
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum quenches and many-body localization in the
thermodynamic limit

Baoming Tang, Deepak Iyer, and Marcos Rigol
Phys. Rev. B 91, 161109 — Published 23 April 2015

DOI: 10.1103/PhysRevB.91.161109

http://dx.doi.org/10.1103/PhysRevB.91.161109


Quantum Quenches and Many-Body Localization in the Thermodynamic Limit

Baoming Tang,1, 2 Deepak Iyer,1 and Marcos Rigol1

1Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
2Department of Physics, Georgetown University, Washington DC, 20057 USA

We use thermalization indicators and numerical linked cluster expansions to probe the onset of
many-body localization in a disordered one-dimensional hard-core boson model in the thermody-
namic limit. We show that after equilibration following a quench from a delocalized state, the
momentum distribution indicates a freezing of one-particle correlations at higher values than in
thermal equilibrium. The position of the delocalization to localization transition, identified by the
breakdown of thermalization with increasing disorder strength, is found to be consistent with the
value from the level statistics obtained via full exact diagonalization of finite chains. Our results
strongly support the existence of a many-body localized phase in the thermodynamic limit.
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Since the first quantitative discussion of localization by
Anderson in 19581, a large number of experiments have
revealed phenomena governed by localization physics in
solid state2,3 and atomic4–7 physics. In the absence of in-
teractions, destructive interference due to scattering off
impurities is responsible for localization1. What hap-
pens in the presence of interactions has remained an open
problem whose exploration has become an active area of
research over the past few years. For weak interactions,
perturbative arguments support the existence of localized
phases8–11. For strong interactions, on the other hand,
numerical studies have found signatures of many-body
localization and explored its implications12–24. Nonethe-
less, it remains a challenge to conclusively establish that,
in the presence of strong interactions, the delocaliza-
tion to localization transition occurs at finite disorder
strength in the thermodynamic limit.
The signatures of localization in experiments are

mostly dynamical in nature, e.g., measurements of the
conductivity3. Theoretically, it is difficult to study dy-
namical quantities. So, to identify many-body localized
phases, it is common to use the statistics of the energy
level spacing instead (see, e.g., Refs.12,14,15). Poissonian
level statistics is expected for localized phases, whereas
Wigner-Dyson statistics is expected for delocalized ones.
Equally accessible to experimental and theoretical stud-
ies is a defining, but less explored, signature of many-
body localization – when taken far from equilibrium, iso-
lated localized systems do not thermalize25.
Relaxation dynamics and thermalization in isolated

many-body quantum systems is a very active area of cur-
rent research on its own26–28. There is growing evidence
that generic many-body quantum systems thermalize af-
ter being taken far from equilibrium29–34, and that this
is a consequence of eigenstate thermalization29–31,35–46.
That is, thermalization results from the fact that, for few-
body observables, individual eigenstates of the Hamil-
tonian already exhibit thermal properties29,35,36. This
can be pictured as the system effectively acting as its
own bath. Such a picture breaks down in integrable
systems29–31 and in many-body localized ones. In the
latter, different parts of the system cannot communicate

with one another, i.e., they cannot be ergodic25. Nu-
merical calculations in finite systems have provided ev-
idence of the breakdown of eigenstate thermalization15

and thermalization15,47 in disordered many-body sys-
tems.
Here, we study quantum quenches in disordered iso-

lated systems in the thermodynamic limit. By a quan-
tum quench it is meant that the initial state is station-
ary with respect to an initial Hamiltonian, which is sud-
denly changed to a new (time-independent) Hamiltonian.
The latter then drives the (unitary) dynamics of the sys-
tem. We are interested in the time average of observ-
ables (say, Ô) after the quench. They can be calculated

as O(τ) = Tr[ρ̂(τ)Ô] = Tr[ρ̂(τ)Ô] ≡ Tr[ρ̂DEÔ] = ODE,

where (·) = limτ ′→∞1/τ ′
∫ τ ′

0
dτ (·) indicates the infinite

time average, ρ̂(τ) is the density matrix of the time-

evolving state, and ρ̂DE ≡ ρ̂(τ) is the density matrix
of the so-called diagonal ensemble (DE)29. To obtain re-
sults in the thermodynamic limit, we advance a recently
introduced numerical linked cluster expansion (NLCE)
for the DE34,48,49. NLCEs for systems in thermal equilib-
rium were introduced in Refs.50,51, and their implemen-
tation was discussed in Ref.52. When converged, NLCE
calculations provide exact results in the thermodynamic
limit. For quenches in the integrable XXZ chain, this
was shown in Refs. [44,45] by comparing NLCEs with
exact analytic calculations using Bethe-ansatz. In this
work, thermalization, or the lack thereof, is studied by
comparing results for observables in the DE and in the
grand-canonical ensemble (GE).
We focus on a system of impenetrable bosons in one-

