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Excitons in semiconductors can have multiple lifetimes due to spin dependent oscillator strengths
and interference between different recombination pathways. In addition, strain and symmetry effects
can further modify lifetimes via the removal of degeneracies. We present a convenient formalism for
predicting the optical properties of k = 0 excitons with an arbitrary number of charge carriers in
different symmetry environments. Using this formalism, we predict three distinct lifetimes for the
neutral acceptor bound exciton in GaAs, and confirm this prediction through polarization dependent
and time-resolved photoluminescence experiments. We find the acceptor bound-exciton lifetimes to
be To × (1, 3, 3

4
) where To = (0.61± 0.12) ns. Furthermore, we provide an estimate of the intra-level

and inter-level exciton spin-relaxation rates.

The radiative properties of excitons in semiconduc-
tors are of fundamental interest in current semiconductor
physics as well as of technological interest due to their
impact on optoelectronic device performance. While the
optical selection rules for the recombination of a con-
duction band electron and valence band hole are well
understood [1, 2], the selection rules for excitonic com-
plexes with more than two carriers are complicated due
to the multiple spin and angular degrees of freedom. In
high symmetry environments, exciton lifetimes can be
modified by interference between different recombination
pathways [3–5]. Reducing the symmetry can modify exci-
ton lifetimes by energetically separating excitonic states,
thus removing the possibility for interference. Alter-
nately, in quantum dots, spin selection rules forbid the
so-called dark exciton from recombining, creating a radia-
tive bottleneck in applications requiring bright sources [6]
or alternatively a possible long-lived storage state for
quantum information applications [7].

In this work, we provide a convenient and general
framework for describing the optical properties of ar-
bitrary k = 0 excitonic complexes. We use the second
quantization formalism [8] for calculating dipole matrix
elements of an excitonic complex with an arbitrary num-
ber of electrons and holes in a III-V direct band gap semi-
conductor. Using a generalized Weisskopf-Wigner theory,
we show how special spontaneous emission eigenstates
and multiple radiative lifetimes may emerge. We predict
three radiative lifetimes of the neutral acceptor bound-
exciton (A0X) in bulk GaAs. We confirm the theory
by performing polarization dependent and time-resolved
photoluminescence experiments on the A0X system.

Exciton lifetimes in III-V direct band gap semi-
conductors can be derived from the dipole operator
µ = er for band-to-band recombination between a j = 1

2

conduction-band electron and a j = 3
2 valence-band

hole [1, 2]. In the second quantization formalism, the

dipole operator is
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where em (hm) is the annihilation operator for an elec-
tron (hole) in the angular momentum state m, H.C. is
the Hermitian conjugate, and µo is a spin-independent
constant (Appendix A). We define the coordinate system
x̂, ŷ and ẑ to be oriented along the [100], [010] and [001]
crystallographic directions. The hole angular momentum
state is labeled with the opposite sign of the correspond-
ing unoccupied electron angular momentum state. This
dipole operator can be conveniently used to calculate the
dipole matrix element between exciton states with an
arbitrary number of charge carriers. For example, the
dipole matrix element pij corresponding to the recombi-
nation of a two-carrier exciton with electron spin − 1

2 and

hole spin +3
2 is

p0, e†
− 1

2

h†3
2

= 〈0|µe†− 1
2

h†3
2

|0〉 = µo
x̂ + iŷ√

2
,

where |0〉 is the semiconductor vacuum state.
We describe the radiative lifetimes of excitons using a

generalized Weisskopf-Wigner theory. The spontaneous
emission rates from a set of degenerate excited states
to a set of degenerate ground states are the eigenval-
ues of αS, where S = p†·p (Appendix D). Here p is
a matrix of the vector dipole matrix elements pij =
〈g, i|µ |e, j〉 between ground state i and excited state j,
α = (1/4πε)(4ω3n3/3~c3), ω the frequency of the tran-
sition, ε the permittivity of the material, n the index of
refraction, and c the speed of light. The time dependence
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of the excited state probability amplitudes b satisfy

d

dt
b = −α

2
S b, (2)

corresponding to exponential decay. Physically, Eq. 2
implies that radiative lifetimes are modified by construc-
tive or destructive interference between different recom-
bination pathways. In addition, it highlights how exci-
ton states organize into spontaneous emission eigenstates
(eigenvectors of S) with decay rates given by the eigen-
values of αS.

Before applying this formalism to the three-carrier ac-
ceptor bound-exciton system, as an example we treat
the simpler two-carrier light-hole exciton. Light-hole
excitons, consisting of an mj = ± 1

2 valence hole and
a conduction electron, split from heavy-hole excitons
(mj = ± 3

2 ) in reduced symmetry environments such as
quantum dots, quantum wells and strained GaAs. The
formalism yields the expected four spontaneous emission
(SE) recombination rates [3]:
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excitons decay in-

dependently because of the orthogonal polarizations (σ+

and σ−) of the transitions. On the other hand, construc-
tive and destructive interference of the ẑ recombination
pathway leads to a bright and dark exciton. While it is
experimentally challenging to observe the brightest light-
hole exciton due its ẑ polarization, this exciton has re-
cently been observed using magnetic-field measurements
in strain-engineered quantum dots [9]. We note that iden-
tification could alternatively be made through lifetime
measurements at zero magnetic field.

We now turn to the neutral acceptor-bound exci-
ton (A0X), consisting of two j = 3

2 holes and one j = 1
2

electron bound to a substitutional acceptor impurity [10,
11]. By recombination of the electron with one of the
holes, A0X decays radiatively to a neutral acceptor (A0,
a hole bound to an acceptor). Effective mass theory can
be used to show that A0 has hydrogenic levels 1s, 2s, etc.
In high-purity p-type GaAs, A0X to A0 1s, 2s, etc. pho-
toluminescence (PL) is readily observed and provides a
useful probe for resonant excitation, as shown in Fig. 1.
Remarkably, the ensemble transition linewidths of this
solid-state ensemble system are less than 40 µeV (spec-
tral linewidths in Fig. 1 are limited by the instrument
resolution) (Appedix H).

