When the phonons have sufficient time 

to reach local equilibrium (ωHτgray<<1), the analytical solution approaches the Fourier limit, with increasing deviations 

for larger ωHτgray.  For instance, at the surface x = 0, the difference between BTE and Fourier solutions for the 

amplitude of equilibrium temperature oscillation ||Teq(x = 0)−T∞|| increases from 0.7% at ωHτgray=10−4 to 6.8% at 

ωHτgray=10−2.  As seen in Fig. 6(a), for even larger ωHτgray this BTE surface temperature amplitude approaches half of 

the Fourier limit.  This surface temperature slip indicates the nondiffusive effect, because the amplitude of the 

backward flow T−(x = 0)−T∞ at the surface is much smaller than that of the forward flow T+(x = 0)−T∞, which is taken 

as a boundary condition:  See Appendix B1 in the high frequency regime.  Thus, after averaging, the equilibrium 

amplitude Teq(x = 0)−T∞ at high ωH is only half of the forward amplitude.  

 

 
FIG. 5. (Color online) Spatial distribution of the amplitude of normalized equilibrium temperature for three different heating 

frequencies.  The analytical BTE solution of Eq. (B2) (blue solid line) is compared with the classical Fourier limit43  (black 

dashed line).  Because our boundary condition uses ΔT as the amplitude of only the T+ oscillation, the resulting solution for Teq 

exhibits slip at higher frequencies. 
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 The BTE result for the penetration depth at which temperature amplitude decays to e−1 of its surface value is  

           1 D g ra y
p

v
L

b
τ

= .          (17) 

Compared to the familiar Fourier-law penetration depth Lp,F, this is 
1
2

,
H gray

p p F bL L ω τ= .  This Lp is identical to the 

results obtained by Regner et al.29 using a Milne-Eddington approximation.  Figure 6(b) shows that Lp correctly 

approaches the Fourier limit for ωHτgray<0.1, while approaching a constant for ωHτgray>2.  These BTE solutions have 

been verified by the LBTE calculations across all frequency regimes, as shown in Fig. 6 by the black diamonds. 

 The penetration depth in the 3D BTE solution has the same form as Eq. (17) except 1Dv  is replaced with 

3Dv vωβ= , where the coefficient β depends on the choice of 3D solution scheme (Appendix D; β = 2/3 in our 

method). Thus, the surface temperature amplitude is 
( )0 21

3 3 32 1 2 coseqT x T
D D DT d d φ∞= −

Δ = + + .  In this 3D case, due to 

the phonon’s angular distribution only part of their energy is directed along the x-direction, making the temperature 

amplitude smaller than the 1D case, as shown in Fig. 6(a).  The 3D penetration depth is 3 D grayv
b
τ , differing from the 

1D Lp by only a coefficient.  Thus after normalizing the 1D penetration depth to ,1 1gray D D grayv τΛ =  and the 3D 

penetration depth to ,3 3gray D D grayv τΛ = , the functions become identical, as shown in Fig. 6(b). 

 
FIG. 6 (Color online) Heating frequency dependence of (a) the surface temperature amplitude ||[Teq(x=0)-T∞]/ΔT|| and (b) 

penetration depth Lp for the gray model.  The analytical BTE solutions (blue solid lines) for surface temperature from Eq. (B2) 

and penetration depth from Eq. (B4) are verified by numerical LBTE solutions (black diamonds).  The BTE solutions 

considering 3D velocity are included for comparison (black dot dashed lines).  The Fourier limits (dashed) are also shown for 

comparison at low heating frequency.  
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2. Surface heat flux and phase lag 

 The surface heat flux for the gray BTE model is shown in Fig. 7(a), normalized to the Fourier limit 

" H
Fourier Fourierq k T ω

α= Δ , where α is the thermal diffusivity, and verified by LBTE simulations.  The BTE solution clearly 

converges to the Fourier result for small heater frequencies.  In the opposite limit we find 
"

"
1

2
BTE

H grayFourier

q
q ω τ

=  from Eq. 

(B6), which means Fourier’s law over-predicts the heat flux caused by a prescribed surface temperature oscillation.  

This is equivalent to the BTE solution exhibiting a reduction in apparent thermal conductivity.  From Eq. (B5) the 

heat flux amplitude in this large ωHτgray limit is " 1
12BTE Dq v C T= Δ .  It is independent of τgray, which means nondiffusive 

transport.  As with the surface temperature, in the 3D case the heat flux is also smaller than the 1D case.  

