
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological polaritons and excitons in garden-variety
systems

Charles-Edouard Bardyn, Torsten Karzig, Gil Refael, and Timothy C. H. Liew
Phys. Rev. B 91, 161413 — Published 29 April 2015

DOI: 10.1103/PhysRevB.91.161413

http://dx.doi.org/10.1103/PhysRevB.91.161413


Topological Polaritons and Excitons in Garden Variety Systems

Charles-Edouard Bardyn*,1 Torsten Karzig*,1 Gil Refael,1 and Timothy C. H. Liew2

1Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125, USA
2Division of Physics and Applied Physics, Nanyang Technological University 637371, Singapore

We present a practical scheme for creating topological polaritons in garden variety systems based,
for example, on zinc-blende semiconductor quantum wells. Our proposal requires a moderate mag-
netic field and a potential landscape which can be implemented, e.g., via surface acoustic waves or
patterning. We identify indirect excitons in double quantum wells as an appealing alternative for
topological states in exciton-based systems. Topological polaritons and indirect excitons open a new
frontier for topological states in solid-state systems, which can be directly probed and manipulated
while offering a system with nonlinear interactions.

PACS numbers: 71.35.-y,71.36.+c,85.75.-d,42.70.Qs

Topological states and phases in quantum systems have
yielded a wealth of exotic phenomena, with measurable
signatures at edges and surfaces. In electronic topological
insulators, what would otherwise seem a usual semicon-
ductor may exhibit conducting states at its edges [1, 2].
Similar physics has emerged in photonic systems, where
theory [3–6] was followed by demonstrations of topolog-
ical behavior in microwave-range photonic crystals [7]
and arrays of coupled optical resonators [8, 9] or waveg-
uides [10]. Photons propagating in chiral edge states
are protected from backscattering with material imper-
fections, and may revolutionize photonic circuitry [11].

However, these developments are by and large due to
linear optical effects, while applications in photonic cir-
cuitry often require nonlinear optical properties. Hence
the importance of the recently proposed “topological po-
laritons” [12], which combine topology and nonlinear
properties via light-matter interactions. Excitons inter-
act with one another and, when placed in an optical
microcavity, hybridize into so-called exciton-polaritons
which balance a strong exciton nonlinearity with a sig-
nificant optical component [13, 14]. Polaritons are well-
known for their integer spin degree of freedom, which
allows for spin currents [15, 16] and a range of opti-
cal switches/transistors [17–19]. Spin currents can also
be generated using indirect excitons in double quantum
wells [20], and the long lifetime of these particles has al-
lowed excitonic transistors [21] with optical coupling and
control [22]. Both indirect-exciton and polariton systems
are strongly influenced by disorder, which induces scat-
tering and weakens signals carried by ballistic particle
propagation. Topology promises to remedy this issue, as
was envisioned several years ago for excitons at the sur-
face of 3D topological insulators [23] or in coupled quan-
tum wells close to ferromagnetic insulating films [24], and
more recently for exciton condensates in bilayer HgTe [25]
and InAs/GaSb [26] quantum wells.

In this Letter, we demonstrate theoretically that topo-
logical excitonic states can be realized using surprisingly
simple ingredients present in two very common types of
systems: (i) polaritons in semiconductor microcavities,

FIG. 1: (Color online) Schematic view of a typical system
supporting topological polaritons or indirect excitons: Surface
acoustic waves modulate the thickness of quantum wells and
interfere to generate a triangular lattice potential for particles
in the plane. Whether multiple quantum wells are coupled
together, as in the depicted system of indirect excitons, or
are strongly mixed with light inside a microcavity, combining
the periodic potential with an applied Zeeman field B leads
to topologically non-trivial bands.

and (ii) indirect excitons in coupled quantum wells. In
scenario (i), polaritons exhibit two spin states coupled
by the transverse-electric-transverse-magnetic (TE-TM)
splitting [27] arising from the polarization-dependent re-
flectivity of the cavity mirrors, supplemented by a weaker
but complementary polarization splitting of (direct) exci-
tons stemming from the long-range exchange interaction
between electrons and holes [28]. In scenario (ii), we
consider a pair of coupled quantum wells in close enough
proximity for long-lived indirect excitons to form from
electrons and holes in different layers. Four different spin
states (including bright and dark exciton spin states) ex-
perience a Dresselhaus-type spin-orbit coupling [29].