Though the origin of the A0X fine structure was once
a controversy, strain experiments support hole-hole and
crystal field coupling as the dominant mechanisms for

Wavelength (nm)

PL
 (A

rb
. U

ni
ts

)

817 818 819

FE

Γ3Γ5

830 831 832 833 834

x400

2s
3s

4s5s

x20

A0X−A0,1s

Γ1 ∣∣A0, 1s
〉A +

∣∣A0, 2s
〉 A +

∣∣A0X,Γ1

〉

∣∣A0X,Γ3

〉
∣∣A0X,Γ5

〉
A

−

+
+

Laser

FIG. 1. PL spectrum of
∣∣A0X

〉
→

∣∣A0, ns
〉

and free exciton
(FE) transitions using above band and resonant excitation.
The A0X Γ3-Γ5 splitting is clearly resolved. The spectrum
left of the cut was taken using above band excitation at 815
nm. The spectrum right of the cut used resonant excitation
of

∣∣A0, 1s
〉
→

∣∣A0X,Γ5

〉
. Because of spin relaxation between

A0X states, the different excitation conditions result in dif-
ferent Γ3 to Γ5 intensity ratios left and right of the cut. The
inset shows an energy level diagram and cartoon of the A0-
A0X system. T = 2.3 K.

splitting the 12 fold degenerate A0X [12, 13]. In this
scheme, the two holes lie in antisymmetric spin states
with total spin 0 and 2 [12]. Hole-hole coupling splits the
j = 0 states from j = 2 states. In zinc-blende semicon-
ductors which possess crystal fields with Td symmetry,
the j = 2 states further split into two manifolds: Γ5 with
multiplicity 3 and Γ3 with multiplicity 2. The full spec-
ification of A0X also includes the spin of the electron,
denoted as ↑ or ↓ (Fig. 2).

Our theory and experiments show that A0X has mul-
tiple radiative lifetimes. To find the A0X radiative
lifetimes, we first compute the dipole matrix elements
pij =

〈
A0, i

∣∣µ
∣∣A0X, j

〉
for the different A0 and A0X

states (Appendix C). The eigenvalues of p†·p are the
radiative recombination rates of A0X. An energy split-
ting between excited states causes a fast oscillation in the
Weisskopf-Wigner theory which destroys the coupling be-
tween non-degenerate states (Appendix C). As such, only
degenerate excited states are included in the dipole ma-
trix when calculating the eigenvalues of p†·p.

The A0X spontaneous emission rates in spherical sym-
metry and no hole-hole spin coupling are proportional
to

3
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.

When hole-hole spin coupling is introduced, j = 0 states
split from j = 2 states, but the spontaneous emission
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FIG. 2. Full energy level diagram for A0X and A0 system.
The spin of the electron is denoted by ↑,↓. Intra-level and
inter-level relaxation cause a decay of the polarization visibil-
ity (Fig. 3b). Electron spin flips are not allowed, as depicted
schematically by the dashed line. The crystal fields that split
Γ3 and Γ5 lead to x̂, ŷ, ẑ oriented along the crystallographic
axes.
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With the inclusion of the zinc-blende crystal fields (which
cause a Γ5-Γ3 splitting), we find that the spontaneous
emission rates become proportional to

Γ1︷ ︸︸ ︷
(1, 1),

Γ3︷ ︸︸ ︷
(1, 1, 1, 1),

Γ5︷ ︸︸ ︷(
4
3 ,

4
3 ,

4
3 ,

4
3 ,

1
3 ,

1
3

)
.

Whereas previous studies of A0X report only one life-
time [14, 15] (To = (1.6± 0.6) ns), a full study including
spin and symmetry shows that A0X has multiple lifetimes
differing by up to a factor of 4. We can experimentally
test this theory by studying the polarization dependence
of photoluminescence (PL). If the system starts in an
incoherent mixture of the four ground A0 states, excita-
tion light of polarization ε̂i resonant with Γn will create
an excited state density matrix in the Γn subspace pro-
portional to

ρ(Γn)
e = M (Γn)†

εi M (Γn)
εi , (3)

where M
(Γn)
εi = p(Γn) · ε̂i, ε̂i is the incident polarization

and p(Γn) are the dipole matrix elements corresponding
to Γn (Appendix G). Eq. G1 is valid in the limit of low ex-
cited state population. The PL emission from the states
in Γn with polarization εf is proportional to

PL(Γn) = tr
(
M (Γn)
εf

ρ(Γn)
e M (Γn)†

εf

)
. (4)

Eq. 4 can be used to compute the arbitrary polarization
dependence of A0X-A0 transitions. In the case of exciting

Γn with linear polarization at an angle φi in the x-y plane
and collecting linearly polarized light at φf (φn = 0 corre-
sponds to polarization along [100]), the angle dependent
PL intensity is given by

PL(Γ5) =
Io
18

[5 + 4 cos(2φi) cos(2φf) + sin(2φi) sin(2φf)]

PL(Γ3) =
Io
36

[4 + 3 sin(2φi) sin(2φf)]

PL(Γ1) =
Io
18
,

where Io is a constant. These functions are plotted in
Fig. 3a for Γ3 and Γ5. Here we note that this simple
angular dependence of excitonic PL can be used to ver-
ify the relative inter-carrier and crystal field coupling for
A0X, once a subject of debate, without the need for ap-
plied strain or magnetic fields (Appendix G) [12, 13] . In
the case where crystal fields have an observable effect, the
excitonic PL can also be used to determine crystal orien-
tation: e.g. Γ5 emission will be strongest when exciting
along [100] and collecting [100].

We measure the polarization dependence of the
A0 −A0X transition using resonant continuous-wave
(CW) excitation. Experiments were performed on a p-
type GaAs crystal (6 µm GaAs grown by molecular beam
epitaxy on a GaAs substrate, Na = 1.2 · 1014 cm−3). The
sample was mounted without strain in pumped liquid He
(1.9 K) and excited with a Ti:Sapphire laser. Fig. 3a
shows the polarization dependence of |A0X〉 → |A0, 2s〉
emission under resonant excitation of |A0, 1s〉 → |A0X〉
with ŷ and 45◦ polarized excitation. The polarization
visibility C = Imax/Imin observed is somewhat less than
would be expected from the ideal theory. The difference
can be explained by relaxation between A0X spin states.

We investigate the effect of inter-level relaxation on
the diminished polarization visibility with time- and
polarization-resolved measurements. Either the Γ5 or Γ3

transitions were excited resonantly with 2 ps Ti:Sapphire
pulses, spectrally filtered to obtain 16 ps pulses with
0.03 nm bandwidth. Photoluminescence to |A0, 2s〉
was collected and imaged using a combined spectrome-
ter/streak camera setup with a timing resolution of 27 ps.
Four excitation conditions were studied, resonant excita-
tion of Γ5 or Γ3 with ŷ or 45◦ linearly polarized light.
PL polarized parallel and perpendicular to the excitation
polarization was collected. The complete time-resolved
data set is shown in Fig. 3b.