 The phase lag of the surface equilibrium temperature as compared to surface heat flux is ( )2
2 sin1
1

tan d
gray d

φψ −
−

= − , 

which is shown in Fig. 7(b).  For small ωHτgray the BTE solution of Eq. (B8) correctly approaches the well-known 

Fourier limit for planar periodic heating, ψ = 45°.  In the large ωHτgray limit, the heat transport gradually becomes 

nondiffusive and the phase lag decreases to zero.  In the 3D case, the phase lags exactly match those of the 1D BTE 

solution, because grayψ  for both is independent of the group velocity and thus β. 

 

 
FIG. 7 (Color online) Heating frequency dependence of the gray BTE results for (a) the amplitude of surface heat flux, and (b) 

phase lag of the surface temperature compared to surface heat flux.  The analytical BTE solution of surface heat flux from Eq. 

(B6) and phase lag from Eq. (B8) (blue solid lines) are verified by a numerical LBTE solution (black diamonds).  The BTE 

solutions considering 3D velocity effects are also shown (black dot dashed lines).  The Fourier limits (dashed lines) are 
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recovered at low heating frequency. 

 

3. Apparent thermal conductivity of gray model: Dependence on heater frequency or penetration depth 

 The ωH-dependent apparent thermal conductivity, which is defined in Eq. (4) for the gray model, is shown in Fig. 

8(a).  As ωHτω increases, kBTE/kFourier decreases monotonically to zero, with the same results for both 1D and 3D gray 

models.  Because of the emphasis on MFPs in this field, it is common to transform ωH to a corresponding 

Fourier-law penetration depth using 2
,

low

Hp KCL α
ω= , where the subscript KC denotes the Koh & Cahill treatment2 and 

αlow is the thermal diffusivity in the limit of low heating frequency, e.g., the classical handbook value.  In Koh & 

Cahill’s approach2, Lp,KC acts as a cutoff threshold such that phonons with bulk MFPs longer than Lp,KC do not 

contribute at all to heat conduction.  Regner et al.18 used a very similar cutoff conduction except that the critical 

penetration depth was defined using the apparent thermal diffusivity, namely, ( )2
,

H

Hp RegnerL α ω
ω=  where now α(ωH) 

itself depends on heater frequency through ( )app Hk ω .  In the low-frequency limit, pKCpRegnerp LLL == ,,  where 

the latter is the e−1 penetration depth for the BTE solution given in Eq. (B4); while at high frequency 

pKCpRegnerp LLL << ,, .  To facilitate comparisons with the LBTE results of Regner et al.,18 Fig. 8(b) plots our 

results in terms of RegnerpL , .  The comparison shows excellent agreement between our analytical and LBTE solutions 

over the entire Lp range.  Furthermore, it is reassuring that these results for kBTE also exhibit very good agreement 

with the LBTE results of Regner et al.18 even though the two approaches began with different surface forcing 

conditions (prescribed T+ in our case; prescribed q in Ref. 18).  The two LBTE solution in Figure 8(b) do exhibit 

some minor disagreement (~2.7 %) in the transition regime although the reasons for this are not known. 

 

 
FIG. 8 (Color online) (a) Normalized apparent thermal conductivity of Si at 300 K for the gray model, as functions of (a) heating 
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frequency and (b) Fourier-law penetration depth.  The analytical BTE solutions of Eq. (4) (solid lines) and numerical LBTE 

results (black diamonds) are in excellent agreement with each other, and both recover the classical Fourier limit (dashed lines) 

where appropriate.  The results from an LBTE simulation by Regener et al.18 are also shown for comparison (open circles). 

 

B. Non-gray model: Heating frequency dependent thermal conductivity 

To account for the typically broad distribution of phonon mean free paths,1, 10, 15, 16, 18 we incorporated the phonon 

MFP distribution for two model materials into Eq. (8), and obtained the non-gray kapp(ωH) as shown in Fig. 9, based on 

the analytical gray solution of Sec. IIB.  The non-gray model captures the characteristic of the long MFT tail [see Fig. 

10(c)], which results in a stronger heating frequency dependence than in the gray model (τgray = 6.0 ps.).  Although 

the natural Si measurements by Koh & Cahill2 and Wilson & Cahill24 did not exhibit any clear ωH effect, those 

experiments were limited to fH,max = ωH,max/2π = 10 MHz - 17.6 MHz, respectively, which according to the calculations 

of Fig. (9) corresponds to a reduction by less than 3% which likely is difficult to observe above experimental noise. 

