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We develop schemes for designing pulses that implement fast and precise entangling quantum
gates in superconducting qubit systems despite the presence of nearby harmful transitions. Our
approach is based on purposely involving the nearest harmful transition in the quantum evolution
instead of trying to avoid it. Using analytical tools, we design simple microwave control fields that
implement maximally entangling gates with fidelities exceeding 99% in times as low as 40 ns. We
demonstrate our approach in a two-qubit circuit QED system by designing the two most important
quantum entangling gates: a conditional-NOT gate and a conditional-Z gate. Our results constitute
an important step toward overcoming the problem of spectral crowding, one of the primary challenges
in controlling multi-qubit systems.

Quantum information and quantum computing hold
great promise for enabling algorithms that have no effi-
cient classical analogs. Over the last decade, supercon-
ducting qubits have demonstrated rapid progress in co-
herence times, manipulation techniques, readout schemes
and circuit cavity architectures1–4. These systems are
now at the forefront of the quest for coherent many-
qubit devices. Many key experiments have been carried
out, including two-5–7 and three-qubit8,9 gates, as well
as proof-of-principle demonstrations of elementary quan-
tum algorithms10–12 and error correction13,14. As the
number of qubits grows and the algorithms become more
involved, the need for fast, high fidelity quantum control
also intensifies.
There are two ways to carry out quantum gates in su-

perconducting qubit systems. One way is to tune param-
eters, such as energy levels, so that the system is brought
close to an anticrossing and held idle until different states
accumulate the relative phases appropriate for a desired
operation. This method has been used in many pro-
posals and experimental demonstrations8,10–12,14,15 and
has recently been refined to produce faster and more
precise tuning-based gates7,16–18. Alternatively, exter-
nal microwave pulses can be used to implement gates by
exciting a prescribed set of target transitions5,6,9,13,19–24.
Each method has merits and drawbacks, and future de-
vices will likely employ a combination of techniques, so it
is crucial to push the limits of both approaches in terms
of gate speeds and fidelities.
Microwave driving allows the system to remain in the

optimized parameter regime where decoherence and de-
cay rates are low. The major obstacle to fast and high-
fidelity control is the so-called spectral crowding prob-
lem, in which transitions close in frequency to the target
transitions of a given gate are unintentionally excited,
leading to phase and leakage errors. The obvious way
to deal with this issue is to make the control pulse spec-
trally narrow; this translates to longer pulses in the time
domain, which is not desirable as it means a greater sus-
ceptibility to decay and decoherence. To date, there have
been several works that address this problem in the con-
text of single-qubit gates by devising pulses that avoid

FIG. 1: (Color online) Quantum gates can be sped up by
intentionally driving nearby harmful transitions rather than
avoiding them. The driving is engineered so that these transi-
tions undergo cyclic evolution and acquire phases, which are
included in the gate design.

the harmful transitions, either by brute-force numerical
pulse shaping25,26 or by engineering the pulse spectrum
to contain sharp holes at the frequencies of the harmful
transitions27–31. The design of microwave control proto-
cols that combat leakage in the case of two-qubit entan-
gling gates has remained an open problem.

In this work, we present an analytical approach to de-
signing fast, high-fidelity two-qubit gates implemented
with microwave pulses. The key idea is to speed up the
gates by purposely driving the nearest harmful transi-
tion and incorporating its dynamics into the gate de-
sign rather than by attempting to avoid this transi-
tion. We engineer the driving so that the harmful tran-
sition subspace undergoes cyclic evolution (see Fig. 1),
which minimizes leakage errors and significantly enhances
gate fidelities. We refer to our protocol as Speeding up
Waveforms by Inducing Phases to Harmful Transitions
(SWIPHT), and we design control pulses for the two most
common maximally entangling gates, the conditional-
NOT (CNOT ) and the conditional-Z (CZ) gates. We
employ analytical methods in order to develop a gen-
eral approach that can be easily adapted to different ex-
perimental setups and other types of gates while at the
same time affording transparency and insight into the dy-
namics of the system. We show that with our SWIPHT
method, maximally entangling gates of durations 40 ns
to 250 ns and fidelities ranging from 99% to 99.94% can
be achieved with simple pulse waveforms.