We observe a strong initial polarization visibility at
t = 0 that later decays because of inter-level relax-
ation. The initial polarization visibility of C = 7.2± 1
for Γ5 − y excitation is close to the ideal value 9 for no
excited state relaxation. (The uncertainty here is due to
the uncertainty in the t = 0 time.) The decay of polariza-
tion visibility indicates the existence of spin flip processes
on the same timescale as the radiative lifetime.

We use the time-resolved data to obtain estimates of
the inter- and intra-level relaxation rates in the exciton
system (Fig. 3b). The time resolved data were fit to a
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FIG. 3. a. Dependence of light emitted from Γ3 and Γ5 on incident and collected polarization for A0X → A0 relaxation in
resonant CW excitation. The dark green line shows the angle of excitation polarization, with horizontal x̂ corresponding to
[100]. The polar plots show the PL emitted at the corresponding collection polarization angle. The ideal theory curves depict the
polarization dependence in the absence of excited state relaxation. The theory curves give the angular PL dependence expected
from the density matrix model fit to the time-resolved data (Fig. 3b). The data is PL collected from the

∣∣A0X,Γn

〉
→

∣∣A0, 2s
〉

transition while exciting the Γ3 or Γ5 line at x̂ or 1√
2
(x̂− ŷ) = −45◦ polarizations (Fig. 1). All the data is normalized using the

same constant. The normalization between the ideal curves and the theory curves is arbitrary. T = 2.3 K. b. The Γ3 and Γ5

PL as a function of time for polarizations x ∝ [100], y ∝ [010], 45◦ ∝ [110] and -45◦ ∝ [11̄0] after an excitation pulse at t = 0.
The lines are a simultaneous fit of the density matrix model to the 16 observed time dependent PL curves. Best fit parameters
are given in the text.

12 state density matrix model including inter-state re-
laxation (Appendix E). In the model, an optical pulse of
a given polarization coherently creates an excited state
density matrix given by Eq. G1. The subsequent time
evolution of the excited state density matrix ρ satisfies

dρ

dt
=

1

i~
[Ho, ρ]− 1

2

{
ρ, αp†·p

}
+ L(ρ),

where Ho is a diagonal matrix of the excited state en-
ergies, the second term describes radiative recombina-
tion and L(ρ) is the Linbladian operator describing phe-
nomenological relaxation between excited states (Ap-
pendix E). From the solution ρ(t) we calculate the rela-
tive PL intensity emitted into different polarizations us-
ing Eq. 4.

This model gives a good fit to the observed time de-
pendence of A0X emission (Fig. 3b, Appendix F). The
16 curves in Fig. 3b are fit simultaneously using 6 fit pa-
rameters: overall spontaneous emission rate (1.48 ns−1),
inter-level relaxation (0.89 ns−1), intralevel Γ3 relaxation
(3.6 ns−1), intralevel Γ5 relaxation (1.8 ns−1), tempera-
ture (4.7 K) and overall intensity normalization (5100
counts). These relaxation rates are shown schemati-
cally in Fig 2. The resulting A0X radiative lifetimes are
To(1, 3,

3
4 ) where To lies in the range 0.49 to 0.74 ns. A de-

tailed error analysis found the main source of uncertainty
in the spontaneous emission rate to be due to an ambigu-
ity in the choice of the background level (Appendix F).

Since hole spin flips are predicted to be much faster than
electron spin flips [16, 17], we do not include electron
spin flip processes in the model (shown schematically in
Fig. 2). Temperature was included as a fit parameter be-
cause the effective temperatures for bound excitons can
be larger than the bath temperature [18].

Using the best fit model parameters from the time re-
solved experiment, we are now able to predict the polar-
ization dependence of PL in resonant CW excitation in
the presence of spin relaxation. These curves are shown
in Fig. 3a as “theory,” and agree well with the experi-
mental data.

In conclusion, we presented a convenient and general
formalism for calculating the optical properties of k = 0
excitons in III-V semiconductors with an arbitrary num-
ber of carriers. We used this formalism to derive a model
of the optical properties of A0X in strain-free bulk GaAs
which predicts 3 distinct radiative lifetimes. The model
was confirmed using polarization and time-resolved ex-
periments. The results are in contrast to previous reports
for this system and highlight the importance of a unified
treatment of all recombination pathways when deriving
the radiative properties of multi-carrier excitons.

This material is based upon work supported by the
National Science Foundation under Grant No. 1150647,
DGE-0718124 and DGE-1256082. We would like to
thank T. Saku for growing the material in NTT. YH ac-
knowledges support from SORST and ERATO programs
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by JST.

Appendix A: Dipole Operator

The vector dipole operator µ = er for transitions be-
tween the conduction band and the heavy-hole or light-
hole band in a zinc-blende direct band gap semiconductor
(e.g. GaAs, InP, etc.) can be derived from the electron
and hole basis functions. We derive the dipole operator
in second quantization, which is convenient for calculat-
ing recombination rates for excitons with more than two
charge carriers.

The valence band angular momentum states arise from
coupling between p-like orbital states and the electron
spin 1

2 [19]. These couple together to form total angular

momentum 3
2 and 1

2 :

1⊗ 1

2
=

3
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⊕ 1

2
.

The
∣∣ 3
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2

〉
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∣∣ 3
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2

〉
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∣∣ 1

2 ,± 1
2

〉
as split-off holes. Spin-orbit interaction

splits the j = 3
2 from the j = 1

2 states and typically the

j = 1
2 split-off holes can be ignored in experiments.

Using angular momentum addition rules, the heavy
hole and light hole states are

∣∣ 3
2

〉
=

1√
2
|X − iY, ↓〉

∣∣ 1
2

〉
=

1√
6
|X − iY, ↑〉+

√
2

3
|Z, ↓〉

∣∣− 1
2

〉
= − 1√

6
|X + iY, ↓〉+

√
2

3
|Z, ↑〉

∣∣− 3
2

〉
= − 1√

2
|X + iY, ↑〉

where X,Y, Z are electron orbital wave functions trans-
forming as x, y, z and ↑, ↓ is the spin of the electron [2].
The hole angular momentum state has the opposite sign
of the corresponding electron angular momentum. The
conduction band states are |S, ↑〉 and |S, ↓〉 where S de-
notes a spherically symmetric periodic part of the Bloch
wave function. In spherical symmetry and for a k = 0
exciton, the coordinate system can be taken to lie in an
arbitrary direction. However for an exciton with non-zero
momentum k, the coordinate system must be taken with
the z axis in the k direction, thus somewhat complicating
further analysis [2]. In what follows, we will restrict our
discussion to k = 0 excitations.