However, strongly ωH-dependent kapp for several semiconductor alloys, namely Si1-xGex, In1-xGaxP, and In1-xGaxAs, 

has been observed.2, 24  We use the undoped 6 μm thick Si0.4Ge0.6 film of Ref. 2 for comparison with our present 

non-gray model.  We normalize those measurements using a bulk reference value for undoped Si0.4Ge0.6 of kFourier ≈ 

8.3 W/m-K.44  To model the Si0.4Ge0.6 we use the virtual crystal approximation45 and a BvK dispersion15 based on a 

primitive unit cell density of 2.3×1028 m-3 and averaged sound velocity of 4,630 m/s.  The main scattering mechanism 

in Si0.4Ge0.6 is alloy scattering.  The alloy scattering coefficient Aalloy = 6.7×10-42 s3, obtained by fitting the reference 

value of kFourier,44 is more than 3 orders of magnitude larger than Aisotope for natural Si.15  The resulting kapp(ωH) for the 

alloy is calculated from Eq. (9) and shown in Fig. 9 (red line).  Comparing the non-gray calculations for Si and 

Si0.4Ge0.6 reveals the important observation that the kapp suppression occurs at much lower frequencies in the alloy than 

in the pure single crystal.  For example, at fH = ωH/2π = 10 MHz, the reduction is only 2.7% for Si but 25% for 

Si0.4Ge0.6.  This indicates that phonons with large MFTs play a more important role in the thermal conductivity of the 

alloy than in the pure crystal, consistent with earlier calculations of the MFP distributions of these materials.1, 46,11  

We also note that an FDTR measurement of crystalline Si up to 100 MHz showed stronger frequency dependence.18  

For consistency comparing results for Si and Si1-xGex alloy, in Fig. 9 we elect to only show the results which were both 

obtained using the same TDTR technique.2  

Figure 9 also compares our Si0.4Ge0.6 calculation with the corresponding experimental data from Ref. 2.  The 

measurements have the same general trend but show an even stronger ωH effect.  There are two important 

distinctions between the model and experiment which could explain the stronger suppression seen in the latter.  First, 
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considering the very broad MFP distribution expected for Si1-xGex,
1, 11 the film thickness of 6 μm may cause additional 

suppression which is not captured in the present calculation for a semi-infinite substrate.  Also, a size-effect 

reduction may arise from the finite Gaussian beam radii used in the experiment (6.5 - 15 μm), whereas the model deals 

with an infinite plane source.   

Although due to the different experimental geometries these calculations cannot be directly compared to Koh and 

Cahill’s measurement,2 the modeling results still are insightful because they use the BTE to isolate an ωH effect in 

reducing kapp.  Furthermore, this reduction can be strong in semiconductor alloys even for fH = ωH/2π as small as ~10 

MHz, frequencies at least two orders of magnitude lower than what might be expected based on a typically-used 

dominant phonon MFT of ~100 ps.2  However the lower-frequency onset is also consistent with more detailed 

calculations of the MFT accumulation.  For instance, in the case of Si0.4Ge0.6, we find the range of important MFTs 

spans from ~20 ps to ~130 ns (10% - 90% cutoffs), a range of over 6000:1.  This breadth, and the shift towards 

timescales much larger than the dominant phonon expectation of ~100 ps, is also consistent with earlier calculations of 

the MFP distribution of Si1-xGex alloys by ourselves1, 46 and others.11 

 

 
FIG. 9 (Color online) Heating frequency dependence of apparent thermal conductivity for Si (black dashed line) and Si0.4Ge0.6 (red 

solid line) for the non-gray BTE model described in the text.  The measurements2 (points) of Si0.4Ge0.6 and Si are also included 

for comparison.  

 

C. Measuring accumulation function with respect to MFT instead of MFP: a virtual experiment 

To show how the framework of Fig. 1 can be used to measure the accumulation function, we performed a virtual 

experiment based on the phase lag between surface temperature and surface heat flux, as shown in Fig. 10.  The 

calculations are for Si at 300 K, using a BvK dispersion with strong umklapp ( 1 19 21.53 10 Tωτ ω− −= × ⋅  s−1) and weak 
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impurity (Aimpurity = 2.54×10-45 s3).  For completeness in fitting we also included a finite boundary scattering length 

(Λbdy = vτbdy =5.7 mm),15 although this has a negligible impact on the room temperature calculations presented here.  

In panel (a), the ideal ψ response is calculated for the model (solid line), while the virtual experiment has ψ points 

randomized within ±2° to represent measurement error (empty circles).  Following the flowchart of Fig. 1, we fit this 

ψ(ωH) data with Eq. (12) using a known single-branch BvK dispersion relation and unknown scattering power law 

1 nDωτ ω− = .  This two-parameter fit yields D = 1.43×10−19T s−3 and n=2.00, in very good agreement with the actual 

umklapp parameters used.  With the fitted D and n, we calculate kapp(ωH) from Eq. (9), then convert kapp(ωH) from 

frequency domain to length domain in Fig. 10(b) and time domain in Fig. 10(c). 

