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We investigate the interaction between electromagnetic pulses and two-dimensional current sheets
whose conductivity is controlled as a function of time by the generation of photocarriers, and we
discuss its applicability to tunable frequency comb generation. To this aim, we develop an analytical
model that permits the calculation of the scattered waves off a thin sheet with time-dependent,
dispersive sheet conductivity. We evaluate the transmitted spectrum as a function of the dispersive
behavior and the modulation frequency of the number of photocarriers. We conclude that such
active materials, e.g., time-dependent graphene sheets, open up the possibility to manipulate the
frequency of incident pulses and, hence, could lead to a novel approach towards highly tunable,
miniaturized frequency comb generation.

Ever since the invention of the laser, scientists have
tried to increase the upper limit of frequency measure-
ments from radio frequencies to the optical domain [1].
The development of optical frequency combs [2, 3]—
sharp, evenly spaced spectral lines with a fixed phase
relation between adjacent comb lines [4, 5]—simplified
these measurements considerably and paved the way
for accurate frequency measurements in the optical do-
main [6, 7]. As of today, frequency combs offer the pre-
cision required for the conception of optical clocks [8]
and they are used in a plethora of disciplines, including
atomic [9] and molecular spectroscopy [10], calibration of
spectrometers in astronomical observations [11], infrared
chemical sensing [12], ultraviolet spectroscopy [13], at-
tosecond pulse generation [14], and even the determina-
tion of the temporal stability of fundamental physical
constants [15].

Optical frequency combs are normally generated with
mode-locked lasers, in which a fixed phase relation is im-
posed on the longitudinal modes of a laser with large gain
bandwidth, e.g., Ti:sapphire lasers [16] or fiber lasers [17].
This can be achieved by inserting an electro-optical mod-
ulator or a saturable absorber inside the laser cavity.
The temporal separation between consecutive pulses then
equals the round-trip time of the laser cavity trep. In or-
der to obtain even broader output spectra, these lasers
are often combined with nonlinear microstructured pho-
tonic crystal fibers of which the group velocity disper-
sion properties can be engineered [18, 19]. Recently, a
novel approach for frequency comb generation, based on
parametric frequency conversion inside compact high-Q
microresonators, has emerged [20]. In comparison with
the traditional comb sources, this technique allows for
the reduction of the source footprint, an enhancement of
the repetition frequency [21], and a larger tunability of
the pump laser frequency [22].

In this paper, we introduce another approach for fre-

quency comb generation based on the interaction of an
electromagnetic pulse with a thin-film interface whose
conductivity is rapidly modulated as a function of time.
Indeed, in recent years, scientists have extended the
physics and applications of electromagnetically struc-
tured systems [23–29] towards tunable structures [30–35],
e.g., by inclusion of electrically biased semiconductors,
semiconductors with induced photocarriers, or graphene
sheets in the design of metamaterials. Here, we show
how rapidly tunable surfaces allow for the generation of
highly miniaturized, tunable frequency comb generation.
To this aim, we first derive a general formalism for the
calculation of transmitted and reflected fields off time-
dependent sheets with Drude dispersion.

We calculate the reflected (subscript “R”) and trans-
mitted (subscript “T”) fields excited by an arbitrary in-
cident pulse (subscript “I”) on a time-varying thin-film
material. The electric field E and the magnetic field
H are related to the electromagnetic vector potential
A. We choose the Coulomb gauge, so that the elec-
trostatic potential in vacuum equals zero and, therefore,
that E = −∂A/∂t. We consider oblique incident trans-
verse electric waves on a surface perpendicular to the x
axis and we explicitly invoke the vacuum dispersion rela-
tion by assuming the argument of the fields to be equal
to (t− kxx/ω − kyy/ω) for the incident and transmitted
fields and (t + kxx/ω − kyy/ω) for the reflected fields.
Since the sheet is isotropic and nonchiral, the polariza-
tion of the fields does not change and we can write that
A{I,R,T} = G{I,R,T}1z. Defining ∂G(α)/∂α = Ġ(α), we
can express the tangential electric and magnetic fields as