These basis functions can be used to calculate matrix
elements of the dipole operator µ. As an example, the
dipole matrix element for recombination of a spin down
electron with a + 3

2 heavy hole is

〈
3
2

∣∣µ
∣∣S, ↓

〉
=

e√
2

(〈X|+ i 〈Y |) r |S〉 〈↓ | ↓〉

=
e√
2

[〈X|x |S〉 x̂ + i 〈Y | y |S〉 ŷ] .

The ordering of the matrix element 〈f |V |i〉 reflects the
transition occurring, in this case an electron moving from
the conduction band to the valence band. In a bulk cubic
crystal, by symmetry the matrix elements

〈X|x |S〉 = 〈Y | y |S〉 = 〈Z| z |S〉 ≡ 1

e
µo

are all identical. Further simplifying, we find this transi-
tion results in the production of right handed circularly
polarized light:

〈
3
2

∣∣µ
∣∣S, ↓

〉
= µo

x̂ + iŷ√
2

.

The same procedure can be used to find the other dipole
matrix elements.

We can now introduce creation operators (e†m) [8, 20]
for the creation of an electron in the angular momen-
tum state m and some particular but unspecified spa-
tial state. Because of the anti-symmetrization require-
ment, the creation and annihilation operators satisfy
anti-commutation relations

{em, e†n} = δmn

{e†m, e†n} = 0

{em, en} = 0.

(A1)

where the anti-commuator is defined as {a, b} = ab+ ba.
We will also introduce creation operators for holes using

h†m,k = e−m,−k; i.e. the linear and angular momentum
of the hole has the opposite sign of the unfilled electron
state [8]. Instead of labeling the band index, we restrict
hole creation/annihilation operators to act in the valence
band and electron operators in the conduction band. For
example, an exciton state can be written as

|em1
, hm2

〉 = e†m1
h†m2
|0〉 .

where |0〉 is the semiconductor vacuum state with a filled
valence band and empty conduction band.

The dipole operator can be written in second quanti-
zation as

µ =
∑

mn

µmnhmen + µ∗mne
†
nh
†
m (A2)

where we have restricted m to be in the valence band and
n to be in the conduction band, and µmn = 〈m| er |n〉 [8].
The first term corresponds to exciton annihilation and
the second to exciton creation. Using the matrix elements
calculated above, the dipole operator for a conduction
band electron recombining with a heavy-hole or light-
hole is

µ = µo

[
x̂ + iŷ√

2

(
h 3

2
e− 1

2
+

1√
3
h 1

2
e 1

2

)

− x̂− iŷ√
2

(
h− 3

2
e 1

2
+

1√
3
h− 1

2
e− 1

2

)

+

√
2

3
ẑ
(
h− 1

2
e 1

2
+ h 1

2
e− 1

2

)
+ H.C

]
.

(A3)
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Each term in the dipole operator (Eq. A3) conserves an-
gular momentum; i.e., the total electron and hole spin
z projection is transferred to the photon during recom-
bination. The dipole operator is shown schematically in
Fig. 4.

3
2

hole
1
2 − 1

2 − 3
2

− 1
2

electron

1
2

√
2
3 ẑ

√
2
3 ẑσ+

σ+
√
3
σ−
√
3

σ−
(
σ± = x̂±iŷ√

2

)

FIG. 4. Dipole matrix elements for exciton recombination [1].
The labeled arrows show the polarization of light emitted
upon recombination of the corresponding electron-hole pair.

Appendix B: Basis states for A0X

The A0X consists of two holes and one electron. Hole-
hole coupling dominates, while the crystal fields split the
levels further [12]. From the two holes, there are four
possible total spin states: 3

2 ⊗ 3
2 = 0 ⊕ 1 ⊕ 2 ⊕ 3 [21].

The two holes in A0X lie in a symmetric spatial state.
On account of the Pauli principle, the spin state must
therefore be antisymmetric with respect to interchange,
resulting in only total spin 2 and 0 being allowed.

We will use

h†m1
h†m2
|0〉 =

1√
2

(|m1,m2〉 − |m2,m1〉) (B1)

as shorthand for the creation of an antisymmetric state
of two holes [8]. Note that the ordering of the creation
operators matters, consistent with the commutation re-
lations in Eq. A1. Using this notation, we can write the
total angular momentum states |j,m〉 for the coupling of
the two holes as:

|2, 2〉 = h†3
2

h†1
2

|0〉

|2, 1〉 = h†3
2

h†− 1
2

|0〉

|2, 0〉 =
1√
2

(
h†3

2

h†− 3
2

+ h†1
2

h†− 1
2

)
|0〉

|2,−1〉 = h†1
2

h†− 3
2

|0〉

|2,−2〉 = h†− 1
2

h†− 3
2

|0〉

|0, 0〉 =
1√
2

(
h†3

2

h†− 3
2

− h†1
2

h†− 1
2

)
|0〉 .

In zinc-blende semiconductors, hole-hole coupling splits
the j = 2 and j = 0 states (Fig. 5).

hole︷︸︸︷
3

2

4

holes︷ ︸︸ ︷
3

2
⊗ 3

2
⊗

electron︷︸︸︷
1

2

12

hole︷︸︸︷
3

2

4

holes︷︸︸︷
2 ⊗

electron︷︸︸︷
1

2

10

holes︷︸︸︷
0 ⊗

electron︷︸︸︷
1

2

2

hole︷︸︸︷
Γ8

4

holes︷︸︸︷
Γ3 ⊗

electron︷︸︸︷
Γ6

4

holes︷︸︸︷
Γ5 ⊗

electron︷︸︸︷
Γ6

6

holes︷︸︸︷
Γ1 ⊗

electron︷︸︸︷
Γ6

2

Spherical Symmetry Holes interacting
Td symmetry

GaAs crystal field

A0

A0X

FIG. 5. Hole-hole coupling causes the j = 2 states to be
split from the j = 0 states. Crystal fields breaking spherical
symmetry and split Γ3 and Γ5. The degeneracy of the level
is shown in the bottom right corner.