2

We consider two superconducting transmon qubits32

with finite anharmonicity coupled to the same cavity.
The qubit states are the two lowest levels, |0〉 and |1〉.
Additional levels outside the qubit subspace |2〉, |3〉, ...
are always present and, as we will show, can sometimes
be useful to incorporate into gate designs. The Hamilto-
nian for the qubits and cavity is given by

H0 = ωca
†a+

∑

j,n

[
ǫj,n |j, n〉 〈j, n|

+g
√
n+1

(
a† |j, n〉 〈j, n+1|+ a |j, n+1〉 〈j, n|

) ]
, (1)

where ǫj,n is the energy of the nth level of qubit j,
ωc is the cavity frequency, g is the qubit-cavity cou-
pling, and a† (a) is the cavity mode creation (anni-
hilation) operator. The single-qubit spectrum is given
by ǫj,n=nǫj,1−n(n−1)η/2, where the qubit subspace of
qubit j has energy splitting ǫj,1, and η is the anharmonic-
ity. While we assume identical qubit-cavity couplings
for simplicity, our results easily generalize to the case of
distinct couplings for each qubit. We define the logical
two-qubit states, |00〉, |01〉, |10〉, |11〉, to be states in
the interacting spectrum obtained by diagonalizing H0.
When g is the smallest energy scale in the problem and ωc
is sufficiently detuned from ǫj,1, these two-qubit states,
along with the lowest-energy excited states, are close to
their non-interacting counterparts, so that the transitions
among these states come in nearly-degenerate pairs. An
external microwave field excites transitions among the
interacting states through

Hp = E(t)eiωpt
[
λa+

∑

j,n

λj
√
n+1 |j, n〉 〈j, n+1|

]
+ h.c.,

where E(t) denotes the magnitude of the applied elec-
tric field (with all dipole moments equal to unity) and
ωp the microwave pulse frequency. Depending on the ex-
perimental setup, it is possible to drive all qubits and the
cavity or some subset of these components; we account
for this by including the parameters λ, λj , which can
take the values 0 or 1. Here, we focus on the case where
only one qubit is driven, λ=λ1=0, λ2=1. Because of the
structure of the spectrum in the small g regime, a cho-
sen target transition will typically have a unique nearest
harmful transition in close spectral proximity.

The general goal of this work is to engineer pulses that
generate an evolution of the form Utarget⊕1, where typ-
ically the desired evolution is nontrivial in a 2×2 sub-
space defined by the target transition. To achieve this
evolution without resorting to spectrally selective pulses,
which require resolving the frequency difference between
the target and the nearest harmful transition, we allow
the latter to acquire a phase e2iπ so that it actively par-
ticipates in the dynamics. This is a challenging problem
as it requires us to solve exactly and engineer the evo-
lutions of two time-dependent two-level systems driven
simultaneously by the same pulse. We accomplish this

in two ways: by adapting a recently developed reverse-
engineering approach to solving the Schrödinger equa-
tion, and by employing analytically solvable pulse shapes
with special properties. For the harmful transition we
are essentially devising transitionless driving, which is in
itself an interesting topic33 that has found applications
recently in different contexts of quantum control34–37.
We first focus on the most well-known entangling gate,

the two-qubit CNOT gate, in which the state of one
qubit is either flipped or left alone depending on the state
of the other qubit. We make use of a recently developed
analytical method for finding pulses that exactly imple-
ment a desired evolution38,39. We use the notation of
Ref.39, which shows that for a two-level system driven by
a pulse with detuning ∆ and Rabi frequency Ω(t)=dE(t)
(where d is the dipole moment of the system), both the
pulse and its corresponding evolution operator U(t) in
the rotating frame of the driving field can be expressed
in terms of a single real function, χ(t):

Ω(t)=
χ̈

2
√

∆2

4 − χ̇2

−
√

∆2

4 − χ̇2 cot(2χ),

U(t)=e−i
π
4 σy

(
cosχeiψ− sinχe−iψ+

− sinχeiψ+ cosχe−iψ−

)
, (2)

ψ±(t)=

∫ t

0

dt′
√

∆2

4 −χ̇2(t′) csc(2χ(t′))± 1
2 arcsin(

2χ̇(t)
∆ ).