These results support the argument for representing accumulation, and developing cutoff approximations, with 

respect to MFT rather than the much more common approach with respect to MFP.  To see this, we compare the 

actual accumulations functions (lines) with their approximate reconstructions (circles), using both time- and 

length-based approaches.  For the reconstructed data in Fig. 10(b) (red circles), for the x-axis we convert ωH to 

Lp,Regner using ( )2
,

H

Hp RegnerL α ω
ω= , and the y-axis to kapp/kFourier.  If the penetration depth cutoff postulate16, 18 is 

suitable for periodic planar heating, this plot of kapp/kFourier versus Lp,Regner (circles) should match the actual 

accumulation function Α(Λbulk) (line).  However, as shown in Fig. 10(b), the agreement is poor, with the two curves 

differing by a factor of ~8 along the Λbulk axis. 

 

 
Fig. 10. (Color online) Comparison of MFP and MFT approaches to analyzing a virtual experiment.  (a) Calculated ideal 

phase lag (black solid line) for BvKS Si, and the same with ±2° error to represent a virtual experiment (circles) (b) Left axis: 

Penetration depth dependent thermal conductivity using power-law MFT fit from virtual experiment (circles).  Right axis: 

Actual accumulation function Α(Λbulk) including all scattering (solid line).  (c) Left axis: Characteristic time tc dependent 

thermal conductivity using power-law MFT fit from virtual experiment (circles).  Right axis: Actual accumulation function 
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Α(τω) including all scattering (solid line).  

 

The agreement is much better using the MFT approach.  For the reconstructed curve of Fig. 10(c) (blue circles), 

we now change the x-axis to characteristic time 1.73
Hct ω≈  and y-axis to kapp(tc)/kFourier.  (Recall that the coefficient 

1.73 gives the best step-function approximation to the actual suppression function of Fig. 4(a).)  Now, if the MFT 

cutoff postulate is appropriate, this plot of kapp/kFourier versus tc should recover the actual MFT accumulation function 

Α(τω).  As shown in Fig. 10(c), the agreement is excellent over more than 3 orders of magnitude of MFT.  An 

approximate justification for this MFT-based cutoff treatment was discussed in Fig. 4(a).  The kernel function Bt acts 

as a sampling function, which heavily suppresses the contributions from phonons with MFT longer than the 

characteristic time tc, crudely following the shape of a step function.  Therefore, ωH is directly related to cutoff MFT, 

which can be used to probe the accumulation function over MFT.  Thus, the comparisons between actual and 

reconstructed data in Figs. 10(b) and (c) confirm that for this periodic planar heating system, a cutoff approach is 

much more appropriate in the MFT domain than MFP domain . 

 

 

IV. SUMMARY AND CONCLUSIONS 
An analytical solution to the BTE for the periodic plane-source heating problem has been obtained based on the 

gray MFT model.  This model has been verified by our LBTE simulations as well as LBTE results from the 

literature.18  The BTE solution was extended to the non-gray MFT regime through a frequency-integrated 

gray-medium treatment.27, 30  This model shows how to construct an accumulation function with respect to MFT from 

measured phase lag data, both directly and from an intermediate calculation of the apparent thermal conductivity.  

The BTE solution confirms that the fundamental reason for the frequency-dependent thermal conductivity is that 

phonons with MFTs longer than the characteristic heating time conduct less heat than classically expected.  Therefore, 

for a system such as this driven purely by a fast timescale, it is most natural to describe the breakdown of Fourier’s 

law using an apparent thermal conductivity that depends on the driving timescale, rather than converting it to some 

equivalent lengthscale such as a classical penetration depth.  The timescale description is also cleaner than the 

lengthscale description because the former does not introduce other material properties such as diffusivity.  The 

model has been applied to Si and Si0.4Ge0.6 and it agrees qualitatively with the experimental reports2,24 that heating 

frequencies up to 20 MHz cause a strong suppression of thermal transport in the alloy but a negligible suppression in 

natural Si.  This model has also been applied to a virtual FDTR experiment which fits the phase lag between surface 
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temperature and heat flux to fix the parameters of a power-law MFT.  The results show that a cutoff approach is 

much more accurate using timescales than equivalent converted lengthscales, with the former giving very good 

agreement with the actual MFT accumulation function used for over four orders of magnitude of τω. 
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Appendix A: BTE Solutions in forward and backward directions 
This appendix describes the solution of the BTE, Eq. (1).  Rather than directly solving for the distribution 

function, we make the radiation analogy and use phonon intensity.39  The phonon intensity per unit time, per unit area, 

per phonon frequency, and per unit solid angle is 

         ( ),s
s

I v D fω ω ωω ω=∑ h ,        (A1) 

where s represents the polarizations and D(ω) is the density of states of the s-th branch.  For simplicity we lump the 

three acoustic branches into one as discussed in Sec.IIA.  Thus, in the 1D case of Fig. 3(a), the BTE is recast as  