In the presence of the crystal field with Td symmetry,
the states split into three different irreducible represen-
tations [12, 22, 23] (Fig. 5):

|Γxy5 〉 =
1√
2

(|2, 2〉 − |2,−2〉)

|Γxz5 〉 =
1√
2

(|2, 1〉+ |2,−1〉)

|Γyz5 〉 =
1√
2

(|2, 1〉 − |2,−1〉)

|Γa3〉 =
1√
2

(|2, 2〉+ |2,−2〉)
∣∣Γb3
〉

= |2, 0〉
|Γ1〉 = |0, 0〉 .

In order to derive these basis states, it is necessary to
choose a coordinate system in which to write the sym-
metry operations of the crystal. Since we chose to use
axes aligned along [100], [010] and [001], x̂, ŷ and ẑ cor-
respond to the three crystallographic directions.

Appendix C: Dipole Matrix Elements of A0X

We use the dipole operator (A3) to calculate the
dipole matrix element between A0X and A0. To illus-
trate the method, we will calculate the matrix element〈

3
2

∣∣µ |Γxy5 ↑〉 as an example. First, we expand the matrix
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element and the dipole operator
〈

3
2

∣∣µ |Γxy5 ↑〉 = µo 〈0|h 3
2
·

[
x̂ + iŷ√

2

(
h 3

2
e− 1

2
+

1√
3
h 1

2
e 1

2

)

− x̂− iŷ√
2

(
h− 3

2
e 1

2
+

1√
3
h− 1

2
e− 1

2

)

+

√
2

3
ẑ
(
h− 1

2
e 1

2
+ h 1

2
e− 1

2

)]
·

1√
2
e†1

2

(
h†3

2

h†1
2

− h†− 1
2

h†− 3
2

)
|0〉 .

All terms with an electron annihilation operator e− 1
2

go

to zero because the electron in |Γxy5 ↑〉 is spin up. Using

the fact that e 1
2
e†1

2

|0〉 = |0〉, the expression becomes

〈
3
2

∣∣µ |Γxy5 ↑〉 = 〈0|h 3
2

[
x̂ + iŷ√

6
h 1

2
− x̂− iŷ√

2
h− 3

2
+

√
2

3
ẑh− 1

2

]
1√
2

(
h†3

2

h†1
2

− h†− 1
2

h†− 3
2

)
|0〉 .

Using the fact that hm |0〉 = 0, and the commutation
relations in Eq. A1, the dipole matrix element is

〈
3
2

∣∣µ |Γxy5 ↑〉 = − x̂ + iŷ

2
√

3
.

Repeating this calculation for each matrix element pro-
duces the dipole matrix elements for the A0X-A0 system,
given in Table I.

Appendix D: Generalized Weisskopf-Wigner theory
for spontaneous emission from multiple excited

levels

The Wiesskopf-Wigner theory of spontaneous emis-
sion [24–26] can be generalized to calculate the sponta-
neous emission rate from a set of excited states to a set
of ground states. The excited and ground states are not
necessarily degenerate.

The wavefunction of the system is

|ψ(t)〉 =
∑

i

∑

k

cik(t) |g, i,k〉+
∑

j

bj(t) |e, j〉 (D1)

where |g, i,k〉 is the state with the atom in ground state i
and a photon in mode k, polarization εσ (σ = 1, 2), and
|e, j〉 is the j’th excited atomic state and no photon. The
sum on k contains an implicit sum over the two polar-
izations σ = 1, 2.

In the interaction picture and rotating wave approxi-
mation, the Hamiltonian governing the time evolution of
the atom and field is

V = ~
∑

ij

∑

k

[
gijk (ro)

∗ |e, j〉 〈g, i| akei(ωij−νk)t + H.C.
]

(D2)

where

gijk (ro) = −pij · ε̂
~

√
~νk
2εV

,

pij = 〈g, i|µ |e, j〉 are dipole matrix elements, ak is the
annhilation operator for a photon in mode k, ωij =
(Ej − Ei)/~, ε̂ is the polarization of the photon, ω is
the transition frequency, νk = c|k|/n, ε is the material
permittivity, n is the material dielectric constant, c is the
speed of light, and V is the quantization volume [24].

The time evolution is given by the Schrödinger equa-
tion

d

dt
|ψ(t)〉 = − i

~
V |ψ(t)〉 .

This yields the coupled differential equations

ḃj(t) = −i
∑

i

∑

k

gijk (ro)cik(t)e−i(ωij−νk)t

ċik(t) = −i
∑

j

gijk (ro)
∗bj(t)e

i(ωij−νk)t.
(D3)

By formally solving the second equation and plugging
into the first, the time evolution of the excited state prob-
ability amplitude satisfies

ḃj′(t) = −
∑

ij

∑

k

gij
′

k (ro)g
ij
k (ro)

∗
∫ t

o

dt′

bj(t
′)e−i(ω−νk)(t−t′)+i∆ijt

′−i∆ij′ t,

(D4)

where ∆ij = ωij −ω and ω is some choice of natural fre-
quency for the system. Assuming the modes are closely
spaced in frequency, the sum over k may be converted to
an integral:

∑

k

→ 2
V

(2π)3

∫
dΩ

∫ ∞

0

dk k2.

By introducing the matrix

Sj′j =
3

4π

∑

i

∫
dΩ(pij′ · ε̂)∗(pij · ε̂) (D5)

and changing variables to integrate on νk = ck/n, the
equation of motion (Eq. D4) becomes

ḃj′(t) = − 1

6π2

n3

~εc3
·
∑

j

Sj′j

∫ ∞

o

dνkν
3
k

∫ t

0

dt′

e−i(ω−νk)(t−t′)ei(∆ijt
′−∆ij′ t)bj(t

′).

