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We introduce a numerical algorithm to simulate the time evolution of a matrix product state under a long-
ranged Hamiltonian in moderately entangled systems. In the effectively one-dimensional representation of a
system by matrix product states, long-ranged interactions are necessary to simulate not just many physical
interactions but also higher-dimensional problems with short-ranged interactions. Since our method overcomes
the restriction to short-ranged Hamiltonians of most existing methods, it proves particularly useful for studying
the dynamics of both power-law interacting, one-dimensional systems, such as Coulombic and dipolar systems,
and quasi two-dimensional systems, such as strips or cylinders. First, we benchmark the method by verifying
a long-standing theoretical prediction for the dynamical correlation functions of the Haldane-Shastry model.
Second, we simulate the time evolution of an expanding cloud of particles in the two-dimensional Bose-Hubbard
model, a subject of several recent experiments.

I. INTRODUCTION

The ability to study dynamical properties in and out of
equilibrium is essential for understanding the physics of
strongly interacting systems. Following the success of the
density-matrix renormalization group (DMRG) for finding
one-dimensional (1D) ground states [1], a number of closely
related techniques have been developed to explore the dynam-
ical properties of short-ranged 1D systems [2–6]. This excit-
ing development has given access to experimentally relevant
observables, such as dynamical correlation functions which
can be compared with data from neutron scattering and ul-
tracold atomic gasses, and non-equilibrium dynamics, provid-
ing insight into long standing questions about thermalization
[7]. Simultaneously, large-scale DMRG has begun to study
ground-state properties of quasi-two dimensional (2D) quan-
tum systems, such as strips and cylinders, allowing one to
probe much larger systems than accessible to exact diagonal-
ization [8]. The 2D-DMRG method orders the sites of a 2D
lattice into a 1D chain with long-ranged interactions. Truly 2D
tensor network methods can capture more entanglement, so
may eventually supplant this approach [9, 10], but 2D-DMRG
is currently a standard tool due to its reliability.

It is desirable to combine these two developments in order
to evaluate dynamical properties of quasi-2D systems (e.g.,
the time evolution of bosons in a 2D optical trap as shown in
Fig. 1). However, the existing DMRG-based time-evolution
methods cannot be easily applied to a quasi-2D system. This
is mainly due to the long-ranged interactions that occur when
representing a 2D system as a 1D chain; a similar difficulty
exists for 1D systems with power-law Coulombic and dipolar
interactions.

In this work we address this problem by providing a method
to time-evolve long-ranged Hamiltonians. The unique advan-
tage of the method is that it simultaneously (a) can be applied
to any long-ranged Hamiltonian while preserving all symme-
tries, (b) has a constant error per site in the thermodynamic
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FIG. 1. Quasi-exact time evolution of interacting hard-core bosons
in a 14 × 14 lattice trap. The bosons hop with bandwidth J = 1
and interact with nearest-neighbor repulsion V . 16 bosons begin in
an un-entangled product state, and evolve in time t from left to right.
In the top row, V = 1, and the bosons expand outward. In the bot-
tom row, J < V = 5, the bosons remain trapped in a bound state
due to the strong interactions. A similar effect has been observed
experimentally in cold-atom optical lattices [11, 12].

limit at fixed computational effort, (c) can be applied to an
infinitely long system assuming translation invariance and (d)
can be easily implemented using standard DMRG methods.

Like other 1D methods, we work in the framework of ma-
trix product states (MPSs) [13–15], a variational ansatz for
finitely entangled states within which we wish to simulate the
full many-body dynamics (consequently, the method is prac-
tical only for moderately entangled systems). The structure of
an MPS can be generalized to operators, called matrix product
operators (MPOs) [16]. An MPO can be efficiently applied to
an MPS using standard methods [7, 17, 18]. If a long-ranged
Hamiltonian H has a compact MPO approximation for etH ,
then the time evolution can be efficiently simulated by succes-
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sively applying the MPO to the MPS. The most naive time-
stepper, an Euler step 1 + tH , as well as its Runge-Kutta [19]
and Krylov [5, 20, 21] improvements, indeed has an efficient
MPO representation. But these global methods have an error
per site which diverges with the system size L, for example
as O(Lt2) for the Euler step, which eventually renders them
impractical as L→∞. For certain simple H , such as a near-
est neighbor interactions or a sum of commuting terms [17], a
compact MPO with finite error per site exists, which is the ba-
sis behind the highly successful time evolving block decima-
tion (TEBD) [2] and tDMRG [3, 4]. However, these methods
do not generalize well for long-ranged Hamiltonians, which is
the focus of this work.