The key result of Ref.39 is that any choice of χ(t) such
that the inequality |χ̇|≤|∆2 | is satisfied yields an exact
solution to the Schrödinger equation given by Eq. (2).
The formalism of Eq. (2) can be used for a SWIPHT-

based CNOT gate if we suppose that U(t) in that equa-
tion refers to the evolution operator in the subspace of
the harmful transition. We take the pulse to be reso-
nant with the target transition, so that the detuning ∆
is the difference of the resonance frequencies of the tar-
get and harmful transitions. The goal is then to choose
χ(t) in such a way that we obtain a fast π-pulse (with
duration τp) for Ω(t) (i.e., 2

∫ τp
0 dtΩ(t)=π) while mak-

ing sure that the evolution for the harmful transition at
the end of the pulse coincides with the evolution that
would occur in the absence of any pulse, namely we want

U(τp)=e
i
∆
2 τpσz . This condition can be achieved if we im-

pose χ(τp)=
π
4 , χ̇(τp)=0, and ψ±(τp)=

∆τp
2

40. Our choice

of χ must also satisfy |χ̇|≤|∆2 | and the initial conditions
χ(0)=π

4 , χ̇(0)=0. An ansatz for χ which automatically
satisfies the constraints on χ and χ̇ at t=0, τp is

χ(t) = A(t/τp)
4(1 − t/τp)

4 + π/4. (3)

An appropriate choice of parameters: A=138.9 and
τp=5.87/|∆|, guarantees that the remaining two condi-

tions, 2
∫ τp
0
dtΩ(t)=π and ψ±(τp)=

∆τp
2 , are also satis-

fied. Plugging the resulting χ into the formula for Ω(t)
in Eq. (2), we obtain a π-pulse (see Fig. 2) that imple-
ments the identity operation on the harmful transition.
Since the pulse duration τp is inversely proportional to
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FIG. 2: (Color online) Upper panel: a non-adiabatic π-pulse
that induces a trivial phase on a nearby harmful transition.
It implements a generalized CNOT gate in 38 ns with 99%
fidelity for ωc=7.15 GHz, ǫ1,1=6.2 GHz, ǫ2,1=6.8 GHz, η=350
MHz, g=250 MHz, ∆=24.5 MHz. Three cavity and four qubit
levels are kept in numerical simulations to yield converged
results. The lower four panels show the evolution in the two-
qubit subspace, which is as expected for a CNOT gate.

the frequency separation ∆ of the target and harmful
transitions, the gate speed is set by the cavity coupling
and frequency. To verify the efficacy of this approach,
we ran multi-level numerical simulations, considering the
case where only the second qubit is driven, and treat-
ing |00〉⇔ |01〉 and |10〉⇔ |11〉 as the target and harmful
transitions, respectively. For a cavity coupling of g = 250
MHz, our simulations show that the gate time for a gen-
eralized CNOT with arbitrary phases φµ

41,

CNOT =




0 eiφa 0 0
eiφb 0 0 0
0 0 eiφc 0
0 0 0 eiφd


 , (4)

can be reduced to as low as 38 ns while maintaining a
fidelity of 99%, where we define fidelity as in Ref. [42]:
f ≡ 1