dimension (1D) with Hamiltonian Ĥ = Ĥ0 + ĤD, where

Ĥ0 =
∑

i

[

−t(b̂†i b̂i+1 +H.c.) + V

(

n̂i −
1

2

)(

n̂i+1 −
1

2

)]

(1)

is translationally invariant and ĤD =
∑

i hi(n̂i −
1
2
) is

the term with the disorder. b̂†i (b̂i) creates (annihilates)

a hard-core boson at site i and n̂i = b̂†i b̂i is the site num-
ber operator. t stands for the hopping parameter, V for
the nearest neighbor interaction, and hi for the strength
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FIG. 1. (Color online) Exact diagonalization results for the
averaged ratio of two consecutive energy gaps r (see text) as
a function of disorder strength in chains with L = 14, 15,
and 16 sites; and V = 2. For L = 14, the energy ratio was
computed considering all 214 = 16384 disorder field configura-
tions (filled circles). We also show the energy ratio for L = 14
(open circles), L = 15 (open squares), and L = 16 (open tri-
angles) averaging over 9100 random samples. The error bars
depict one standard deviation. They make apparent that the
statistical errors are negligible at the scale of the figure.

of the on-site disorder. In the spin language, Ĥ describes
a spin-1/2XXZ model in the presence of a random mag-
netic field in the z-direction. We select the random field
to have a binary distribution with equal probabilities for
hi = ±h. This model has been recently motivated in the
context of ultracold bosons in optical lattices21.

We first use full exact diagonalization of finite chains
with open boundary conditions to check whether Ĥ sup-
ports a many-body localized phase (as argued in Ref.21)
and, if it does, the value of the disorder strength at
which such a phase appears. We focus on V = 2t
(which is the Heisenberg point in the spin model) and
set t = 1 as our unit of energy. As a first indica-
tor of many-body localization, we study the averaged
ratio of the smaller and the larger of two consecutive
energy gaps, rn = min[δEn−1, δ

E
n ]/max[δEn−1, δ

E
n ], where

δEn ≡ En+1 − En is the difference between adjacent en-
ergy levels in the spectrum12,14. The averaged ratio r
is obtained by averaging rn over the central half of the
spectrum for a given disorder configuration, and then av-
eraging over disorder configurations. In the delocalized
phase one expects r ≈ 0.5359 and in the localized one,
r ≈ 0.3863, corresponding to the results for the Wigner-
Dyson and Poissonian distributions53, respectively.

Figure 1 shows the averaged ratio r as a function of
the strength of the random field h for three system sizes.
One can see that there is a transition from a delocalized
to a localized phase with increasing disorder strength,
and that it sharpens with increasing system size. From
the delocalized side, with increasing h, the curves for
different system sizes meet in the vicinity of h = 3.5,
suggesting that the critical hc ≈ 3.5. Remarkably, for the
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FIG. 2. (Color online) Last order (l = 14) of the NLCE
calculation for the momentum distribution in the initial state
with TI = 2, and in the DE and GE after quenches with
four different values of the disorder strength h (two below
and two above the delocalization to localization transition).
The inset depicts the last order of the NLCE for the kinetic
energy K after quenches as a function of h. Note that, for
h . 2.5 < hc, the results in the DE and the GE are virtually
indistinguishable.

same model but with continuous disorder, the transition
was found to be at around twice this value (hc ≈ 7)14.
Now that we have an idea of the disorder strengths

that correspond to the ergodic and many-body localized
phases, we proceed to study quantum quenches into both
regimes. We take the initial state to be in thermal equi-
librium at some temperature TI for ĤI with parameters
tI = 0.5, VI = 2.5, and hj = 0 for all j, i.e., the initial
state is homogeneous. (We have verified that the re-
sults reported are robust when changing the initial state,
which is, in principle, arbitrary.) After the quench, we
take t = 1, V = 2.0, and different values of h 6= 0 (as
in Fig. 1). In all our calculations, the chemical potential
µ = 0, so that the systems are at half filling. NLCEs for
the diagonal ensemble allow one to compute the infinite-
time average of observables in the thermodynamic limit
for lattice systems evolving unitarily34,49. The funda-
mental NLCE development introduced in this work is
the ability to deal with systems with disorder.
In translationally invariant systems, NLCEs allow one

to calculate the expectation value of an extensive observ-
able per lattice site in the thermodynamic limit, O, as a
sum over the contributions from all clusters c that can be
embedded on the infinite lattice: O =