The basic insight of this work is that a Hamiltonian which
is expressed as a sum of terms H =

∑
xHx admits a local

version of a Runge-Kutta step; for instance we could improve
the Euler step by taking

1 + t
∑
x

Hx →
∏
x

(1 + tHx). (1)

The error is still at O(t2), so it is formally a 1st-order time
stepper. But any set of distant regions all receive the correct
1st-order step in parallel. Hence, in contrast to the naive Euler
step, the total error scales as Lt2, rather than as L2t2: this im-
provement is absolutely essential in order to apply the method
in the thermodynamic limit. The main result of this work is
that an improved version of Eq. (1) has a very compact MPO
representation which can easily be extended to higher-order
approximations in O(tp).

In Fig. 2, we compare the accuracy of the methods proposed
here, called W I and W II , against TEBD and global 2nd order
Runge-Kutta. TEBD works for short-ranged Hamiltonians, so
we compare by quenching from product states into the spin-
1/2 nearest-neighbor Heisenberg chain, where a high order
TEBD calculation serves as a quasi-exact reference. Runge-
Kutta is orders of magnitude less accurate, with an error that
scales asL5 compared toL for TEBD andW I/II . Both TEBD
and W I/II are comparable in accuracy; for evolution starting
from a Neel state, W II is slightly more accurate than TEBD,
while from a random state TEBD is more accurate. Any such
difference can be easily mitigated by a small decrease in time
step. But unlike TEBD, W I/II can be immediately applied to
a long-ranged problem without a Trotter decomposition.

To our knowledge, the other existing method which can
time-evolve long-ranged interactions with a constant error per
site is the time dependent variation principle (TDVP), which
projects the exact Schrödinger equation into the MPS varia-
tional space and numerically integrates the resulting equations
[22, 23]. While the method has yet to be applied to quasi-2D
systems, a version was successfully applied to the long-ranged
transverse field Ising model [24, 25]. However, in contrast to
the proposal here, which involves the standard tensor network
technique of applying an MPO, the TDVP requires an entirely
distinct and relatively complex set of algorithms, the stability
of which can decrease with the desired accuracy. It will be a
useful subject for future work to make a detailed comparison
between TDVP and the present MPO approach.

The first application presented here is a calculation of a
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FIG. 2. Comparison of 2nd-order MPOs W I , W II , TEBD, and global
Runge-Kutta for the spin-1/2 Heisenberg chain. 4th-order TEBD
serves as a quasi-exact reference for calculating errors. Panels (a),
(b) show quenches starting from a L = 20 Neel state and random
state respectively. In the inset, we show the scaling of the errors for
system sizes L = 20, 40. For W I/II we find perfect collapse to the
expected scaling Lt4, as the error per site remains constant in the
thermodynamic limit. In contrast, for global Runge-Kutta the error
increases as L5t4.

dynamical correlation function of the Haldane-Shastry spin
chain, which is a 1D spin-half antiferromagnet with power-
law long-ranged interactions [26, 27]. Our numerical simu-
lations agree with the analytic exact results [28] up to long
times, which serves as a check of the method’s accuracy, and
show a ballistic spreading of correlations consistent with the
model’s integrability. The second application is the simulation
of dynamics in a 2D Bose-Hubbard model. Here we focus on
a class of experiments with ultracold atomic gases that study
expansion of a cloud that is initially confined to a small re-
gion of the lattice [11, 12]. The main qualitative surprise in
the experiments is that even repulsive interactions can lead to
self-trapped states, which is reproduced in our model calcula-
tion along with several other features, shown in Fig 1. We will
further elaborate on these applications later.

II. MATRIX PRODUCT OPERATORS

In order to understand our main result, we review some ba-
sic facts regarding MPOs. An operator Z acting on a 1D chain
with physical sites labeled by i has an MPO representation

Z = · · · Ŵ(1)Ŵ(2)Ŵ(3) · · · (2)

where each Ŵ(i) is a matrix of operators acting on the Hilbert
space of site-i (with physical indicides mi,m

′
i),

[Ŵ(i)]ai−1ai =
∑
mi,m′i

[W(i)]
mim

′
i

ai−1ai |mi〉 〈m′i| , (3)

with [W(i)]
mim

′
i

ai−1ai ∈ C. In Eq. (2), the matrices are contracted
by summing over all indices ai = 1, . . . , χi. These indices
live in the space between sites (i, i+ 1), which we refer to as
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FIG. 3. Graphical depictions of MPOs for (a) the Hamiltonian H
and (b) the time-stepper Ŵ I(t). As explained in Ref. 30, by analogy
to a finite-state-machine the indices of the MPO (labeling rows and
columns) are represented as nodes of a graph, while the entries of the
MPO are edges.

a bond. The χi’s are called the MPO bond dimensions, and
they denote the size of the Ŵ matrices. Several algorithms
have been developed for efficiently applying an MPO to an
MPS, with effort of either O(χ2) or O(χ3) [7, 17, 18].