Since the integral over t is only appreciable when ω ∼
νk, ν3

k may be replaced with ω3 in the integrand and the
lower frequency limit may be replaced by −∞ [24, 27].
Using the delta function identity,

∫ ∞

−∞
dνke

−i(ω−νk)(t−t′) = 2πδ(t− t′).
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Γ1 |Γ1 ↓〉 |Γ1 ↑〉
〈
− 3

2

∣∣ 1
2
(x̂ + iŷ) 0

〈
− 1

2

∣∣ − 1√
3
ẑ − 1

2
√
3
(x̂ + iŷ)

〈
1
2

∣∣ − 1

2
√
3
(x̂− iŷ) 1√

3
ẑ

〈
3
2

∣∣ 0 1
2
(x̂− iŷ)

Γ3 |Γa
3 ↓〉 |Γa

3 ↑〉
∣∣Γb

3 ↓
〉 ∣∣Γb

3 ↑
〉

〈
− 3

2

∣∣ − 1

2
√
3
(x̂− iŷ) 1√

3
ẑ 1

2
(x̂ + iŷ) 0

〈
− 1

2

∣∣ 0 1
2
(x̂− iŷ) 1√

3
ẑ 1

2
√
3
(x̂ + iŷ)

〈
1
2

∣∣ 1
2
(x̂ + iŷ) 0 1

2
√
3
(x̂− iŷ) − 1√

3
ẑ

〈
3
2

∣∣ − 1√
3
ẑ − 1

2
√
3
(x̂ + iŷ) 0 1

2
(x̂− iŷ)

Γ5 |Γxy
5 ↓〉 |Γxy

5 ↑〉 |Γxz
5 ↓〉 |Γxz

5 ↑〉 |Γyz
5 ↓〉 |Γyz

5 ↑〉〈
− 3

2

∣∣ 1

2
√
3
(x̂− iŷ) − 1√

3
ẑ 1√

3
ẑ 1

2
√
3
(x̂ + iŷ) − 1√

3
ẑ − 1

2
√
3
(x̂ + iŷ)

〈
− 1

2

∣∣ 0 − 1
2
(x̂− iŷ) 1

2
(x̂ + iŷ) 0 1

2
(x̂ + iŷ) 0

〈
1
2

∣∣ 1
2
(x̂ + iŷ) 0 0 1

2
(x̂− iŷ) 0 1

2
(−x̂ + iŷ)

〈
3
2

∣∣ − 1√
3
ẑ − 1

2
√
3
(x̂ + iŷ) 1

2
√
3
(x̂− iŷ) − 1√

3
ẑ 1

2
√
3
(x̂− iŷ) − 1√

3
ẑ

TABLE I. Normalized dipole matrix pij =
〈
A0, i

∣∣µ
∣∣A0X, j

〉
for the A0X-A0 system. x̂, ŷ and ẑ are unit vectors oriented along

the crystallographic axes.

and
∫ t

0

dt′δ(t− t′)f(t′) =
1

2
f(t),

we arrive at the differential equations in the desired form:

ḃj′(t) = −α
2

∑

j

Sj′jbj(t)e
i∆jj′ t , α =

1

4πε

4ω3n3

3~c3
.

(D6)
The matrix Sj′j can be computed from pij in a simple

way. Using the parameterization

ε̂ = sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ.

for the polarization, the integrand (D5) contains a sum
of integrals of the form

Inm =

∫
dΩ(x̂n · ε̂)(x̂m · ε̂)

where x̂n is a unit vector. Performing the angular inte-
grals, this becomes

Inm =
4π

3
δnm.

Thus we arrive at a convenient shorthand for computing
Sj′j given the dipole matrix:

Sj′j =
∑

i

p∗ij′ ·pij

where the dot product is evaluated using x̂n · x̂m = δnm.
This shows the angular integral can be replaced with a
simple dot product.

In matrix language, the differential equation govern-
ing excited state probability amplitudes for degenerate
excited states is

db

dt
= −α

2
Sb, S = p†·p.

By choosing a basis for the excited states in which S is
diagonal, the decay of each state is uncoupled from the
others. Thus we see that the the eigenstates of αS decay
independently at spontaneous emission rates equal to the
eigenvalues of αS.

This method can be used to compare spontaneous
emission rates between different manifolds of excited
states. If the states are split in energy by a large amount
compared to the radiative lifetime, the fast oscillating
term in Eq. D6 will result in non-degenerate excited
states becoming uncoupled. As an example, we solved
Eq. D6 for two excited states and one ground state, whose
lifetimes can be modified if the excited levels are degen-
erate. The differential equations governing the excited
state probability amplitudes are

d

dt

(
b1
b2

)
= − 1

2τ

(
1 ei∆t

e−i∆t 1

)(
b1
b2

)

The solution is plotted in Fig. 6 for τ = 1 ns and var-
ious detunings ∆. If the transitions are well resolved,
the time dependence of the system follows that of two
independent subsystems (Fig. 6a). On the other hand,
if there is significant overlap between the Lorentzian line
shapes, interference effects modify the radiative lifetime.
In this toy model, near-degeneracy results in the exis-
tence of a dark state and long lived excited state popu-
lation (Fig. 6b).

Therefore, to find the spontaneous emission rates for
different non-degenerate sets of states, it is only neces-
sary to calculate the eigenvalues of S within each de-
generate subspace. When comparing eigenrates between
non-degenerate manifolds, the existence of ω3 in the pre-
factor α modifies the lifetimes. For excited state split-
tings of 10s of GHz (as for A0X) at optical frequencies,
this leads to a correction of a part in 104, which can often
be neglected.
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FIG. 6. Time dependence of excited state population depending on detuning between two excited states that can interfere.
τ = 1 ns. For a detuning ∆ much larger than the spontaneous emission rate 1/τ , the population of the two excited states decay
independently. When ∆ = 0, the lifetimes are modified by interference of the two recombination pathways, and the system
progresses towards a dark state. The lifetimes of states in the absence of interference are 1 ns for both transitions. The initial

wave function is |ψ〉 = 1
2
|1〉 +

√
3

2
|2〉. a. At intermediate ∆ = 5 rad/ns, some interference is seen in the emission, oscillating

around the behavior expected for two independent subsystems. b. When the transitions are nearly resonant, the emission
follows the behavior for degenerate excited states.

Appendix E: Density matrix model

The time evolution of the excited state density matrix
ρ is described by

dρ

dt
=

1

i~
[Ho, ρ]− 1

2

{
ρ, αp†·p

}
+ L(ρ) (E1)

where Ho is a diagonal matrix of the energies of the ex-
cited state energies, p is the dipole matrix with elements
pij = 〈g, i|µ |e, j〉 and L(ρ) is the Linbladian operator.
The first term describes unitary evolution, the second
term spontaneous emission and the third excited state
relaxation and decoherence. In this section, we describe
the construction of this model.