         
0

1D
I I I Iv
t x
ω ω ω ω

ωτ
∂ ∂ −+ =
∂ ∂

,         (A2) 

where 1 3
v

Dv ω=  is the effective group velocity in the x-direction (see Appendices C and D) and 
0Iω  is the 

equilibrium phonon intensity.  Strictly, 
0Iω  is an average over all phonon directions and frequencies.30, 47  This is 

trivial for the gray MFT solution since there is only one ω to consider.  However, in the general non-gray case the 

corresponding BTE can only be solved numerically, using techniques such as Monte Carlo47, discrete ordinates34, 48, 

finite volumes49, or the LBTE method18.  On the other hand, analytical solutions have great advantages for 

understanding the essential physics and reducing computational time.  To facilitate such an analytical solution for the 

general non-gray case, we assume that the true 
0Iω  integral can be approximated adequately by a simpler form 

whereby phonons with the same frequency reach their own equilibrium.  This approach has been used previously27, 30, 

and the resulting “frequency-integrated gray-medium” treatment was found to yield surprisingly good agreement with 

numerical solutions of the full non-gray BTE for Si and PbSe.27  Combining this assumption with the governing 

equation in Eq. (A2) and periodic heating boundary conditions described in the next subsection, the BTE is 

analytically solvable. 

 Equation (A2) can be solved by different approximation methods, such as two-flux (or Schuster-Schwarzschild) 

model and Milne-Eddington model31.  Both models assume the phonon intensities are isotropic over the forward and 

backward hemispheres but with different amplitudes,31 respectively.  Some differences between these models are 

discussed in Appendix D.  In the usual way, we multiply Eq. (A2) by μ and integrate over forward and backward 

hemispheres of solid angle.  Thus, the BTE in Eq. (A2) separates into two coupled equations with respect to the 

forward flux q+
 and backward flux q−

.  For truly 1D transport as depicted in Fig. 3(a), μ = 1.  We will first 

study this case, and discuss the general 3D case of Fig. 3(b) in Appendix D.   
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 In the forward direction, Eq. (A2) of the gray model becomes  

         
0

1 .D
gray

q q q qv
t x τ

+ + +∂ ∂ −+ =
∂ ∂

         (A3)
 

The counterpart equation in the backward direction has the same form except with q−
 instead of q+

.  The 

equilibrium 
0q  couples the forward and backward fluxes, 

          ( )0 1
2 .q q q+ −= +          (A4) 

The net heat flux is conveniently expressed as 

          
" .netq q q+ −= −            (A5) 

Substituting Eq. (A4) into Eq. (A3), after algebraic manipulation a pair of equations for the forward and backward 

direction is obtained,  

         
2 2

2
12 2 0gray gray D

q q qv
t t x

τ τ
+ + +∂ ∂ ∂+ − =

∂ ∂ ∂
       (A6) 

and 

         
2 2

2
12 2 0gray gray D

q q qv
t t x

τ τ
− − −∂ ∂ ∂+ − =

∂ ∂ ∂
.       (A7) 

For the boundary conditions, a sinusoidal temperature is imposed in the positive direction at x = 0, as shown in Eq. (2).  

Since the domain is semi-infinite, deep inside the body the distribution must return to the equilibrium intensity 

corresponding to the ambient temperature, namely 

         ( ) ( ) , ,T x t T x t T+ −
∞=∞ = =∞ = .       (A8) 

To transform these T boundary conditions to corresponding constraints on q+
and q−

, we linearize the response.  

The temperature oscillations of the heat source are limited to ΔT<<T∞, which is typical in the measurements.2, 16, 20, 40 

In this case, the temperature variation is a linear response to the heat flux variation in each direction, such as 

         1 1
1 12 2D Ddq v CdT v dU+ + +≈ = ,        (A9) 

where C is the volumetric specific heat and U is the volumetric energy density.  The factor of 2
1  arises from only 

integrating over the hemisphere.  Using Eq. (A9), both temperature boundary conditions from Eqs.(2) and (A8) are 

transformed to heat flux boundary conditions.   
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1. Non-dimensionalization and solution in the forward direction with gray MFT 

 For convenience we define the dimensionless time as 
gray

t
τγ = , location as 

1D gray

x
v τχ = , and forward energy 

flux as 

         ( ) ( ) ( )
( ) ( )