Two classes are of interest to us; sums of local operators
(such as a Hamiltonian), and exponentials of such sums (evo-
lution operators). We first review the structure of the former.
For the bond between sites (i, i + 1) that divides the system
into regions Li and Ri, any Hamiltonian H can be decom-
posed as

H = HLi ⊗ 1Ri + 1Li ⊗HRi +

Ni∑
ai=1

hLi,ai ⊗ hRi,ai . (4)

HereHLi/Ri are the components of the Hamiltonian localized
purely to the left/right of the bond, while the hLi,ai ⊗ hRi,ai
run over Ni interaction terms which cross the bond. There is
a recursion between the decompositions on bond (i−1, i) and
(i, i+ 1), which differ by the addition of site i:

 HRi−1

hRi−1,ai−1

1Ri−1

 =


1 Ni 1

1 1̂ Ĉ D̂

Ni−1 0 Â B̂

1 0 0 1̂


(i)

⊗

 HRi

hRi,ai
1Ri

 . (5)

Here (Â, B̂, Ĉ, D̂)(i) are matrices of operators acting on site i,
with dimensions indicated on the border. This recursion is in
fact the MPO: the block matrix in the middle is Ŵ(i), with size
χi = Ni + 2. (See App. A for explicit examples of MPOs.)
The optimal (Â, B̂, Ĉ, D̂)(i) can be obtained using the block
Hankel singular value decomposition, a well known technique
in control theory known as balanced model reduction [29].

We can view the recursion relation of Eq. (5) as a finite
state machine [30]; the transitions of the machine sequentially
place the operators at each site, as illustrated in Fig. 3a. The
first/last indices of the MPO, which we denote by L/R respec-
tively, play a special role, as they indicate that no non-trivial
operators have been placed to the left/right of the bond. Due
to the block-triangular structure of Ŵ , once the MPO state
transitions into the first index L, it remains there in perpetuity,
placing only the identity operator 1̂ with each Ŵ . The tran-
sition from R to L (not necessarily in one step) places some

local operator Hx; the sum over all such paths generates the
Hamiltonian.

III. TIME EVOLUTION OPERATORS

Given the decomposition H =
∑
xHx, our goal is to find

an efficient MPO for

U(t) = 1 + t
∑
x

Hx +
1

2
t2
∑
x,y

HxHy + · · · . (6)

In the most general case, an approximation for U(t) is neces-
sary, which brings us to our main result.

While the local Euler step defined in Eq. (1) does not have
a simple MPO representation, a slight modification does. Let
us define x < y if the sites affected by Hx are strictly to the
left of those affected by Hy . Consider an evolution operator
which keeps all non-overlapping terms:

U I(t) = 1 + t
∑
x

Hx + t2
∑
x<y

HxHy (7)

+ t3
∑

x<y<z

HxHyHz + . . .

These contributions are a subset of Eqs. (1) and (6). The first
error occurs at order t2, for terms Hx, Hy which overlap. For
a system of length L, there are O(L) such terms, so the error
is O(Lt2); a constant error per site. Remarkably, U I has an
exact compact MPO description “W I”, and is trivial to con-
struct from the (A,B,C,D) ofH , illustrated in Fig. 3b. It has
a block structure of total dimension χi = Ni + 1:

Ŵ I
(i)(t) =

( 1 Ni

1 1̂(i) + tD̂(i)

√
tĈ(i)

Ni−1

√
tB̂(i) Â(i)

)
. (8)

The MPO bond dimension of Ŵ I is one less than that of H ,
so it can be simply constructed and efficiently applied to the
state.

While Ŵ I is trivial to construct and performs well, it is not
quite optimal. For example, a purely onsite Hamiltonian has
a trivial χ = 1 MPO representation for etH . Yet the MPO
constructed from Ŵ I would only produce the approximation
U I =

∏
x(1 + tHx) in this case.

We can improve Eq. (7), by keeping terms which may over-
lap by one site. Let 〈x, . . . , z〉 denote a collection of terms in
which no two cross the same bond. Arbitrarily high powers of
a single site term, for example, can appear in these collections.
Consider an evolution operator which keeps all such terms:

U II(t) = 1 + t
∑
x

Hx +
t2

2

∑
〈x,y〉

HxHy (9)

+
t3

6

∑
〈x,y,z〉

HxHyHz + . . . .