A population transfer out of the system is mathemat-
ically identical to the spontaneous emission process in
the excited state subspace. Population reduction can be
accomplished mathematically using an anti-commutator
{A,B} = AB+BA [24]. The spontaneous emission pro-
cess is characterized by the decay of diagonal density
matrix terms in the basis of the spontaneous emission
eigenstates:

(
dρ

dt

)

radiative

= −1

2

∑

j

{ρ, γj |φj〉 〈φj |} , (E2)

where γj and |φj〉 are the spontaneous emission eigen-
values and eigenstates of αS. Using the fact that any
operator is diagonal in the basis of it’s eigenvectors, this
becomes (

dρ

dt

)

radiative

= −α
2
{ρ, S} ,

Numerically, it is an advantage to include spontaneous
emission in this way as the ground states do not need
to be included in the density matrix. For A0X, the ex-
cited state density matrix has 56 differential equations
(ignoring off diagonal terms between non-degenerate ex-
cited states), whereas a treatment using the full density
matrix including ground states would have 120.

Phenomenological relaxation between the excited
states is included as a population transfer and decoher-
ence. The excited state relaxation rate Rij from state
i to j arises from coupling between the spins and their
environment. This model includes an intralevel relax-
ation rate between states in a degenerate manifold, and
an interlevel rate between different manifolds. For i and
j in different manifolds, the rates are modulated by the
energy difference between the initial and final states,

Rij ∝ Roe−
(Ei−Ej)

2kBT ,

where Ro is the interlevel relaxation rate. This correctly
reproduces the fact that in equilibrium the ratio of popu-
lations in different states is given by a Boltzmann factor.
Many of the rates Rij from states in the same irreducible
representation Γn can be shown to be the same by sym-
metry. For the purposes of this model, we assumed that
all states within a given irreducible representation Γn
have the same phenomenological relaxation rate.

Phenomenological relaxation affects both the on- and
off-diagonal elements of the density matrix. The total
rate of population leaving (Li) or entering (Ei) state i is

Li = ρii
∑

j

Rij , Ei =
∑

j

ρjjRji.
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This population relaxation also causes a decay of the off-
diagonal terms in the density matrix. This can be ac-
complished with the anti-commutator:

L(ρ) = −1

2

∑

j

(Liδijρjk + ρijLjδjk) + Eiδik (E3)

where the second term enforces conservation of excited
state population.

Appendix F: Fit of time resolved data to model

We numerically integrated the equation of motion
Eq. E1 to find the excited state density matrix as a func-
tion of time ρ(t). In the case that Γn is excited with
polarization ε̂i, the initial density matrix in the Γn sub-
space is

ρ(Γn)
e (t = 0) = M (Γn)†

εi M (Γn)
εi , (F1)

where M
(Γn)
εi = p(Γn) ·ε̂i and all other terms of the density

matrix are zero. From the solution of the density matrix
as a function of time ρe(t), the PL emitted from Γn at
polarization ε̂f as a function of time is

PL(Γn)(t) = tr
(
M (Γn)
εf

ρ(Γn)
e (t)M (Γn)†

nεf

)
. (F2)

These PL curves predict the time dependence of A0X
emission under different excitation conditions.

The model was fit to the data using a weighted least-
squares residual due to the Poisson distributed nature of
photon counting data [28]. Temperature was included as
a fit parameter because in individual fits with T = 1.9
K, the best fit Γ3 → Γ5 relaxation rate depended on the
excitation state. This implies that the effective exciton
temperature was higher than 1.9 K, consistent with ex-
periments on free excitons in GaAs where the effective
temperature of free excitons was found to be somewhat
higher than that of the bath [18].

We tested modifying the relaxation rate matrix Rij
so that electron spin flips can occur. In this case, the
model also fits the data with different rates of inter-
state relaxation: interlevel relaxation (0.45 ns−1), in-
tralevel Γ3 relaxation (1.2 ns−1) and intralevel Γ5 re-
laxation (0.71 ns−1). Because we obtain good fits with
either electron spin flips allowed or disallowed, the ex-
periment is not sensitive to the rate of electron spin flips.
However, the best fit spontaneous emission rate constant
was the same 1.48 ns−1 regardless of whether electron
spin flips are allowed.

In order to estimate the uncertainty in the the mea-
sured spontaneous emission rate, we characterized the
uncertainty due to random Poisson noise in the measure-
ment data as well as systematic error due to the un-
certainty in model parameters (e.g. pulse arrival time,
background level). The largest uncertainty in measured
spontaneous emission rate arises from the uncertainty of

background level (Tab. II). The raw data shown in Fig. 7
shows that there is a long lived emission above the back-
ground. This long lived emission may indicate some long
lived state, e.g. exciton hopping into a metastable state
and subsequent slow repopulation. Due to the uncer-
tainty of the true background value, the A0X best fit
parameters acquire some uncertainty. Choosing a higher
background level results in a faster best fit spontaneous
emission rate, as the effective curvature of the decay be-
comes greater (Fig. 7). We take the confidence interval
of the background level to be 0 to 30, this produces an
uncertainty in spontaneous emission rate of ±0.26 ns−1

(Fig. 7). Another way to estimate this uncertainty would
be to incorporate a metastable excitonic level in the
model. Because this introduces the danger of overfit-
ting the model with too many adjustable parameters, we
used the background level as a proxy for the uncertainty
introduced by possible metastable states.

TABLE II. Summary of uncertainties in measurement of the
spontaneous emission rate.

Effect Uncert. (±) in Spon. Emission
Background Level 0.26 ns−1

Data Cut Off 0.15 ns−1

Poisson Noise 0.0082 ns−1

5% Laser Power Fluctuations 0.0047 ns−1

Next, we investigated whether changing the maximum
number of data points collected (1-2 ns) modified the best
fit spontaneous emission rate. In fitting the data, there
is a somewhat arbitrary choice of when additional data
points at longer times no longer improve the fit. Within
reasonable choices of the data time cut-off of 1-2 ns, we
found that the best fit spontaneous emission rate changed
from 1.36 to 1.66 ns−1. This level of uncertainty is lower
than that present from the unknown background level.

Next, we used a Monte Carlo simulation to determine
the uncertainty in spontaneous emission due to Pois-
son noise. The raw data was used as the mean for
new Poisson-distributed datasets. The model was fit to
the new random datasets using the same weighted least-
squares algorithm. The standard deviation of the resul-
tant spontaneous emission rates is 0.0082 ns−1.

Monte Carlo simulations were also employed to calcu-
late the uncertainty due to laser power fluctuations be-
tween experimental runs. The photon counting data was
modulated by random 5% power fluctuations and passed
through the least squares algorithm. We found the stan-
dard deviation of best fit spontaneous emission rates to
be 0.0047 ns−1 due to power fluctuations of the laser.
These simulations demonstrate that the measurement is
robust against Poisson noise and laser power fluctuations.