, ,
,

0, 0 ,
q x t q x t

Q x t
q x t q x t

+ +
+

+ +

− = ∞
=

= = − = ∞
,      (A10) 

with a similar form for Q−  after substituting q q+ −→ , except keep the denominator ( )0, 0q x t+ = = term the 

same.  As x→∞, from Eqs. (A8) and (A9) we have ( ) ( ), ,q x t q x t q+ −
∞=∞ = =∞ = , and the governing Eq. (A6) 

simplifies to  

         
2 2

2 2 0Q Q Q
γ γ χ

+ + +∂ ∂ ∂+ − =
∂ ∂ ∂

.         (A11) 

Applying Eqs. (A9) and (A10) to Eqs. (2) and (A8), we obtain the boundary conditions  

        ( ) ( )0, exp H grayQ iχ γ ω τ γ+ = =         (A12) 

and  

          ( ), 0Q χ γ+ =∞ = .         (A13) 

 Now the governing Eq. (A11), which is hyperbolic telegraph type, can be solved by a standard Laplace transform 

method.  After taking the Laplace transform of Eqs.(A11)-(A13) with respect to time, the resulting ordinary 

differential equation in χ is readily solved, and finally an inverse Laplace transform used to obtain the time domain 

solution.  During the inverse transform, the singularity problem is overcome using the Cauchy integral theorem.50  

Finally, we obtain the dimensionless temperature in the forward direction as 

        ( ) ( ) ( ), exp expgray H grayQ b i iaχ γ χ ω τ γ χ+ = − − ,      (A14) 

where a and b are purely real and are given in Table II . 

 

2. Solution in the backward direction with gray MFT 

Beginning from Eq. (A7), the backward-direction counterpart of Eq. (A11) is 

          
2 2

2 2 0Q Q Q
γ γ χ

− − −∂ ∂ ∂+ − =
∂ ∂ ∂

.        (A15) 

However, there is only one obvious boundary condition that  

          ( ), 0Q x t− = ∞ = .           (A16) 
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At x=0, the heat flux in the negative direction is a depth-integrated response to the positive direction heat flux, which 

is not specified in advance (recall that for convenience our boundary condition at x=0 was defined purely in terms of 

Q+).  Without one more boundary condition it would appear that we cannot solve Eq. (A15).  However, energy 

conservation can provide the required constraint, as follows.  Since the form of the governing equations in the 

forward and backward directions are exactly the same, we seek a solution of Eq. (A15) with the same form as Eq. 

(A14) while allowing for different amplitude and phase,  

       ( ) ( ) ( ), exp exp H grayQ x t d b i ia iχ ω τ γ χ φ− = − − + .     (A17) 

Here d is the amplitude coefficient and φ is the phase shift, where d and φ are purely real and are determined by energy 

conservation .  Since there is no heat generation in the material, it must always be true that  

          
" 0net

Uq
t

∂∇⋅ + =
∂

,         (A18) 

where the phonon energy density in Fig. 3(a) is 

           
1D

q qU
v

+ −+=  .         (A19) 

Substituting the forward and backward solutions into Eq. (A18), for the real part we obtain  

      
( ) ( ) ( )

( ) ( )

cos sin sin

sin cos cos 0

H gray H gray H

H gray H

a d a db t

b d a db t

ω τ ω τ φ φ ω

ω τ φ φ ω

⎡ ⎤− − + + +⎣ ⎦
⎡ ⎤+ + + − =⎣ ⎦

,    (A20) 

where the coefficients a, b, φ, and d are all only functions of ωHτgray.  Since Eq. (A20) is valid at all times, the 

coefficients of sin(ωHt) and cos(ωHt) must both be zero.  Thus, we obtain  

           
H gray

b
ad ω τ+=           (A21) 

and 

           cos b
aφ =           (A22) 

as given in Table II. 

 

TABLE II. Key coefficients of the BTE solution, including simplified forms in low- and high-frequency limits. These expressions 

are derived using a gray MFT, but they can also be extended to a non-gray solution with τω as explained in Sec. IIB.  Therefore 

the expressions in this table apply for both τgray and τω.  
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Coefficient Low ωH limit High ωH limit 

( )2
2 1H

H Ha ωω τ
ω ωω τ ω τ= + +  ( )2 2 21H H Hω ω ωω τ ω τ ω τ+ ≈  1

8H HHω ωω
ω τ ω τω τ+ ≈  

( )2
2 1H

H Hb ωω τ
ω ωω τ ω τ= − + +  ( )2 2 21H H Hω ω ωω τ ω τ ω τ− ≈  ( )2

1 1 1
2 216 H ωω τ
− ≈  

cos b
aφ =

 
1 1H ωω τ− ≈  

1
4 0

H ωω τ ≈  

sin 2bφ = −  2 0H ωω τ− ≈  ( )2
1

8
1 1

H ωω τ
− + ≈ −  

H

b
ad

ωω τ+= 1 2 1H ωω τ− ≈  
1

4 0
H ωω τ ≈  

 

Appendix B: Solutions for temperature and heat flux in gray model 
 Using the positive and negative flux solutions from the previous appendix, we now obtain the equilibrium 

temperature, penetration depth, net heat flux, phase lag on the surface, and apparent thermal conductivity.  