∑

c M(c)×WO(c),
whereM(c) is the multiplicity of c, defined as the number
of ways per site in which cluster c can be embedded on the
lattice. WO(c) is the weight of Ô in cluster c, which is cal-
culated recursively using the inclusion-exclusion principle
WO(c) = O(c) −

∑

s⊂c WO(s), where O(c) = Tr[Ôρ̂c] is
computed using full exact diagonalization, with ρ̂c being
the density matrix relevant to the calculation [e.g., of the
grand-canonical ensemble (GE) or the diagonal ensemble
(DE)] in cluster c34,49.
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FIG. 3. (Color online) Relative differences for the momentum distribution and the kinetic energy vs l in the NLCE calculation
for six values of h and TI = 2. (a) δ(m)l, (b) δ(K)l, (c) ∆(mDE)l, and (d) ∆(KDE)l. Results for ∆(mGE)l and ∆(KGE)l are
reported in Ref.54. For h = 4 and 5, the results for δ(m)l and δ(K)l do not change with changing l, i.e., they have converged.

Such an expansion cannot be applied to systems in
which translational symmetry is broken, e.g., by disor-
der. However, a disorder average that restores an ex-
act translational invariance enables once again the use
of NLCEs. The two crucial points that make that pos-
sible are: (i) the linear character of the equations defin-
ing the linked cluster expansion, so that disorder average
can be commuted with the NLCE summation process,
and (ii) the use of binary disorder which, after averaging
over all possible disorder realizations, restores the trans-
lational symmetry (and also particle-hole symmetry) of

Ĥ0. Hence, all we need to do in our calculations is replace
O(c) = Tr[Ôρ̂c] for the translationally invariant case by:

O(c) =
〈

Tr[Ôρ̂c]
〉

dis
, (2)

where 〈·〉dis represents the disorder average. Having to
compute this additional average reduces our site based
linked cluster expansion from a maximum of 18 sites for
translationally invariant systems34,48,49 to 14 sites here.
We define Oens

l as the sum over the contributions of clus-
ters with up to l sites, where “ens” could be DE or GE.
The temperature used in the GE calculations to describe
the system after the quench is determined from a com-
parison of the energy of DE and the GE by ensuring that
|EDE

14 − EGE
14 |/|EDE

14 | < 10−12. We only report results
for values of TI for which EDE

14 and EGE
14 are converged

within machine precision (see Ref.54).
In Fig. 2, we report the initial momentum distribu-

tion of a system with TI = 2 and the final momentum
distribution for different values of h after the quench.
After the quench, the DE and GE results for h = 0.6
and 1 (h < hc) are indistinguishable from each other,
while for h = 4 and 6 (h > hc) are very different from
each other. Remarkably, the results that are close to

each other for h > hc are those from the DE. The con-
trast between the DE and GE results in this regime
makes apparent that there is more coherence in the one-
particle sector after equilibration than if the system were
in thermal equilibrium (mDE

k=0 > mGE
k=0). The system “re-

members” one-particle correlations from the initial state.
This has also been seen in quasi-periodic systems55. It
is easy to understand in the limit of very strong disor-
der, where Ĥ =

∑

i hi(n̂i −
1
2
), and, in the Heisenberg

picture, b̂†i (τ)b̂j(τ) = exp[i(hi − hj)τ/~]b̂
†
i (0)b̂j(0). A

disorder average over hi, hj (with each being ±h with
equal likelihood) reveals that, for a half-filled system,
mDE

k = 1/4 + mk(τ = 0)/2. Strikingly, a very strong
freezing of correlations is seen right after entering the
many-body localized phase. The results for the kinetic
energy, almost constant in the inset in Fig. 2 for h > hc,
provide evidence of the robustness of these findings.
To discern which of the differences between the DE and

GE seen in Fig. 2 are due to lack of convergence of the
NLCE and which are expected to survive in the thermo-
dynamic limit, we calculate the following two differences