Again, the first error occurs at t2, with L such terms, so the
error is still formally O(Lt2). But for typical interactions far
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fewer terms are dropped than in U I ; in particular onsite terms
are captured to all orders. While there is not an exact com-
pact MPO representation for U II , we can construct an MPO
approximation Ŵ II which differs from U II at O(Lt3). Be-
cause the difference is at higher order than the accuracy of
U II , Ŵ II still gives a noticeably better approximation than
Ŵ I , and retains the feature that an onsite interaction is kept
exactly. As Ŵ II is just as compact as Ŵ I , it is always the
preferred choice.

The MPO Ŵ II is more complicated to construct, so for a
detailed derivation of Ŵ II we refer to App. B. Here we dis-
cuss a concrete algorithm to calculate the MPO. As before the
MPO takes the block form

Ŵ II =

( 1 Ni

1 Ŵ II
D Ŵ II

C

Ni−1 Ŵ II
B Ŵ II

A

)
. (10)

To define the sub-blocks, introduce two vectors of formal pa-
rameters φa, φ̄b, with a = 1, . . . , Ni−1, b = 1, . . . , Ni. Let
φ · Â · φ̄ denote a dot product of these formal parameters into
the MPO indices of Â, and likewise for φ · B̂ and Ĉ · φ̄. The
sub-blocks are defined by a Taylor expansion of an operator-
exponential in terms of φ, φ̄,

eφ·Â·φ̄+φ·B̂
√
t+
√
tĈ·φ̄+tD̂ (11)

= Ŵ II
D + Ŵ II

C · φ̄+ φ · Ŵ II
B + φ · Ŵ II

A · φ̄+ . . .

Notice Ŵ II
D = etD̂ is simply the onsite term, which is kept

exactly. For certain cases where the Hamiltonian is free, the
above expansion can computed analytically using Pfaffians or
permanents for fermionic and bosonic theories respectively.
Here we discuss only the most general case, where the result
must be obtained numerically.

Dropping the labels II , let’s compute the block ŴA;aā,
where a, ā index the rows and columns in correspondence
with φa, φ̄ā. Since we only need to compute the Taylor ex-
pansion to leading order, we can consider φa, φ̄ā to be formal
objects defined by the fact that φ2

a = φ̄2
ā = 0 and that they

commute with all other objects. For computational purposes,
we can then represent φa as a hard-core boson creation oper-
ator φa → c†a, and likewise φ̄ā → c̄†ā, restricted to an occu-
pation of at most 1 c-type and 1 c̄-type boson. We denote the
hard-core Hilbert space of the c/c̄ type bosons by Hc/c̄, and
Hphys the Hilbert space of the physical site. The desired en-
tries of ŴA, which are operators inHphys, can be obtained by
calculating a vacuum expectation values in the Hilbert space
of theHc/c̄ coupled to the physical site:

ŴA;aā = 〈0, 0̄| cac̄āec
†·Â·c̄†+c†·B̂

√
t+
√
tĈ·c̄†+tD̂ |0, 0̄〉 (12)

= 〈0, 0̄| cac̄āec
†
ac̄
†
āÂaā+c†aB̂a

√
t+
√
tĈāc̄

†
ā+tD̂ |0, 0̄〉

where, in the second line, there is no summation over any a, ā.
To be more explicit, the argument of the exponential is an op-
erator in the space Hc ⊗ Hc̄ ⊗ Hphys. The desired operator-
valued entry ŴA;a,ā is the transition amplitude from the vac-
uum |0, 0̄〉 of the Hc ⊗Hc̄ into the occupied state 〈0, 0̄| cac̄ā.

Note that the exponential contains only creation operators, but
when computing the particular entry ŴA;aā we are interested
only in amplitudes where only ca, c̄ā are created, so we can
safely truncate to the Hilbert space of two hard-core bosons
ca, c̄ā as well as the physical Hilbert space of a single site;
if the latter dimension is d, the total dimension is 22d. Thus
the matrix elements can be obtained by exponentiating a ma-
trix of dimension 4d, which is trivial. This is repeated for the
N2 entries of ŴA;aā. Results for ŴB;a follow as a byproduct
by calculating the transition into 〈0, 0̄| ca; ŴC;ā for transi-
tions into 〈0, 0̄| c̄ā; and ŴD from transitions into 〈0, 0̄|. All
together, Ŵ II can be computed with complexity O(N2d3),
where N is the dimension of the MPO.

We also note that H has many different MPO representa-
tions, and at 2nd-order Ŵ II is not invariant under different
choices. This choice can be exploited to further reduce errors
(cf. App. D). Finally, if H is a sum of commuting terms, there
is an analytic MPO representation for etH given in App. B.