E
‖
{I,R,T}(x, t) = −Ġ(α)1z, H

‖
{I,T}(x, t) = −η−1Ġ(α)1y,

andH
‖
{R}(x, t) = η−1Ġ(α)1y, where the wave impedance

η equals µ0ω/k⊥. To find the reflected and transmitted
fields for an arbitrary incident wave, the electromagnetic
boundary equations need to be evaluated at the interface
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of the thin sheet. In general, these equations are given
by

Eleft(t)− Eright(t) = jsm(t),

Hleft(t)−Hright(t) = jse(t),

where we defined the electric and magnetic sheet currents
as jse = jse1z and jsm = jsm1y, respectively. Maxwell’s
boundary conditions in the time domain then become

− ĠI(t)− ĠR(t) + ĠT (t) = jsm(t), (1)

− ĠI(t) + ĠR(t) + ĠT (t) = ηjse(t). (2)

The solutions, i.e., the reflected and transmitted fields,
can only be found after inserting constitutive relations
describing the coupling between the electric and mag-
netic currents at one hand and the electric and magnetic
fields on the other hand. Below, we will solve this prob-
lem for sheets with dispersionless, time-dependent con-
ductivities, as well as for sheets with a time-dependent
electric conductivity with Drude dispersion.
When the scattering time scale of the carriers is suf-

ficiently smaller than the modulation time scale, we can
resort to the approximation that the sheet has dispersion-
less conductivities: jse(t) = σse(t)Eloc(t) and jsm(t) =
σsm(t)Hloc(t), where σse and σsm are the electric and
magnetic sheet conductivities, respectively. The electric
and magnetic sheet currents introduce a discontinuity in
the magnetic and electric fields. Therefore, the consti-
tutive equations relate the surface currents to the local
fields on the surface (Eloc and Hloc), which equal the av-
erage of the tangential fields across the surface [36]. In-
serting these constitutive relations into Eqs. (1)-(2) yields
the transmitted and reflected fields given by

ĠT (t) =
4− σse(t)σsm(t)

(2 + ησse(t))(2 + σsm(t)/η)
ĠI(t), (3)

ĠR(t) =
2(σse(t)η − σsm(t)/η)

(2 + ησse(t))(2 + σsm(t)/η)
ĠI(t). (4)

Subsequently, we consider a constitutive relation that in-
cludes dispersion and explicit time dependence in the
electric currents, but with vanishing magnetic currents.
This constitutive relation accurately describes the behav-
ior of a graphene layer in which number of photocarriers
is modulated as a function of time:

jse(t) =

∫ +∞

−∞

σse(t− u, t)E(u)du,

σse(t− u, t) =
σ0(t)

τ
exp

(

−

t− u

τ

)

h(t− u),

where h(t) is the Heaviside step function. When we in-
sert this constitutive relation in Maxwell’s boundary con-
ditions, we obtain a Volterra integral equation of the sec-
ond kind [37] for the transmitted field. Its solutions are
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FIG. 1: The incident pulse that is used to calculate the trans-
mitted spectra of different time-dependent surfaces. (a) In
time domain. The pulse is temporally broad (∆t = 200/ω0).
(b) In frequency domain. The Gaussian pulse is nearly
monochromatic.

given by

ĠT (t) = ĠI(t)−
η

2

∫ t

−∞

σ0(t)

τ
exp

(

−

t− u

τ

)

×

exp

(

−

η

2τ

∫ t

u

σ0(s)ds

)

ĠI(u)du.