20 (Tr[UU
†]+ |Tr[U †CNOT ]|2) with U the evolution

operator truncated to the logical two-qubit subspace, and
we optimize over φµ. This value is already at the thresh-
old of surface codes43 and could be further improved by
optimizing over system parameters. The fact that such
high fidelities can be achieved even for this relatively
strong value of the qubit-cavity coupling indicates that
our approach is robust throughout the range of physical
parameter values.
Another commonly used, maximally entangling gate

is the CZ. This gate is locally equivalent to CNOT ,
but is also important in its own right, for example in
the generation of cluster states for measurement-based
quantum computing44. It can be defined as the ma-
trix CZ=diag(1,−1, 1, 1), i.e., one of the two-qubit basis
states (here state |01〉) acquires a phase π while the rest
remain unaffected by the control. It is natural to con-
struct such gates using cyclic, phase-inducing evolutions
that involve states outside the two-qubit subspace. To
implement our SWIPHT protocol we again require that
the target transition, |01〉 ⇔ |02〉, acquires a phase of
π while the nearest harmful transition, |11〉 ⇔ |12〉, ac-
quires a phase of 2π. To achieve the latter, we recall
one of the properties of SU(2): undergoing two cycles of
cyclic evolution resonantly is equivalent to the identity
operation. Thus, any resonant waveform with pulse area
4π acting on the harmful transition will be equivalent
to the identity operation on the basis states involved in
the transition. The remaining challenge is of course to se-
lect the pulse shape and remaining pulse parameters such
that the desired evolution (the minus sign) is induced on
the states comprising the target transition.
We solve this problem by using a hyperbolic secant

(sech) envelope, Ω(t)=Ω0sech(σt), shown in Fig. 3a.
This pulse yields analytically solvable two-level system
dynamics45, and moreover the fully transitionless condi-
tion is fulfilled by choosing Ω0/σ appropriately, indepen-
dently of the detuning46. In addition, the sech pulse is
a particularly simple waveform that is easily generated
in the laboratory. The phase induced on the states of a
transition by a 4π sech pulse is given by47

φ = 2 arctan

[
4∆/σ

(∆/σ)
2 − 3

]
, (5)

where ∆ is the detuning, i.e., ∆=ωp−ω for a transition of
frequency ω. This phase is shown in Fig. 3b as a function
of the ratio ∆/σ. By making the pulse resonant with
the harmful transition (ωp=ωh) and choosing Ω0/σ = 2,
we guarantee that this transition acquires a trivial e2iπ

phase. We still have freedom to choose σ so that a π
phase can be induced on the target transition by setting
σ=|∆t|/

√
3, where ∆t=ωt−ωh≡δω is now the frequency

difference of the two transitions.
We in fact have significantly more flexibility in de-

signing the gate, as revealed in Fig. 3b, where it is
apparent that there are infinitely many ways in which
the difference in the phases acquired by the target and
harmful transitions is equal to ±π. Allowing both tran-
sitions to acquire a phase generates a generalized CZ

gate, defined as C̃Z=diag(eiφ00 , eiφ01 , eiφ10 , eiφ11) with
φ00−φ01−φ10+φ11=±π. This gate is completely equiv-
alent to CZ48. As shown in Fig. 3b, for a given choice
of the detuning from the target, there are in general two
solutions for ∆h/σ which produce the correct phase dif-
ference. Since ∆t and ∆h are related by ∆t=∆h−δω,
where the difference in the transition frequencies δω is
fixed by the system parameters g, η, ωc and independent
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FIG. 3: (Color online) (a) Hyperbolic secant pulse. (b) Phase induced by the 4π and (c) 2π hyperbolic secant pulses versus
the ratio of detuning ∆ to pulse bandwidth σ. A generalized CZ gate can be achieved by inducing phases on both the target
and nearest harmful transitions such that their difference is ±π. For a given choice of the target’s ratio ∆t/σ (blue vertical
line), there are two solutions for the harmful transition’s ratio ∆h/σ (red vertical lines) in the case of the 4π sech, but only
one solution in the case of the 2π sech.

of the pulse, each solution can be interpreted as fixing
the pulse frequency in terms of the bandwidth40:

ωp =
ωt+ωh

2
±1

2

√
δω2−20σ2±4σ

√
16σ2+3δω2. (6)