IV. HIGHER ORDER APPROXIMATIONS

As with TEBD, we want to construct approximations with
errors at higher order O(Ltp) in t, which allow one to use
much larger time steps. In fact, simply by cycling through
a carefully chosen set of step constants {ta} we can obtain
approximations of arbitrarily high order. MPS compression
can be applied between steps so that the over-all complexity of
the algorithm increases only linearly in the number of stages,
though higher-order approximations presumably depend more
sensitively on the accuracy of the intervening compression.
In particular, there is a 2nd-order order approximation which
alternates between two complex time steps t1, t2.

Each stage of the approximation should have a compact
MPO expression (otherwise the increased complexity cancels
the gains of a larger time step), so we consider an ansatz of
the form

W II(t1)W II(t2) · · ·W II(tn) = U(t) +O(Ltp), (13)

where p− 1 is the approximation order. The number of terms
n will depend on the desired order p, and our goal is to deter-
mine a set of step constants {ta} which produce the desired
order. For example, to find a 2nd-order step (p = 3), we ex-
pand Eq. (13) order by order and find constraints

n∑
a=1

ta = t,

n∑
a<b

tatb =
1

2
t2,

n∑
a=1

t2a = 0 (14)

which can be solved by n = 2, t1 = 1+i
2 t, t2 = 1−i

2 t.
Thus, by alternating between two compact MPOs, W II(t1)
and W II(t2), we obtain a 2nd-order approximation. The same
result folds for W I . One can continue to arbitrary order; a
set of 4 ta’s is required at 3rd order, a set of 7 at 4th order. As
shown in Fig. 2, the 2nd-order behavior is preserved even when
truncation to the MPS ansatz intervenes between steps, so the
2nd-order time step is no more demanding than the 1st-order
one.
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FIG. 4. Time evolution of the response function Czz(t, x) =
〈0|Sz(t, x)Sz(0, 0)|0〉 for the Haldane-Shastry model. Discrete data
points are evaluated numerically using the 2nd-order MPO time step-
per W II (dt = 0.025), shown here for positions x = 0, 2, 4, 6.
The exact analytic prediction shown in solid curves, giving beautiful
agreement with the MPO. The inset shows a density plot of Czz(t, x)
in the t–x plane.

V. APPLICATIONS

Our first system beyond the reach of TEBD is the spin-1/2
Haldane-Shastry model, an exactly solvable critical spin chain
with long-ranged Hamiltonian

HHS =
∑
x,r>0

Sx · Sx+r

r2
. (15)

The model can be viewed as a lattice form of the Calogero-
Sutherland continuum model of fractional statistics [31, 32]
and is connected to the Laughlin fractional quantum Hall
wavefunction with an exact MPS representation [33]. The
dynamical correlation function Czz(t, x) was first calculated
analytically by Haldane and Zirnbauer [28]. As the system
is critical and the Hamiltonian long-ranged, numerically ob-
taining Czz is a stringent test of the proposed method. We
use an MPO approximation of the Hamiltonian to capture the
r−2 power law with high accuracy out to about 200 sites [34].
After using infinite DMRG [34–36] to obtain the ground state
with infinite boundary conditions, we act with Sz and time
evolve via W II . As described in Fig. 4, the numerically com-

puted Czz is nearly identical to the analytic prediction (cf.
App. E) out to significant time scales.

Finally, one of the most interesting potential applications
is time-evolving finitely-entangled 2D systems. We make
a preliminary study by considering the 2D Bose-Hubbard
model with a hard-core constraint and nearest neighbor re-
pulsion V . Recently there have been several experimental
and theoretical studies of the expansion of strongly-interacting
clouds [11, 12, 37–39]. The repulsion V can generate many-
body bound states if it exceeds the bandwidth J , because there
is no way for the interaction energy to transform into kinetic
energy. Here we let a 16-boson n = 1 product state expand
into a 14 × 14 grid. As shown in Fig. 1, the repulsion V has
a dramatic effect on the expansion, trapping the bosons into a
bound state. Because the 2D lattice has been turned into a 1D
chain, the errors in W II are highly anisotropic. Nevertheless
we find that with a time step dt = 0.01, the density remains
rotationally symmetric to within 4% at t = 2.

VI. CONCLUSION

We have introduced an MPO based algorithm to simulate
the time-evolution of long-ranged Hamiltonians. Our method
was benchmarked against existing numerical methods for 1D
short ranged models, as well as analytic results for the long-
ranged Haldane-Shastry model. We also presented results of
a preliminary study of the expansion of interacting bosons in
a 2D trap. Given the recent successes of DMRG for inves-
tigating gapped 2D ground state and their gapless edges, the
techniques presented here could open the door to numerically
calculating experimentally relevant dynamic quantities such
as spectral functions.