In both scenarios, we start from topologically trivial in-
gredients and use a magnetic field to break time-reversal
symmetry. The natural sensitivity of excitons to applied
magnetic fields circumvents the need for materials with
large gyrotopic permeability, while enabling operation at
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optical frequencies. A periodic exciton or polariton po-
tential is also required to open a global (topological) gap,
as discussed in Ref. [12]. Such potential modulations can
be implemented by applying surface acoustic waves [30–
33] (see Fig. 1) or engineering permanent lattices [34, 35].

The simplification at the root of this paper stems from
the linear-to-circular polarization conversion naturally
present in garden variety systems of indirect excitons
and polaritons [15, 20, 36]. Topological polaritons can
be created by a “winding coupling” of topologically triv-
ial exciton and photon bands [12]. While the original
proposal of Ref. [12] exploited the pseudo-spin-orbit cou-
pling present in the underlying electronic system to real-
ize such a winding, here we take advantage of the built-in
splitting of TE and TM photonic modes in typical pla-
nar microcavities [27]. In a basis of right- and left-handed
circularly polarized modes (φ+(k), φ−(k)), this TE-TM
polarization splitting can be described by the Hamilto-
nian [15, 16]

HTE−TM
φ = ∆φ(k)

(
0 e−2iϕ(k)

e2iϕ(k) 0

)
. (1)

In this basis, the coupling between modes with oppo-
site circular polarizations (or spin projections along the
z-direction) exhibits a double winding in terms of the po-
lar angle ϕ(k) associated with k. Physically, this can be
understood from the fact that coupling the mode φ∓(k)
to φ±(k) requires a change of ±2 of total angular mo-
mentum in the z-direction [37].

When coupled to excitonic modes (χ+, χ−) (where ±
distinguishes spin projections along z as above, and ex-
plicit k-dependences are omitted), the photonic modes
(φ+, φ−) hybridize into (four) polaritonic modes [38].
Here we assume that the exciton-photon coupling is much
larger than the polarization splitting between photonic
(or excitonic) modes, which is typically satisfied for po-
laritons in microcavities [36]. This allows us to focus on
the lower polariton branch consisting of two modes of
the form ψ± = P0φ± + X0χ± + X±2χ∓, where P0, X0

and X±2 are complex (Hopfield) coefficients determined
by the nature of the exciton-photon coupling, with in-
dices indicating the change of total angular momentum
required for each coupling (for angular momentum con-
servation, X±2 must be of the form e±2iϕ and vanish at
k = 0 to avoid any singularity, while P0 and X0 cannot
contain any winding). Instead of taking advantage, as in
Ref. [12], of the relatively large coupling X±2 that can
appear at large momenta, here we consider the typical
regime where, at finite but low momenta, X±2 ≈ 0 and
polarization splitting dominates. In this low-momentum
regime more accessible to experiments [14], the polari-
tonic modes (ψ+, ψ−) directly inherit the winding cou-
pling originating from Eq. (1). More explicitly, one finds

HTE−TM
ψ

(
ψ+

ψ−

)
= ∆ψ

(
0 e−2iϕ

e2iϕ 0

)(
ψ+

ψ−

)
, (2)

FIG. 2: Opening up a topological gap: Cross-sectional view
of the typical polariton band structure found at a Dirac point
(located at kD) generated using a periodic (e.g., triangular
lattice) potential. A finite Zeeman field splits the bands cor-
responding to + and − circular polarizations into two Dirac
cones (shown in faint red and blue) by 2∆Z , leading to a well-
defined ring of resonance. The TE-TM (winding) coupling (2)
of strength ∆k2