In summary, we have found that the spontaneous emis-
sion rate for A0X lies within the range 1.36 to 2.03 ns−1.
This corresponds to a lifetime constant in the range of
0.49 to 0.74 ns.
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FIG. 7. a. Raw data before binning used for time-resolved experiment. Before the pulse arrives, the mean background level is
2.5 ± 0.6 counts. At the end of the trace at 2 ns, the mean level is 29 ± 6, which is somewhat higher than the theory would
predict. b-c. Best fit spontaneous emission rate as a function of background level in the model. The best fit background value
lies in between the limits chosen by inspection in a. These limits are used to find the uncertainty in the spontaneous emission
rate due to the background level.
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ẑ

5
2

| 5
2
,− 5

2
〉 | 5

2
,− 3

2
〉 | 5

2
,− 1

2
〉 | 5

2
, 1
2
〉 | 5

2
, 3
2
〉 | 5

2
, 5
2
〉

〈− 3
2
| − 1√

6
(x̂− iŷ)
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TABLE III. Normalized dipole matrix (pij)
JJCS =

〈
A0, i

∣∣µ
∣∣A0X, j

〉
for the A0X-A0 system in the (incorrect) JJCS. x̂, ŷ and

ẑ are unit vectors oriented along the crystallographic axes.

Appendix G: Polarization of PL to determine
dominant coupling in A0X

While the splitting of the A0X states into three sets
of states is now understood, it was at one point a sub-
ject of debate. Two theories, the j − j coupling scheme
(JJCS) and the crystal-field scheme (CFS) can be used
to explain some of the optical properties of A0X [12, 13].
In both schemes, hole-hole coupling first rearranges the
two j = 3

2 hole states into j = 0 and j = 2 manifolds. In

the JJCS, electron-hole coupling further splits the A0X
states, resulting in j = 1

2 (arising from j = 0) and 3
2 , 5

2
(from j = 2). On the other hand in the CFS, GaAs crys-

tal fields split the A0X states into Γ1 (j = 0) and Γ3,Γ5

(j = 2).

In previous studies, the stress dependence of
A0X→ A0 emission was used to determine that only the
CFS adequately describes the A0X [12, 13]. Low temper-
ature stress dependencies are challenging experiments,
requiring the use of special equipment. In this section,
we demonstrate that simple polarization measurements
can also distinguish between the JJCS and CFS.

In order to predict the polarization dependence of A0X
in the JJCS, we first calculate the dipole matrix elements
using the JJCS basis states by the procedure in Sec. C.
The dipole matrix elements are given in Tab. III.
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FIG. 8. Comparison of polarization dependence of photo-
luminescence for the JJCS and CFS. Qualitatively different
behavior is observed when exciting Γ3 y or 3

2
y. This differ-

ence can be used to determine the validity of the CFS for
describing A0X.

We will now calculate the polarization dependence of
the PL intensity in the case of no excited state relaxation
for Γ3 (CFS). When A0X absorbs a photon resonant with
the Γ3 transition, the excited state density matrix is pro-
portional to

ρ(Γ3)
e = M (Γ3)†

εi ρ0M
(Γ3)
εi , (G1)

where ρ0 = 1
4I is the ground state density matrix before

excitation and MΓ3,εi = p(Γn) · ε̂i are the dipole matrix
elements given in Tab. I evaluated with the polarization
εi = cosφix̂+sinφiŷ in the x−y plane. After absorption,
the part of the excited state density matrix corresponding
to Γ3 is

ρ(Γ3)
e =




1
12 0 − i sin(2φi)

8
√

3
0

0 1
12 0 − i sin(2φi)

8
√

3
i sin(2φi)

8
√

3
0 1

12 0

0 − i sin(2φi)

8
√

3
0 1

12




with all other excited state density matrix elements equal
to zero. (Here we are working in the crystal field scheme
basis.) To find the amount of PL emitted with linear
polarization εf = cosφfx̂ + sinφfŷ, we evaluate

PL(Γ3) = tr
(
M (Γ3)
εf

ρeM
(Γ3)†
εf

)
.

Simplifying, and repeating this procedure for Γ1 and Γ5,
the angular dependence of polarization in the case of no
excited relaxation is

PL(Γ5) =
Io
18

[5 + 4 cos(2φi) cos(2φf) + sin(2φi) sin(2φf)]

PL(Γ3) =
Io
36

[4 + 3 sin(2φi) sin(2φf)]

PL(Γ1) =
Io
18
.

On the other hand, if the JJCS dipole operator
(Tab. III) is used, the PL from the three manifolds is

PL(5/2) = Io

[
1

36
+

1

75
cos(2φf − 2φi)

]

PL(3/2) = Io

[
533

5760
+

4

75
cos(2φf − 2φi)

]

PL(1/2) = Io
169

4608
.

The two coupling schemes show qualitatively different an-
gular polarization dependences, shown in Fig. 8. By com-
paring with the experimental data shown in Fig. ??a in
the main text, we conclude that only the CFS adequately
describes the angular dependence of A0X photoemission.

Appendix H: Photoluminescence Excitation
Spectroscopy of A0X

The A0X system is a remarkably homogeneous exci-
tonic system. To investigate the inhomogeneous broad-
ening of the A0X system, we perform photoluminescence
excitation (PLE) spectroscopy on a p-type GaAs sample
mounted in a cold-finger cryostat at 4.2 K. The method
of mounting the sample introduced some strain into the
sample, which splits the heavy hole (HH) and light hole
(LH) states. A narrow band (<10 neV) continuous-wave
laser is scanned over the A0-1s to A0X transition while
monitoring PL from A0X to A0-2s (Fig. 9).

We fit the PLE lines to a sum of five Voigt functions,
the convolution of a Lorentzian and a Gaussian. The
Lorentzian width is due to homogeneous effects while the
Gaussian width arises from inhomogeneous broadening.
In the fit, the inhomogeneous broadening is the same
for all peaks. The best fit Lorentzian full width at half
maximum are (39±2)µeV for Γ3-HH, (43±2)µeV for Γ3-
LH, (29± 2)µeV for Γ5-HH, (33± 1)µeV for Γ5-LH and
(170±7)µeV for Γ1. The inhomogeneous broadening full
width at half maximum was (19 ± 1)µeV. Thus we find
that A0X is a remarkably homogeneous excitonic system.
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