Subsequent to the initial publication of this work, an im-
proved version of the TDVP was proposed.[40]
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Appendix A: MPO examples

In this section, we provide explicit examples of MPOs for
pedagogical purposes.

To reiterate from the main text, an MPO describes an oper-
ators written as a product of Ŵ ’s

· · · Ŵ(1)Ŵ(2)Ŵ(3) · · · , (A1)

where each Ŵ(i) is a matrix of operators acting on site i. An
MPO for a Hamiltonain can always be casted in the form

Ŵ(i) =


1 Ni 1

1 1̂ Ĉ D̂

Ni−1 0 Â B̂

1 0 0 1̂


(i)

. (A2)

D̂ is simply an operator, Ĉ and B̂ are, respectively, a row and
column vector, an Â is an Ni−1 ×Ni matrix of operators.

Consider the transverse field Ising model with Hamiltonian

HTFI = −J
∑
i

ẐiẐi+1 − h
∑
i

X̂i, (A3)

where X̂ and Ẑ are Pauli operators. This Hamiltonian may be
constructed as an MPO with

Ŵ(i) =

1̂ Ẑ −hX̂
0 0 −JẐ
0 0 1̂


(i)

. (A4)

HenceNi = 1 for all bonds, and the MPO has bond dimension
χi = 3. We can also read off the (Â, B̂, Ĉ, D̂) operators as
(0,−JẐ, Ẑ,−hX̂). We note that this MPO is not unique for
Hamiltonian Eq. (A3) (cf. App. D). Due to the absence of Â,
the Hamiltonian consists of only onsite and nearest-neighbor
terms. Here D̂ always denote the onsite term, and the pair
terms are given by ĈiB̂i+1.

Our second example is a long-ranged XY-chain, with expo-
nentially decaying couplings.

H = J
∑
i<j

e−α|i−j|
(
X̂iX̂j + ŶiŶj

)
. (A5)

A corresponding MPO with Ni = 2 is as follows,

Ŵ(i) =


1̂ e−αX̂ e−αŶ 0

0 e−α1̂ 0 JX̂

0 0 e−α1̂ JŶ

0 0 0 1̂


(i)

. (A6)

Here Â is a non-trivial 2×2 matrix of operators, which allows
terms to reach beyond two neighboring sites. Each insertion
of the Âmatrix increases the separation of the bookends X̂/Ŷ
by 1 site, and also reduces its amplitude by e−α factor.

Appendix B: Exact MPO exponentiation for commuting
Hamiltonians

Here we obtain the exact MPO description for eH when H
is a sum of commuting terms such as

∑
i,j X̂iX̂jtij . This

result generalizes the nearest-neighbor case investigated in
Ref. 17. to long range interactions. First, we address the
stricter case in which Â, B̂, Ĉ, D̂ all commute, then comment
briefly on the more general case.

Suppose the data (A,B,C,D)(i) of the MPO representa-
tion for H is given, with bond dimensions χi = 2 + Ni.
On each bond (i, i + 1), introduce a vector of complex fields
φi = (φi,1, . . . , φi,Ni), with complex conjugate φ̄i and in-
dices ai = 1, . . . , Ni in correspondence with the non-trivial
MPO indices in H . (That is, any MPO indices that is not L
or R.) Using the fundamental rule of complex Gaussian inte-
grals,

1

π

∫
d2φ e−φ̄φ+Jφ̄+φJ̄ = eJJ̄ , (B1)

the exponential factors as

eH =

∫
D[φi, φ̄i] e

HLi+hLi ·φ̄ie−φ̄i·φieφi·hRi+HRi (B2)

where the dot-product is the sum
∑Ni
ai=1, and D[φi, φ̄i] is

shorthand for
∏
ai

(d2φi,ai/π). This identity requires that all
terms commute; otherwise discrepancies arise at second-order
in H .

Now using the MPO recursion of Eq. (5), we can peel off one site:

HRi + φi · hRi = φi · Âi+1 · hRi+1
+ φi · B̂i+1 + Ĉi+1 · hRi+1

+ D̂i+1 +HRi+1
. (B3)

Thus if we introduce a new vector of fields φi+1,ai+1
which runs over ai+1 = 1, . . . , Ni+1, we can write

eφi·hRi+HRi =

∫
D[φi+1, φ̄i+1] Ûφi,φ̄i+1

e−φ̄i+1φi+1eφi+1·hRi+1
+HRi+1 ,

where Ûφi,φ̄i+1
≡ eφi·Âi+1·φ̄i+1+φi·B̂i+1+Ĉi+1·φ̄i+1+D̂i+1 .

