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We theoretically predict two new classes of three-dimensional topological crystalline insulators
(TCIs), which have an odd number of unpinned surface Dirac cones protected by crystal symme-
tries. The first class is protected by a single nonsymmorphic glide plane symmetry; the second class
is protected by a composition of a twofold rotation and time-reversal symmetry (a magnetic group
symmetry). Both classes of TCIs are characterized by a quantized π Berry phase associated with
surface states and a Z2 topological invariant associated with the bulk bands. In the presence of dis-
order, these TCI surface states are protected against localization by the average crystal symmetries,
and exhibit critical conductivity in the universality class of the quantum Hall plateau transition.
These new TCIs exist in time-reversal-breaking systems with or without spin-orbital coupling, and
their material realizations are discussed.

The notion of symmetry protected topological (SPT)
phases has recently emerged from studies on topologi-
cal insulators and is now being intensively studied1–5.
SPT phases generically have gapless boundary states
that are stable against perturbations, provided that
certain symmetry is preserved. The topological prop-
erty of these boundary states depends crucially on the
underlying symmetry. In the well-known example of
three-dimensional (3D) topological insulators, time re-
versal symmetry protects an odd number of surface Dirac
points that are pinned to time-reversal invariant mo-
menta (TRIM).
Recent theoretical studies6–18 have found a variety of

SPT phases that are protected by crystal symmetries,
termed topological crystalline insulators (TCIs)8. A uni-
versal property of TCI phases is the presence of pro-
tected surface states on symmetry-preserving surfaces.
However, depending on the underlying crystal symmetry,
surface state properties of different classes of TCIs can
vary significantly. In spin-rotationally-invariant TCIs
protected by rotational symmetries of the crystal (such
as C4)

8,15, surface states exhibit band crossings that are
pinned to certain high-symmetry point(s) in the sur-
face Brillouin zone (SBZ). In spin-orbit-coupled TCIs
protected by mirror symmetry, as realized in the SnTe
class of IV-VI semiconductors9,19–22, surface states ex-
hibit Dirac points on a specific mirror-symmetric line in
the SBZ, corresponding to the projection of the 2D plane
with a nonzero mirror Chern number in the Brillouin
zone6.
In this work, we theoretically predict two new classes

of 3D TCIs, protected by a nonsymmorphic glide plane
symmetry and a space-time inversion symmetry respec-
tively. Unlike all topological insulating phases known so
far, their surface states consist of a single (more generally
an odd number), unpinned Dirac point with a quantized
π-Berry phase. Importantly, these new TCI phases are
robust against either magnetic or nonmagnetic impuri-
ties, which by definition preserve the crystal symmetry
on average. Remarkably, the disordered surface realizes,
without any tuning, a critical phase in the universality
class of quantum Hall plateau transition.
TCI with glide symmetry The first class of TCI exists

in 3D systems (with or without spin-orbital coupling)
that have a glide plane symmetry, i.e., a combination of
reflection and a translation by half a lattice vector:

MG : (x, y, z) → (x, y,−z) + a1/2, (1)

where (x, y, z) is the position vector and a1,2,3 are the
basis of lattice vectors, out of which a1 is inside the xy-
plane. A key difference between a mirror plane and a
glide plane is that the mirror plane squares to identity
(up to a Berry phase associated with a 2π rotation), while
the glide mirror squares to a lattice translation:

M2
G = (−1)fTa1

. (2)

Here f = 0 applies to spin-rotationally-invariant systems,
where reflection does not involve spin; f = 1 applies to
spin-orbit-coupled systems, where reflection acts on spin
s = 1

2
and squares to −1.