D then opens a topological gap, resulting in hy-
bridized bands (solid lines) with Chern number ±2.

with coupling strength

∆ψ = |P0|2∆φ + |X0|2∆χ, (3)

where ∆χ ≡ ∆χ(k) denotes the (much weaker) splitting
of excitonic modes due to electron-hole exchange inter-
action [28]. The form and amplitude of ∆ψ strongly de-
pends on the exciton-photon detuning, which we assume
to be much smaller than the exciton-photon coupling
strength. For small k ≡ |k|, ∆ψ(k) ≈ ∆k2 [27, 36]. The
winding coupling (Eq. (2)) is readily accessible in exper-
iments, giving rise to the optical spin Hall effect [15, 16]
and spin-to-angular momentum conversion [37].

Topological states emerge very naturally when combin-
ing the (double) winding coupling of Eq. (2) with another
type of polarization splitting: the one induced by a mag-
netic field, which provides the time-reversal symmetry
breaking crucially required for the appearance of unidi-
rectional (chiral) edge states (as we demonstrate below).
Magnetic fields act on polaritons via the magnetic mo-
ment of their excitonic component. When applied in the
z-direction, a field of strength B shifts polaritonic modes
ψ± in energy by ±∆Z = ± 1

2 |X0|(ge − gh)µBB, where ge
and gh are the electron and hole g-factors, and µB is the
Bohr magneton. To understand how topology arises in
this scenario, it is instructive to examine what happens at
a single crossing (or “Dirac point”) between polarization-
degenerate polariton bands. As depicted in Fig. 2, bands
with opposite polarizations (+ and −) split by 2∆Z when
introducing a magnetic field. Due to the TE-TM split-
ting of Eq. (2), a topological gap then opens along the
resulting ring of resonance. Intuitively, the topological
nature of this gap can be understood by noticing that the
hybridized bands consist of eigenstates which, described



3

as spinors on the Bloch sphere, fully wrap around the
sphere as k runs over all momenta: while increasing |k|
through the resonance flips the spinor from ψ+ to ψ− (or
vice versa), the winding coupling e−2iϕ(k) leads to an az-
imuthal twist which completes the (double) wrapping of
the unit sphere. In practice, the isolated band crossing
(or Dirac point) required for the above topological be-
havior can be obtained by introducing a periodic poten-
tial for polaritons (i.e., for excitons or/and photons) [39].
Triangular or hexagonal lattice potentials — exhibiting
Dirac points — are particularly suitable for this purpose,
although other geometries can also be considered [40].

To demonstrate that our scheme leads to the emer-
gence of topological states, we now examine a system
with edges and derive the exact form of its spectrum by a
plane-wave expansion approach (instead of a less precise
tight-binding approximation). We consider a ribbon-type
geometry where the system is periodic in the x-direction
and finite in the y-direction (with Dirichlet boundary
conditions), and experiences a potential

V (r) = V0 [cos (K1 · r) + cos (K2 · r) + cos (K3 · r)] ,
(4)

with K1 = 4π
(
0, 1/
√

3
)
/a, K2,3 = 2π

(
1,±1/

√
3
)
/a,

amplitude V0 and lattice constant a, which can be re-
alized, e.g., by interfering surface acoustic waves as de-
picted in Fig. 1. The time-independent Schödinger equa-
tion describing the spinor polariton wavefunction is[
− ~2

2meff

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y) + σ∆Z − ε

]
ψσ(x, y)

+ ∆

(
− ∂2

∂x2
+ 2iσ

∂2

∂x∂y
+

∂2

∂y2

)
ψ−σ(x, y) = 0, (5)

where meff is the polariton effective mass, σ = ±1 dis-
tinguishes right- and left-handed circular polarizations,
ε is an energy eigenvalue, and ∆ and 2∆Z are the TE-
TM and Zeeman splittings defined as above. Translation
symmetry in the x-direction makes it convenient to ex-
press the solutions of Eq. (5) in Bloch form ψσ(x, t) =
eikxxuσ(x, y), with uσ(x, y) periodic in x. The periodic-
ity of uσ(x, y) and V (x, y) allows us to expand them as
Fourier sums. Substitution into Eq. (5) then leads to an
eigenvalue problem for the spectum ε(kx).