(B4)
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By repeating this step on all the bonds, we find

eH =

∫
D[φ, φ̄]

[
· · · e−φ̄iφiÛφi,φ̄i+1

e−φ̄i+1φi+1Ûφi+1,φ̄i+2
· · ·
]
. (B5)

This is a matrix product operator in which the auxiliary bonds
are labeled by a set of continuous numbers φi, rather than dis-
crete indices; it is a “coherent state MPO.” To bring the result
to a discrete form, we note that an integral of the form Eq. (B5)
is a discretized coherent state path integral for Ni bosons, so
the integrals can be converted to discrete sums over the many-
body Hilbert space of Ni bosons. The basic manipulation is
the Taylor expansion:

Yφ ≡
∞∑
n=0

Yn
φn√
n!

(and likewise for any tensor) (B6)

1

π

∫
d2φXφ̄e

−φ̄φYφ =
1

π

∑
n̄,n

Xn̄Yn

∫
d2φ

φ̄n̄φn√
n̄!n!

e−φ̄φ

=
∑
n

XnYn (B7)

The integer n is the ‘occupation.’ Note that if a tensor depends
on multiple variables (such as the vector φi,ai ), then the above
rule extends via a simple product. So if we define a vector of
occupations ni = (ni,1, . . . , ni,Ni), whose values index the
Hilbert space of Ni bosons, we can Taylor expand U as

Ûφi,φ̄i+1
≡

∑
{ni},{n̄i}

Ûni,n̄i+1

φnii φ̄
n̄i+1

i+1√
|ni!||n̄i+1!|

(B8)

with |ni!| =
∏
ai

(ni,ai)!. The MPO for the exponential is

eH =
∑
{ni}

[
· · · Ûni,ni+1

Ûni+1,ni+2
· · ·
]

(B9)

Now in principle each sum on the bonds is over the many-
body Hilbert space of Ni bosons, which is infinite. But there
will be “Boltzmann factors” associated to these states which
allows for a sensible truncation.

Furthermore, in certain situations, such as for a nearest-
neighbor interaction of Pauli-matrices, H =

∑
i X̂iX̂i+1,

Ûni+1,ni+2
only has rank 2, resulting in the χ = 2 MPO re-

ported previously [17].
We must slightly modify the procedure if the Hamiltonian

is a sum of commuting terms but Â, B̂, Ĉ, D̂ do not commute
(for instance, in the Toric code). Then on each bond we can
arbitrarily order the φa, and when expanding the exponential
for Ûφi,φ̄i+1

, order the terms accordingly.

Appendix C: Characterizing errors

Here we make a brief remark on the correct way to charac-
terize the errors in an approximation Ũ(t) to the exact evolu-
tion U(t). We say an approximation has an error per site of

order tp if

U(−t)Ũ(t) = e
∑∞
j=p t

jOj ∼ eL(apt
p+ap+1t

p+1+··· ) (C1)

where each operator Oj is a sum of local terms, so its spectral
radius goes as |Oj | ∼ L. One can see that Suzuki-Trotter and
W I follow this form, while global Runge-Kutta does not. The
locality of the operator generating the error implies that (after
normalizing the state) the error in local observables should
scale as tp.

Now consider the expansion of U(t)− Ũ(t), which is more
natural to calculate:

U(t)− Ũ(t) ∼
∑
nm

EnmL
ntm (C2)

where Lntm denotes a term of spectral radius Ln and order
tm. For an approximation with constant error tp per site, we
see that tnm 6= 0 only if m− n ≥ p− 1. Order p− 1 Runge-
Kutta has errors of the form Lmtm for m ≥ p, which violates
this constraint.

The proposed form for W II was the expansion

eφ·Â·φ̄+φ·B̂
√
t+
√
tĈ·φ̄+tD̂ (C3)

= Ŵ II
D + Ŵ II

C · φ̄+ φ · Ŵ II
B + φ · Ŵ II

A · φ̄+ . . .

Comparing Eq. (C3) with Eq. (B4), we see that Ŵ II is pre-
cisely a truncation of Ûni,ni+1

to an occupation of at most
a single boson on each bond. The occupation number of
bosons across a bond encodes the number of terms in the
Hamiltonian which cross the bond in the Taylor expansion of
e
∑
xHx . Hence by truncating Û to a maximum occupation

of 1, we keep all non bond-overlapping terms. However, in
the derivation of the exact MPO etH we required all terms to
commute. Careful inspection shows that the non-commutivity
only shows up at 3rd-order in H . Hence in general Ŵ II is
only an approximation to the sum of all non bond-overlapping
terms, with errors at O(t3). But these errors are subleading in
comparison to the terms dropped (by the truncation) atO(t2),
so are unimportant.