(5)

We show in the supplemental material [38] that Eq. (5)
is compatible with the traditional transmission formulae
that arise in the limits of time-dependent nondispersive
carriers and time-invariant dispersive carriers. We note
that, in the nondispersive as well as in the dispersive
case, the surface conductivity is multiplied with the sheet
impedance η. Therefore, it is possible to trade in the
amplitude of the conductivity variation for a larger angle
of the oblique incident waves.
We now apply the previously derived formulae to eval-

uate the field that is transmitted through an interface
with time-dependent conductivity and we demonstrate
how sheets with time-dependent electrical conductivity
allow for frequency sideband generation at integral mul-
tiples of the modulation frequency. In all subsequent sim-
ulations, we illuminate the sheet with a Gaussian pulse
GI = sin[ω0(t − tin)] exp

[

−(t− tin)
2/∆t2

]

, where tin is
an arbitrary time shift, ω0 is the center frequency, and
the pulse width ∆t equals 200/ω0. This pulse is visual-
ized both in time and in frequency domain in Fig. 1. In
these and subsequent plots we nondimensionalized the
abscissa using t0 = 2π/ω0 and ω0. We start with the
nondispersive interface, evaluating Eq. (3). We modulate
the electric conductivity of the conductive sheet with the
sinusoidal profile

σ0(t) =
σmax − σmin

2
sin (ωmodt+ 0.2) +

σmax + σmin

2
,

(6)
which oscillates between the minimal conductivity
σmin = 10−8 S and the maximal conductivity σmax =
100 mS with frequency ωmod = ω0/10. The transmitted
wave will then be a sampled version of the incident pulse,
generating a pulse train at fixed separation intervals, in
agreement with the modulation period tmod = 2π/ωmod,
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FIG. 2: The transmitted wave through a nondispersive sheet
whose time-dependent electrical conductivity is modulated
according to Eq. (6). (a) In the time domain, we observe
a train of very sharp pulses that are separated by the modu-
lation period tmod. (b) In the frequency domain, this corre-
sponds to a frequency comb.

as shown in Fig. 2(a). In the frequency domain this
transmitted signal corresponds to a comb of frequencies,
where the incident spectrum—originally centered around
ω0—is copied at several sideband frequencies located at
ωn = ω0 + nωmod [see Fig. 2(b)]. The amplitude of the
spectrum decreases at higher frequencies as a result of
the finite sampling inherent to a sinusoidal modulation.

To investigate the effects of non-negligible dispersion
of the photocarriers, we evaluate Eq. (5) to calculate the
field transmitted through an interface whose conductivity
modulation is given by Eq. (6). This is, e.g., necessary
when the Drude scattering time τ of the photocarriers
is larger than the optical cycle of the incident pulse. In
Fig. 3, we plot the transmitted field through a dispersive
sheet with a collision frequency γ = ω0/π. The output
still corresponds to a frequency comb, with the incident
spectrum copied at integral multiples of the modulation
frequency ωmod around the incident center frequency ω0.
However, in comparison with the transmitted wave in
the nondispersive case (Fig. 2), the envelope decreases
more rapidly. In return, the amplitude of the incident
center frequency ω0 is larger in the dispersive case than
in the nondispersive case. This indicates that less energy
is spread from the central peak to the side bands.
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FIG. 3: The transmitted wave in time domain (a) and in
frequency domain (b) through a time-dependent sheet with
photocarrier modulation given by Eq. (6) in which the dis-
persion of the photocarriers is significant (τ = π/ω0).
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FIG. 4: Transmitted waves in time domain and in frequency
domain for different relaxation times of the photocarriers: τ =
2π/ω0 in (a)-(b) and τ = 8π/ω0 in (c)-(d). ωmod = 0.1ω0 in
both simulations.

This trend is confirmed when we compare even higher
scattering times τ , as demonstrated in Fig. 4 in which
we plot the temporal and spectral representation of the
transmitted pulse through two distinct sheets with dif-
ferent relaxation times: τ = 2π/ω0 in Fig. 4(a)-(b) and
τ = 8π/ω0 in Fig. 4(c)-(d). By comparing Fig. 4(b) with
Fig. 4(d), it is clear that the spectral envelope narrows
down as the material response time increases. In time
domain, this behavior translates into transmitted pulses
that are less sharp as τ increases.