Concerning parameters, Zeeman splittings of up to
0.2meV have been measured for polaritons in semicon-
ductor microcavities under a magnetic field of 5T [41],
while values of up to 1meV are effectively achievable by
optically inducing a large spin imbalance [42]. So far
polariton potentials with an amplitude of 0.18meV have
been realized using surface acoustic waves [32]. Higher
values can however be envisioned, given that amplitudes
of up to 2meV have been reported in bare quantum
wells [31]. Large amplitudes can also be expected for per-
manent polariton potentials realized by patterning com-
posite materials [34, 35]. As for the TE-TM splitting,
typical values are around ∆ = 0.05meVµm2 [16, 27].

FIG. 3: (Color online) Dispersion of topological polaritons in
a triangular lattice (Eq. (4)) with periodic boundary condi-
tions in the x-direction and vanishing (Dirichlet) boundaries
conditions in the y-direction. Eigenstates are color-coded
according to their proximity to edges — red and blue cor-
responding to lower and upper edges, respectively — with
bulk states shown in grey. Diract points at akx = ±2π/3
are shown by vertical lines. Parameters: ∆ = 0.05meVµm2,
2∆Z = 0.1meV, V0 = 0.6meV, a = 3µm, and meff =
7.5 × 10−5m0 [16], where m0 is the free electron mass.

Fig. 3 illustrates a polariton dispersion obtained us-
ing conservative parameters. The topological gap reaches
about 0.1meV, which significantly exceeds typical polari-
ton linewidths of the order of tens of µeV [14] (larger gaps
can be obtained, e.g., at higher fields). As anticipated
above, the gap is bridged by pairs of counter-propagating
chiral edge states localized at opposite edges. In accor-
dance with bulk-edge correspondence (see, e.g., Ref. [1]),
the lower and upper bands are topologically non-trivial,
with Chern numbers +2 and −2.

An alternative appealing platform for realizing chiral
edge states in exciton-based systems is provided by in-
direct excitons, which are typically formed in structures
of coupled quantum wells where electrons and holes are
confined in separate wells. Indirect excitons are perhaps
best known for their long radiative lifetime resulting from
the reduced overlap between electron and hole wavefunc-
tions, which allows for the formation of condensates [44].
They are also appreciated for their four-component spin
degree of freedom due to the co-existence of bright exci-
tons (with Jz = ±1 spin projection normal to the plane)
and dark excitons (with Jz = ±2) at similar energies [29],
and for their rich spin dynamics due to spin-orbit inter-
actions [29, 45]. Of particular interest here is the Dressel-
haus spin-orbit coupling arising from the intrinsic crys-
tal asymmetry of zinc-blende (e.g., GaAs) crystals, which
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FIG. 4: (Color online) Dispersion of topological indirect exci-
tons obtained from Hamiltonian (6) with a triangular-lattice
potential (color-coding as in Fig. 3). Parameters were taken
from Ref. [43]: βe = 2.7µeVµm, βh = 0.92µeVµm, ge = 0.01,
gh = −8.5 × 10−3, me = 0.07m0, and mh = 0.16m0, where
m0 is the free electron mass. A magnetic field B = 2T was
applied with lattice potential V0 = 5µeV and lattice constant
a = 1.2µm. In this particular parameter regime, two topo-
logical gaps are found in the low-energy spectrum (shaded
regions), of 0.17 and 0.03µeV, respectively.

was similarly invoked in Ref. [24]. In a basis of indirect-
exciton spinor wavefunctions (ψ+1, ψ−1, ψ+2, ψ−2), the
spin dynamics can be captured by the Hamiltonian