Appendix D: Taking advantage of different MPO
decompositions

There are numerous ways to decompose a Hamiltonian as
H =

∑
xHx, and hence many decompositions into an MPO.

For instance, a ferromagnetic interaction can be written as

HF = −
∑
i

ẐiẐi+1 (D1)

= −
∑
i

[
(Ẑi − h)(Ẑi+1 − h) + 2hẐi − h2

]
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with MPO

ŴHF =

1 −Ẑ 0

0 0 Ẑ
0 0 1

 or

1 −(Ẑ − h) h2 − 2hẐ

0 0 (Ẑ − h)
0 0 1

 .

(D2)

The MPO Ŵ II is not invariant under such shifts (at 2nd-order).
This can be used to improve the effective accuracy of Ŵ II .

In principle one could try to optimize over all the MPO rep-
resentations of H in order to minimize the error in Ŵ II . It
is an open question whether there is a practical method to
do this. As a toy model we compute the error |(U(dt) −
W II(dt)) |ψ〉 | for the ferromagnet HF as a function of the
shift h given in Eq. (D2). To leading order,

∣∣∣(U(dt)−W II(dt)) |ψ〉
∣∣∣2

∝ dt2
∑
i

〈ψ| (Ẑi − h)2(Ẑi+1 − h)2 |ψ〉 ,
(D3)

since W II drops these two-site terms at 2nd-order. So, in prin-
ciple, the optimal h minimizes this expression.

One possible heuristic is to make a mean field approxima-
tion and instead minimize 〈(Ẑi − h)2〉〈(Ẑi+1 − h)2〉 by set-
ting h = 〈Ẑi〉. With this choice the onsite term of Eq. (D2) is
D̂ = h2−2hẐ, the mean field Hamiltonian. Since W II treats
D̂ exactly, it’s not surprising this can reduce the error.

To generalize this heuristic mean field criteria, we can al-
ways choose the MPO for H such that the Hamiltonian cut
across any bond (cf. Eq. 4) satisfies 〈hRi,ai〉 = 〈hLi,ai〉 = 0
by shuffling the mean field component into HLi , HRi . Then
the errors in Ŵ II at 2nd-order will depend only on the con-
nected part of

∑
ai
hLi,aihRi,ai . For many relevant models,

such as a Heisenberg spin model, this heuristic does not help
since 〈hRi,ai〉 = 0 due to the SU(2) symmetry of S. But for
a model with a long-ranged density-density interaction like

1
2

∑
x,y nxV (x− y)ny , the mean field approach will treat the

‘direct’ part of the evolution,
∑
x,y nxV (x− y)〈ny〉, exactly.

Appendix E: Analytical expressions for dynamical correlation
functions of Haldane-Shastry spin chain

We provide here the expression found by Haldane and Zirn-
bauer [28] for the ground-state dynamical correlations

Gabmn(t, t′) ≡ 〈0|Sam(t)Sbn(t′)|0〉 (E1)

of the Haldane-Shastry spin chain [26, 27] with Hamiltonian

HHS = J
∑
m<n,a

SamS
a
n

|m− n|2
. (E2)

(The superscript of S operators denote the spin direction and
the subscript denote the lattice site.) The arguments leading
to the forms below are somewhat involved and we refer the
reader to the original paper for details. In the following ~ = 1.
Gabmn is diagonal in spin indices, and translation invariance
allows us to define

Gabmn(t, t′) =
1

4
δab(−1)m−nC(m− n, t− t′). (E3)

The function C(x, t) is related to the spinon spectrum in the
solution for the ground-state wavefunction and can be simpli-
fied to two integrals:

C(x, t) =
1

4

∫ 1

−1

dλ1

∫ 1

−1

dλ2 e
iπλ1λ2x−πvt2 (λ1

2+λ2
2−2λ1

2λ2
2).

(E4)

Here v is the spinon velocity, v = πJ/2, and the prefactor of
1/4 can be understood by noting that C(0, 0) = 1 as (Sa)2 =
1/4 for each spin direction a. The numerical integrations used
to obtain the comparison curves in Fig. 4 are straightforward
and were carried out using commerical software.


	Time-evolving a matrix product state with long-ranged interactions
	Abstract
	Introduction
	Matrix product operators
	Time evolution operators
	Higher order approximations
	Applications
	Conclusion
	Acknowledgments
	References
	MPO examples
	Exact MPO exponentiation for commuting Hamiltonians
	Characterizing errors
	Taking advantage of different MPO decompositions
	Analytical expressions for dynamical correlation functions of Haldane-Shastry spin chain