δ(m)l =

∑

k |(mk)
DE
l − (mk)

GE
14 |

∑

k |(mk)GE
14 |

, (3)

which allows us to quantify the difference between the
DE and the GE, and

∆(mens)l =

∑

k |(mk)
ens
l − (mk)

ens
14 |

∑

k |(mk)ens14 |
, (4)

which allows us to estimate the convergence of the NLCE
calculations34. δ(K)l and ∆(Kens)l follow straightfor-
wardly from Eqs. (3) and (4), respectively, by removing
the sums and replacing mk → K. For the GE calcu-
lations when TI > 1, (mk)

GE
14 and KGE

14 are converged
within machine precision (see Ref.54).
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FIG. 4. (Color online) Relative differences for the momentum
distribution vs l in the NLCE calculation for 3.2 ≤ h ≤ 3.8.
(a) δ(m)l and (b) ∆(mDE)l. In (a), horizontal dashed lines
correspond to the average value of last 2 orders of δ(m)l for
h = 3.6, 3.7, and 3.8.

Results for δ(m)l, δ(K)l, ∆(mDE)l and ∆(KDE)l vs
l are reported in Figs. 3(a)–3(d), respectively, for six
values of h. They show that: (i) The momentum dis-
tribution function (a nonlocal quantity) and the kinetic
energy (a local quantity) exhibit qualitatively similar be-
havior. (ii) For h & 3.5, δ(m)l and δ(K)l do not change
with increasing l, and are much larger than ∆(mDE)l and
∆(KDE)l, i.e., the former are expected to remain nonzero
in the thermodynamic limit. This supports the existence
of many-body localization in the thermodynamic limit.
(iii) For h . 3.0, δ(m)l and δ(K)l decrease with increas-
ing l, and are of the same order of magnitude as ∆(mDE)l
and ∆(KDE)l (which also decrease with increasing sys-
tem size). Hence, the differences between those observ-
ables in the DE and the GE are expected to vanish in
the thermodynamic limit, i.e., those values of h belong
to the ergodic phase. In this phase, δ(m)l and δ(K)l be-
have as in systems without disorder34. (iv) ∆(mDE)l and
∆(KDE)l in Figs. 3(c)–3(d) show that the NLCE conver-
gence errors are largest in the region where the system

transitions between ergodic and localized.

In order to better pin down the transition point be-
tween the ergodic and many-body localized phases, in
Fig. 4(a) we plot δ(m)l vs l in the vicinity of h = 3.5. For
h ≥ 3.6, we see that δ(m)l seems to saturate to a finite
value that is larger than ∆(mDE)13, suggesting that the
system is many-body localized for h ≥ 3.6. The transi-
tion between ergodic and many-body localized can occur
for smaller values of h as, for larger values of l, the plots
for δ(m)l may saturate to a constant value. However, we
expect that hc ≈ 3.5 since in the vicinity of this disor-
der strength we see that δ(m)l and ∆(mDE)l−1 are very
close to each other for the largest system sizes studied.
We should stress that, for TI > 2, we do not find indica-
tions that hc increases significantly with increasing TI

54.
In general, it is expected that as one increases the mean
energy density after the quench (which is exactly what
increasing TI does in our case) the transition point be-
tween the delocalized and localized phases should move
towards stronger disorder19. In the systems studied here,
it is likely that a TI < 2 is needed to clearly observe that
effect. However, the failure of NLCE to converge in that
regime does not allow us to check it.

In summary, we have studied quantum quenches in
the thermodynamic limit in an interacting model with
binary disorder. This was possible by generalizing the
NLCE approach introduced in Ref.34 to solve problems
with disorder. We have shown that for quenches starting
in a delocalized phase, a freezing of correlations can occur
in the steady state after the quench right after entering
the many-body localized phase. We located the critical
value of the transition between the ergodic and many-
body localized phase using a quantum chaos indicator
(the average ratio between consecutive energy gaps) in
finite systems and the difference between NLCE predic-
tions for observables in the DE and the GE after quantum
quenches. The values of hc were found to be consistent
in those two schemes. The small convergence errors of
NLCE for h > hc strongly support that the many-body
localized phase occurs in the thermodynamic limit. We
should stress that the NLCE approach introduced here
can be used to study disordered systems in equilibrium56

and after quenches57 in two (or higher) dimensions.
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