Finally, we discuss the influence of the modulation fre-
quency ωmod on the spectrum of the transmitted pulse.
In agreement with the intuitive sampling model of the
time-dependent sheet, this modulation frequency directly
corresponds to the spacing of the side bands in the trans-
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FIG. 5: Transmitted waves in time domain and in frequency
domain for different modulation frequency of the photocarri-
ers: ωmod = 0.05ω0 in (a)-(b) and ωmod = 0.2ω0 in (c)-(d).
τ = π/ω0 in both simulations.
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mitted spectrum, even when considering a significant re-
laxation time τ = π/ω0. This is shown in Fig. 5, where
we compare the transmitted pulses of two sheets in which
the photocarrier concentrations are modulated at a fre-
quency ωmod = 0.05ω0 and ωmod = 0.2ω0, respectively.

The previous results are in agreement with our quali-
tative picture that a sheet with modulated photocarriers
acts like a time-dependent shutter. In the rather aca-
demical example of dispersionless carriers, the spectrum
of the transmitted field constitutes a frequency comb, in
which the incident spectrum is copied at several sideband
frequencies at fixed separation frequency ωmod. When re-
alistic dispersion is added to the carrier dynamics of the
conducting system, the desired properties of the trans-
mitted spectrum remain present. Qualitatively, the in-
troduction of dispersion merely narrows the spectral en-
velope that limits the overall bandwidth of the frequency
comb. In addition, we have shown that the sideband
spacing can be tuned by changing the modulation fre-
quency of the photocarriers.

Although the main point of this paper is to theoret-
ically propose a novel idea for tunable frequency comb
generation, we conclude this paper with a brief discus-
sion of the experimental feasibility of the proposed mech-
anism. Given the ability to modulate its carrier den-
sity at very high frequencies [40], graphene offers an
attractive platform for tunable frequency comb gener-
ation. Moreover, at terahertz frequencies, the electronic
response of graphene is essentially that of a free-electron
Drude gas [41]. In Fig. 6, we present a typical frequency
comb that can be transmitted through a graphene sheet.
To obtain this figure, we inserted experimental data for
the sheet conductivity of graphene, i.e., σmax = 28 mS
and τ = 167 fs in our model [42]. The resulting fre-
quency comb is centered around 3 THz and has a comb
line spacing of 150 GHz. Fig. 6 demonstrates that, even
with contemporary available graphene samples, the pro-
posed mechanism can be exploited to generate tunable
frequency combs at terahertz frequencies. To further
increase the bandwith of the resulting combs, we ex-
pect that geometrically patterned graphene sheets [43] or
other structured metasurfaces with a resonant response
will be used to enhance the maximum surface conductiv-
ity. Another alternative would be the use of GaAs sub-
strates with photo-induced carriers, whose modulation
bandwith is limited by the carrier recombination to a few
gigahertz [44]. This makes them an attractive candidate
for frequency comb generation at microwave frequencies.

The main advantage of our approach for the generation
of frequency combs is its enhanced tunability. Indeed, the
comb repetition frequency as well as the comb linewidth
can be controlled by the incident pulse and the modula-
tion beam and the incident laser pulse, respectively. In
this way, the same sheet could serve for the generation of
frequency combs with different mode spacings, spectral
linewidths, and overall bandwidths.
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FIG. 6: (a) An illustration of the proposed mechanism for
highly tunable frequency comb generation using graphene
sheets. The sheet conductivity of the graphene sample is
modelled using a Drude response, retrieved from experimen-
tal data [42]: σmax = 28 mS and τ = 167 fs. (b) The result-
ing transmitted spectrum through the graphene sheet. Even
when the considerable dispersion of the graphene photo car-
riers is taken into account, a quasi-monochromatic pulse can
be converted into a frequency comb.
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