 

1. Temperature and penetration depth 

The equilibrium temperature is obtained by conserving the total energy density.35  From the linear response of 

Eq. (A9) the equilibrium temperature is obtained from  

        ( ) ( ), ,eq eqU x t U C T x t T∞ ∞⎡ ⎤− = −⎣ ⎦ .        (B1) 

Thus, the amplitude of the equilibrium temperature oscillation is 

       
( ) ( )1

21
2 1 2 cos expeq

D gray

T x T b
T vd d x τφ∞−

Δ = + + − ,      (B2) 

where the term ( )1
exp

D gray

a
H vi t ix τω −  does not appear because it has unity amplitude.  To facilitate comparisons 

with the Fourier limit, it is convenient to re-cast this result in terms of the thermal diffusivity α by using 

2 21
1 3D gray g grayv vα τ τ= = , where the two forms correspond to 1D and 3D variations depicted in Fig. 3.  The result is 

      
( )

2

21
2 21 2 cos expeq H

H gray

T x T b
T d d x ω τ

ω
αφ∞−

Δ
⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

.      (B3) 

Equation (B3) also directly gives the thermal penetration depth, Lp,  

        
1 1
2 22

,
H gray H gray

Hp p Fb bL Lω τ ω τα
ω= = ,        (B4) 
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where 2
, Hp FL α

ω= is the Fourier limit of Lp.  Various limits of the BTE solution are shown in Table III and serve as 

useful checks, such as verifying that the low ωH limit recovers the classical Fourier solution. 

 

TABLE III. Low- and high-frequency limits for various key results of the gray BTE model.  

  Low ωHτω limit High ωHτω limit 

Temperature amplitude 
( ),eqT x T
T

ω ∞−
Δ  ( )2exp Hx ω

α−  ( )1
2 2
exp x

ωατ
−  

Penetration depth pL  2
, Hp FL α

ω=  2 2 grayωατ = Λ  

Surface heat flux amplitude 
"

"
net

Fourier

q
q  

1 
1

2 H ωω τ  

Phase lag grayψ
 4

π
 0 

Apparent thermal conductivity ,app grayk Fourierk  
Fourier

H

k
ωω τ  

 

 

2. Heat flux 

 The net heat flux is calculated by Eq. (A5).  At the surface, x=0, the heat flux amplitude is 

        ( )" 21
12 1 2 cosnet Dq v C T d d φ= Δ + − .       (B5) 

Normalizing this to its Fourier limit we find 

          
( )2"

"

1 2 cos1
2

net

H grayFourier

d dq
q

φ
ω τ

+ −= ,        (B6) 

which correctly reduces to unity for small ωHτgray, as shown in Table III. 

 

 

3. Phase lag 

For thermal conductivity experiments, measuring the phase lag between surface temperature and heat flux is more 

practical and accurate than measuring the temperature or heat flux amplitude directly, because the phase lag is less 

sensitive to intensity instabilities.40  To extract the phase lag, we express the ratio of heat flux to equilibrium 

temperature variation as a complex function with the purely real amplitude Rgray and phase lag Ψgray, 
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          ( )
( ) ( )
" ,

exp
,

net
gray gray

eq

q x t
R i

T x t T
ψ

∞

=
−

.      (B7) 

The time and space terms all cancel from the right hand side.  Substituting for ( )" ,netq x t  and ( ),eqT x t , the phase 

lag is found to be  

          ( ) 2
2 sin
1

tan d
gray d

φψ
−

= −  .        (B8)
 

The Fourier result is again recovered in the low ωHτgray limit, as shown in Table III. 

 

 

Appendix C: Relationship between 3D and 1D group velocity 
We consider the relationship between the 1D velocity v1D and the actual group velocity vω.  The present work 

uses a heat source in the y-z plane.  Due to the translational symmetry of the heating surface and the fact that the 

material’s dispersion relation is taken to be isotropic, the net heat flow must propagate normal to the y-z plane (i.e., 

along the x-axis), suggesting a 1D treatment.  However, the constituent phonons still travel in all 4π steradians, so 

some care is required in converting their actual group velocities to an equivalent 1D velocity v1D.  In the 3D phonon 

dispersion with a single polarization, all phonons of frequency ω travel with a group velocity of magnitude vω, but due 

to their angular distribution only part of their energy is directed along the x-direction.  Therefore, in this work, the 

relationship 1
1 3Dv vω=  is used.51, 52  In ideal gases this gives the relationship between the thermal velocity and 

sound velocity.51  In solids and liquids at low temperature the phenomenon is known as second sound,53, 54 where it 

has been studied by models55-57 and experiments in helium58, NaF59, 60, NaI60, SiTiO3 (Ref. 61), etc.  More 

fundamentally, this 3
1  factor can also be understood as a consequence of collisions randomizing the directions of 

the velocity vectors,51 resulting in the effective 1D velocity v1D for energy propagation. 