All together there are four distinct solutions for each
value of σ, one for each choice of the signs inside and
outside the square root; in addition to the two choices of
∆h/σ evident in Fig. 3b, two more solutions arise from
interchanging how the target and harmful transitions are
defined. Eq. (6) reveals that there is a maximal value of σ

beyond which ωp becomes unphysical: σmax=
2+

√
7

6 |δω|,
which corresponds to setting the pulse frequency halfway
between the two transitions: ωp=(ωt+ωh)/2. Comparing

σmax with the value of σ for an ordinary CZ, σ=|δω|/
√
3,

we see that the gate speed of a generalized CZ can be up

to 34% faster. Fig. 4 shows the fidelity of the C̃Z gate as
a function of pulse bandwidth. For the parameters used
in the figure, the fastest pulse is 185 ns. Without any
optimization with respect to either system or pulse pa-
rameters, the fidelity ranges from 98.5% to 99.95%. The
deviation from perfect fidelities comes from the presence
of additional harmful transitions as well as from the fact
that the target and nearest harmful transitions have dif-
ferent dipole moments. Further optimization over the
pulse parameters Ω0 and ωp reduces these effects, yield-
ing significantly higher fidelities ranging from 99.7% to
99.99% (see Fig. 4). Additional optimization over system
parameters should produce even better fidelities.

For the generalized gate, we can improve the fidelity
still further by using a much weaker pulse. A 2π sech
pulse induces a phase φ=2 arctan (σ/∆)47, shown in
Fig. 3c. As before, we may choose a value of ∆t/σ for
the target transition, and the corresponding value for the
harmful transition is determined by requiring a phase dif-
ference of ±π. However, unlike in the 4π sech case, here
there is only one solution for ∆h/σ once ∆t/σ is fixed
(see Fig. 3c). We then obtain two solutions for the pulse

FIG. 4: (Color online) Fidelity versus bandwidth for the
parameters of Fig. 2 but with g=130 MHz, ωt=6.447 GHz,
ωh=6.458 GHz for the 2π SWIPHT (Eq. (7)), 4π SWIPHT
(Eq. (6)), and 2π naive (with ωp=ωt) pulses. Solid curves
are not optimized over system or pulse parameters. Crosses
indicate 4π SWIPHT gates optimized over pulse parameters.

frequency for each value of σ:

ωp =
ωt+ωh

2
± 1

2

√
δω2 − 4σ2. (7)

The maximal bandwidth is again attained for
ωp=(ωt+ωh)/2, but now at a value of σmax=|δω|/2,
showing that there is a cost in terms of gate speed
when the weaker 2π sech pulse is used. Fig. 4 shows
fidelity as a function of bandwidth for the SWIPHT

C̃Z gate for both the 2π and 4π pulses, along with a
“naive” gate which is implemented using a 2π sech pulse
which is held resonant with the target transition for
all values of σ and so does not purposely involve the
nearest harmful transition in the gate design. The figure
shows a striking improvement in gate fidelities when the
SWIPHT protocol is used even without optimizing over
system or pulse parameters, particularly at higher gate
speeds (large σ). The 4π SWIPHT pulse extends to
larger values of σ, so that although one gains in fidelity
by using the 2π SWIPHT pulse, faster gate speeds can
be achieved with the 4π SWIPHT pulse.
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In conclusion, we have developed a versatile analytical
protocol for creating fast high fidelity gates by incorpo-
rating into the quantum dynamics the nearest harmful
transition, which is typically avoided in prior quantum
control schemes. We have demonstrated the effective-
ness of our approach by designing simple, smooth pulses
that implement the two most common maximally entan-
gling gates, the CNOT and CZ, showing that the speeds

of microwave-driven gates can be substantially increased
while keeping fidelities above the threshold of error cor-
recting codes. We expect that our methods will serve as
a powerful tool in achieving high fidelity control of large
scale, multiqubit systems.
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part by ONR (SEE).
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