We now show how a glide plane can protect a crossing
point in the surface bands. First, a symmetry-preserving
surface must be (i) perpendicular to the glide plane (xy-
plane in this case) and (ii) invariant under the translation
along a1. Without loss of generality, we choose a1,2 to
be along x, y-axes, respectively. The only surface that
satisfies both conditions is then the xz-plane, whose SBZ
is plotted in Fig. 1(a). Due to the translational sym-
metry in the xz-plane, the Hamiltonian with an open
surface is diagonal in Bloch basis with crystal momen-
tum (kx, kz). The corresponding Bloch Hamiltonian is
denoted by h(kx, kz). The presence of glide plane sym-
metry implies:

MG(kx)h(kx, kz)M
−1
G (kx) = h(kx,−kz). (3)

Here the operator MG(kx) represents the action of MG

in Bloch basis. Note that unlike point group symme-
try operators, MG(kx) is a function of kx. This results
from Eq.(2), which implies eigenvalues of the glide plane
are not constants but depend continuously on electron’s
momentum.
It follows from Eq.(3) that all bands on the two high-

symmetry lines kz = 0 and π (where lattice constants are
taken to be unity) can be labeled by the eigenvalues of
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MG(kx). Using Eq.(2), and taking into account that at
Ta1

= eikx , the two eigenvalues of MG(kx) are

m±(kx) = ±ifeikx/2. (4)

These eigenvalues divide the bands along kz = 0, π into
two branches that have glide plane eigenvalue of m+(kx)
and m−(kx) respectively—hereafter referred to as m+

and m− bands. Since any hybridization between a m+

band and a m− band breaks the glide plane, a single
crossing point k0 between them at any momentum on
the line kz = 0 or kz = π is protected. The k ·p Hamilto-
nian at k0 takes the form (up to a unitary basis change):
H(k) = vxkxσ1 + vykyσ2, where k denotes the momen-
tum relative to the Dirac point; and the action of glide
mirror on the two degenerate surface states at k0 is rep-
resented by MG(k0) ∝ σ1, up to a U(1) phase factor.
Provided that glide plane symmetry is preserved, pertur-
bations can shift the band crossing point k0 along the
high-symmetry line, but cannot open a gap. This leads
to a symmetry-protected surface Dirac point that is not
pinned to a specific point. Furthermore, the stability of
this Dirac point has a topological origin arising from the
quantization of the Berry’s phase, a point to which we
will return later.
Having addressed the protection of a single surface

Dirac cone, we proceed to study the stability of two Dirac
cones, each of which is locally protected by MG. In this
case, can we adiabatically tune the Hamiltonian to fully
gap the surface without closing the bulk gap? This turns
out to be a subtle issue that has not been encountered in
topological insulating phases studied so far. To answer
this question, two cases should be discussed separately:
(i) the two Dirac points appear on the same line, either
kz = 0 or kz = π and (ii) there is one Dirac point on each
mirror invariant line.
As an example of the first case, we combine two identi-

cal copies of the aforementioned TCI with a single surface
Dirac cone. The combined system then has two surface
band crossings that appear at the same point on same
mirror symmetric line in SBZ, say (k0, 0) [Fig. 1(b)]. In-
finitesimal perturbation on the surface cannot fully gap
the spectrum, because the two right-going (left-going)
modes have the same mirror eigenvalue. Two Dirac
points are hence ‘locally stable’. However, we find the
corresponding surface state spectrum can be and can only
be gapped out by sufficiently strong deformations, i.e., it
is globally unstable. To see this, we need to use a key
property of the glide plane symmetry, as indicated in
Eq.(4): a m+-band is connected with a m−-band at the
BZ boundary at kx = ±π, because the phase factor on
the right hand side gives an additional minus sign when
kx goes to kx+2π. Consider a finite surface perturbation
that pushes k1 to the left and k2 right [Fig.1(c)]. When
they meet each other again at the SBZ boundary, ac-
cording to the above property, the right-going (left-going)
modes have opposite mirror eigenvalues so k1,2 can anni-
hilate each other [Fig.1(d)]. We emphasize that both the
local stability and global instability of two Dirac points

are key characteristics associated with the glide plane
symmetry, which have not appeared elsewhere. We fur-
ther note that since two Dirac points can only annihilate
each other by crossing the SBZ boundary, the new TCI
phase with glide mirror symmetry cannot be treated in
continuum models where k-space is effectively a sphere
rather than a torus. Generally, the torus nature of SBZ
must be considered in studying nonsymmorphic symme-
tries of a lattice.