H =


∆Z 0 βekee

−iϕ βhkhe
−iϕ

0 −∆Z βhkhe
iϕ βekee

iϕ

βekee
iϕ βhkhe

−iϕ −∆′Z 0
βhkhe

iϕ βekee
−iϕ 0 ∆′Z

 , (6)

where βe and βh are Dresselhaus constants for electrons
and holes, respectively [43]. The wavevectors associated
with electrons and holes with effective mass me and mh

are related to those of excitons via ke = me

me+mh
k and

kh = mh

me+mh
k, respectively. Here the Zeeman splitting

differs for bright and dark excitons due to the distinct
spin orientations of their electron and hole components:
While ∆Z = 1

2 (ge−gh)µBB for bright excitons as above,
∆′Z = − 1

2 (ge + gh)µBB for dark excitons. Most impor-
tantly, the Dresselhaus spin splitting of electron and hole
states at non-zero ke and kh gives rise to coupling terms
with single windings e±iϕ. Note that we have neglected
the Rashba spin-orbit coupling [43, 45], which is only sig-
nificant in the presence of bulk quantum-well asymmetry
or under large electrical bias.

As we demonstrate below, the appearance of winding
couplings in a four-component system grants us access to
a rich variety of topological features. Similarly as above,

topology emerges from the interplay of the winding cou-
plings with a magnetic field, and is only revealed upon
introduction of a periodic potential. Below we examine
the system with the same ribbon geometry and triangu-
lar lattice potential as above (again realizable, e.g., using
surface acoustic waves [31]). To derive the spectrum, we
use the analog of Eq. (5) with four spin components, an
exciton effective mass mex = me + mh, and spin-orbit
coupling and magnetic field described by Eq. (6).

Remarkably, the system allows for multiple bandgaps
with different numbers of topologically protected chiral
edge states. Bandgaps are either (i) topologically trivial,
(ii) topological with a single pair of counter-propagating
chiral edge states, or (iii) topological with two such pairs.
We present in Fig. 4 the typical indirect-exciton disper-
sion obtained using experimentally available parameters
(taken from Ref. [43]). Two low-energy gaps are shown,
exemplifying both cases (ii) and (iii). In practice, param-
eters can be chosen so as to optimize the size of a partic-
ular gap: Under a magnetic field B = 2T with spin-orbit
coupling and indirect-exciton parameters from Ref. [43],
the lower energy gap (of type (ii)) can reach about 0.3µeV
with a periodic potential of amplitude V0 = 6µeV and lat-
tice constant a = 1.1µm, while a gap of type (iii) of about
1.3µeV can be obtained by choosing V0 = 10µeV and
a = 0.75µm. Note that the maximum achievable gap in-
creases linearly with the applied magnetic field B. Since
indirect excitons are typically much longer-lived than po-
laritons [44], topological gaps of the order of 1µeV are in
principle well within resolvable range.

In summary, we have demonstrated that topological
polaritons and indirect excitons can be realized in garden
variety single and double quantum wells made of ordinary
materials such as GaAs. Our proposal relies on the TE-
TM splitting and Dresselhaus-type spin-orbit coupling
naturally present in microcavities or in systems of in-
direct excitons, respectively. Conservative experimental
values for these couplings lead to topological gaps that
are larger than the typical polariton/exciton linewidth
using readily available magnetic fields (well below 5T)
and exciton potential amplitudes (below 1meV). In con-
trast to the original proposal of Ref. [12], our scheme
for topological polaritons does not require excitons and
photons to interact resonantly. In fact, a strong photonic
component is only required to enhance the typically weak
TE-TM splitting of excitons. In more exotic systems with
large excitonic TE-TM splitting [46, 47], photons would
not be necessary to generate topological states using our
scheme. We expect the ability to engineer edge states
protected from backscattering to play an important role
in the development of a broad variety of exciton-based
information processing devices.

During the review process of our manuscript, a related
paper appeared in Physical Review Letters [48]. The au-
thors focus on the application of the above generic scheme
to create topological polaritons in micropillar arrays de-
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