This velocity relation can also be verified by comparing the equilibrium temperature in Eq. (B2) (or surface heat 

flux) at low heating frequency ωH with the Fourier limit.  The Fourier limit of temperature amplitude is 

( ) ( ),
2expeq HT x t T

T x ω
α

∞−
Δ = − .  Comparing with our 1D model in Eq. (B2), we can obtain their relation that 

1
1 3grayDv vα

ωτ= = . 
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Appendix D: Relationship between 3D and 1D BTE models 
This appendix extends the BTE solution from 1D velocity v1D in Fig. 3(a) to the more general case in Fig. 3(b).   

We also explain the similarities and subtle distinction between our two-flux treatment and the more common 

Schuster-Schwarzschild and Milne-Eddington approximations.   

As done Appendix A for the strictly 1D solution, for 3D we can also obtain the governing equation for phonon 

intensity, 

         
0I I I Iv

t x
ω ω ω ω

ω
ω

μ
τ

∂ ∂ −+ =
∂ ∂

.        (D1) 

The key difference and challenge when solving Eq. (D1) is in dealing with the angle dependence of the x-direction 

velocity, as expressed by vω μ .  This is commonly treated by multiplying the equation by various moments of μ and 

integrating over solid angle.  We also use the common two-flux approximation that the radiative intensity is 

hemispherically isotropic with different values in the forward and backward directions31.  With this assumption the 

governing Eq. (D1) can be simplified.  For the m-th moment in general, Eq. (A1) is multiplied by mμ  and integrated 

over the forward and backward hemispheres.  In the forward direction, the m-th moment ,mqω
+  is 

         
1

,
0

2 m
mq I dω ωπ μ μ+ += ∫ .           (D2) 

The 2π arises from integrating over azimuthal angle.  For m=0 and separating the forward and backward directions, 

the two-flux treatment becomes the Schuster-Schwarzschild approximation.31   If both m=0 and m=1 moments are 

used and the integration ranges over 4π steradians, it is the Milne-Eddington approximation.29, 31  Since we are more 

interested in the heat flux, it is convenient to separate the forward and backward fluxes and use the 1st moment ,1qω
+  

because it directly gives the fluxes of interest, for example,  

          
1

,1
0

2q I dω ωπ μ μ+ = ∫ .         (D3) 

Thus, the BTE in the forward direction is recast as 

         
0

,1 ,1 ,1 ,1 ,
q q q q

v
t x
ω ω ω ω

ω
ω

β
τ

+ + +∂ ∂ −
+ =

∂ ∂
        (D4) 

where the coefficient β depends on the moment used (β=2/3 here for m=1).  If we replace βvω by the effective 3D 

group velocity 3Dv vωβ= , then Eq. (D4) is exactly the same as Eq. (A3) after the substitution DD vv 31 → .  This 

v3D involves an integration of the 1st moment over 2π steradians, causing it to differ from the bulk group velocity vω. 
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 To obtain the solution in the backward direction, we also use energy conservation, the 3D version of Eq. (A18).  

The phonon energy density is 

         
( ) ( ),1 ,1, ,q x t q x t

U
v

ω ω
ω

ω

η
+ −+

= ,         (D5) 

where 2η =  arises from integrating Iω with respect to solid angle.  Thus, with Eq. (D5), we can also solve the BTE 

in the negative direction using the same method in Appendix A and obtain the amplitude d3D and phase shift φ3D in the 

backward direction 

         
( )3 2 2 2

2tan H
D

H

b
a b

βηω τφ
βηω τ

=
− −

        (D6) 

and  

         ( )3 2 sin cosD
H

bd
a bβηω τ φ φ

=−
+ − .      (D7) 

These general expressions can also be applied to the 1D case as we discussed before, such as the phase lag grayψ  

given by ( ) 3
2
3

2 sin
1

tan D

D

d
gray d

φψ
−

= − .  When β = 1 and η = 1, they exactly recover the 1D solution as shown in 

Appendices A and B.  The general expression for temperature in Eq. (B2), surface heat flux in Eq. (B5), phase lag in 

Eq. (B8), and apparent thermal conductivity in Eq. (4) all have the same forms except replace the 1D quantities 1Dv , 

φ1D, and d1D with 3D quantities 3Dv vωβ= , φ3D , and d3D.  All the other parameters are the same. 
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