In the second case, we consider the spectral flow
of the band dispersion in the SBZ along the path
X̄ ′Γ̄X̄M̄Z̄M̄ ′X̄ ′, shown in Fig. 1(a) by the arrows.
Fig. 2(a) and Fig.2(c) show typical spectral flows for
a trivial and a nontrivial phase, respectively. We need
the following principle for the analysis: along X̄ ′Γ̄X̄ and
M̄ ′Z̄M̄ , the bands must appear in pairs that cross each
other. The proof of the principle is given in Sec. I of
Supplementary Materials (also see Ref.[23]). In Fig. 2(a),
there are two band crossings on X̄ ′Γ̄X̄ and M̄ ′Γ̄M̄ , re-
spectively. When the chemical potential on the surface
increases, the two bands move upward in energy together,
as in Fig. 2(b) and are eventually pushed into the con-
duction bands as in Fig. 2(c), leaving a full gap on the
surface. In Fig. 2(d), there is one band crossing along
X̄ ′Γ̄X̄ , and no crossing along M̄ ′Z̄M̄ . When the surface
chemical potential increases, the two bands move upward
in energy together. However, since bands must appear in
crossing pairs along kz = 0 and kz = π, pushing up the
chemical potential will ‘pull out’ a pair of bands from the
valence bands, as shown in Fig. 2(e). As as result, the
Dirac point on X̄ ′Γ̄X̄ moves to M̄ ′Z̄M̄ without closing
the bulk gap, and the flow remains [see Fig. 2(f)].

We have now shown that a single surface Dirac cone
can be protected by a glide mirror symmetry, but not two
cones. Due to the bulk-edge correspondence, this implies
the existence of a Z2 topological invariant for the bulk.
The analytic and explicit expression of the invariant in-
volve the theoretical tool of non-Abelian Berry phase and
Wilson loop24–28, which we leave to Sec. II of Supplemen-
tary Materials. There, we also provide a lattice model as
an example of this TCI phase in a spinless system.

To summarize, the TCI with a glide mirror symmetry
has a single Dirac point that (i) is unpinned to any high-
symmetry point, and (ii) under symmetry perturbations
that does not close the bulk gap, can move along two
mirror invariant lines as well as shift between the two
lines. Can we have a new TCI phase with a single Dirac
point that can freely move in the SBZ without being
confined to any high-symmetry point or line in the SBZ?
Below we provide an affirmative answer to this question.

TCI with space-time inversion symmetry We now show
that an anti-unitary symmetry C2∗T , the combination of
a twofold rotation and time-reversal, protects a Z2 TCI
phase with a single Dirac cone on the surface perpen-
dicular to the twofold axis, whose location in the SBZ
is completely unpinned. This symmetry is hereafter re-
ferred to as a space-time inversion symmetry, as C2 ∗ T
operation on the surface sends (x, y, t) to (−x,−y,−t).
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FIG. 1: (a) The SBZ of the xz-surface of a 3D (spinless) system with glide plane defined in Eq.(1). (b,c,d) are schematics
of the process where two identical Dirac points on a single mirror symmetric line annihilate each other through finite surface
perturbation. Here in (b) we set k1,2 slightly away from each other only to indicate that there are two instead of one Dirac
points. The color bar on the left of (b) shows the color code for the phase of the glide plane eigenvalues.
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FIG. 2: (a-c) show the process of gapping the spectral flow
when there are two band crossings, on X̄

′Γ̄X̄ and M̄
′Γ̄M̄

respectively. (d-f) show the continuous flow when there is
only one band crossing, and how the crossing moves from
X̄

′Γ̄X̄ to M̄
′Γ̄M̄ .

We first note the identity (C2 ∗ T )
2 = I, which holds

for both systems with and without spin-orbit coupling,
because both C2

2 and T 2 are equal to −I for the former,
and I for the latter. This identity allows us to repre-
sent the action of C2 ∗ T on the two degenerate states
at a (putative) Dirac point by C2 ∗ T = Kσ1, where K
is complex conjugation. Then, one can easily verify that
the Dirac Hamiltonian H(k) = vxkxσ1+vykyσ2 is indeed
compatible with C2∗T symmetry. Perturbations that are
invariant under C2 ∗T correspond to σ1 or σ2, which sim-
ply shift the Dirac point. The Dirac mass term σ3 is odd
under C2 ∗ T and hence forbidden. This simple analysis
demonstrates the protection of an unpinned Dirac point
by C2 ∗ T .

We now further show that two cones can annihilate
each other under perturbations preserving the C2 ∗ T
symmetry. The Hamiltonian for two identical copies of
surface Dirac cones has the following form H = τ0 ⊗
(kxσx+kyσy), with C2 ∗T = Kτ0⊗σ1, where τ0,1,2,3 are
identity and Pauli matrices acting on the species space.
A symmetry preserving perturbation δmτ2 ⊗ σ3 can gap
the whole spectrum. This implies the Z2 nature of the
TCIs protected by C2∗T symmetry, with an odd number
of surface Dirac points. The Z2 topological classification
can also be derived from analysis of the bulk topology,

as we show in Sec. III of Supplementary Materials.

The protected surface states of TCIs with space-time
inversion symmetry are characterized by a quantized
π Berry phase, for any loop enclosing all Dirac points
thereof. As stated above, the same is true for TCIs with
the glide mirror symmetry, provided that the loop en-
closing the Dirac point is symmetric. Here we provide
a general proof for both cases. First we show that the
Berry’s phase is independent of the geometry (such as
size or shape) of the loop. According to Stokes the-
orem, the difference between Berry phases associated
with two loops mod 2π is given by the integral of Berry
curvature over the region bounded by them. For sys-
tems with glide plane symmetry, the Berry’s curvature
for the surface states satisfies F (kx, kz) = −F (kx,−kz),
due to the oddness of F under reflection z → −z. So
for any loop symmetric about a mirror invariant line,
the Berry’s curvature integral inside the loop subtract
the singular band crossing point vanishes. For systems
with space-time inversion symmetry, Berry’s curvature
satisfies F (kx, ky) = −F (kx, ky) due to the oddness of
F under time-reversal symmetry, and hence vanishes ev-
erywhere in k space. So the Berry’s curvature integral
is again zero. Therefore, only Dirac points make a sin-
gular contribution to the Berry phase. As is well-known,
the Berry phase of each Dirac point is π. Therefore, an
odd number of Dirac points on the TCI surface guaran-
tees a quantized π Berry’s phase, for both glide mirror or
space-time inversion symmetry. (The quantization of π
Berry phase by C2 ∗ T and its implication for TCI phase
were mentioned in a recent work29; The local stability of
a Dirac point in the presence of C2 ∗ T symmetry was
also noted30,31.)

Material realizations The two new classes of Z2 TCI
can be realized in systems with or without spin-orbit cou-
pling. They are discussed separately below.

In spinful systems, the two new classes of Z2 TCI are
consistent with time-reversal symmetry (TRS). One can
simply consider a Z2 strong topological insulator which
also has glide mirror and/or twofold rotation symme-
try. Pick a surface that preserves the glide plane or the
twofold axis. It is guaranteed to possess a single Dirac
cone at one TRIM, protected by spinful TRS. Now let
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us add perturbations that break TRS but preserve the
glide plane or C2 ∗T ; we immediately obtain the Z2 TCI
phases found in this work. This observation may help
us find these new TCIs in spinful systems. For exam-
ple, the putative topological Kondo insulator SmB6

32–35

has C2-symmetry on the (001)-surface. Adding any mag-
netic field or developing a ferromagnetic moment parallel
to the surface preserves C2 ∗T . Hence SmB6 with an in-
plane field, or magnetically doped SmB6 with an in-plane
magnetization, can be considered as a Z2 TCI protected
by C2 ∗ T , having an odd number of Dirac cones located
away from any TRIM.
To realize the new TCI phases in systems without spin-

orbit coupling (or equivalently, spinless systems) requires
breaking TRS. This can be shown by proving that a sin-
gle Dirac cone characteristic of these TCIs cannot ap-
pear on the surface of a time-reversal-invariant spinless
insulator. To see this, first note that Dirac cones at
non-TRIM must appear in pairs with opposite momenta.
This leaves the possibility of having a single Dirac cone
at one TRIM. However, given that time-reversal symme-
try is represented by T = K (up to a gauge) for spinless
fermions and it reverses k measured from the TRIM, a
2D Dirac Hamiltonian is simply not allowed by T . This
is because only one of the three Pauli matrices, namely,
σ2, is reversed under K, while a 2D Dirac Hamiltonian
such as H(k) = vxkxσ1 + vykyσ2 or any other form must
involve two Pauli matrices. This concludes that a sin-
gle Dirac cone cannot exist on the surface of a spinless
system with time-reversal symmetry.
Therefore, the key requirement for spinless TCIs is to

break TRS while preserving the relevant crystal symme-
try of either glide mirror or space-time inversion. One
may search in magnetic insulators with negligible SOC,
since many types of magnetic order have at least one of
the two symmetries. Alternatively, we note that photonic
crystals may be a very promising platform for finding
these TCI phases, because their structures and crystal
symmetries can be easily manipulated36,37.
Stability against disorder and quantum Hall criticality

We now show that topological surface states of TCIs with
either glide mirror or C2 ∗ T symmetry are fully robust
against any type of disorder (magnetic or nonmagnetic)
and cannot be exponentially localized even under strong
disorder on the surface. Similar to the case of a disor-
dered TI surface with random magnetic impurities38, the
delocalization of TCI surface states here is protected by
the average symmetry9,22,39–42. To see this, we first note
that breaking either the glide plane or C2 ∗ T symmetry
uniformly generates a Dirac mass term mσz. Applying
the original symmetry operation to the resulting surface

leads takes m to −m. Since disorders on the TCI sur-
face locally break the symmetry in a random way and
preserve the symmetry after averaging, the Dirac mass
is spatially varying, with equal probability of being pos-
itive and negative such that 〈m(x)〉 = 0. In addition,
two other types of disorder in Dirac fermion systems, the
vector and the scalar potentials, are symmetry allowed.
Therefore, the disordered TCI surface is described by a
single Dirac fermion with all three types of random disor-
ders. The latter is known to be in the same universality
class as the quantum Hall critical point at the plateau
transition43. From this we conclude that the disordered
TCI surface exhibits a universal longitudinal conductiv-

ity on the order of e2

h , and a nontrivial scaling of longi-
tudinal and Hall conductivity as a function of an applied
out-of-plane magnetic field B, which gaps the Dirac point
and drives each surface into a quantum Hall state with a
Hall conductance sign(B)e2/2h.

To conclude, we have theoretically predicted two new
classes of 3D Z2 TCI that have unpinned surface Dirac
cones, which are protected by a glide plane and C2 ∗ T ,
respectively. The Z2 nature distinguishes the new TCI
from the Z TCI protected by mirror symmetry such as
SnTe. Because of the ‘unpinned’ nature of the surface
Dirac cone, the TCI phases studied in this work can-
not be obtained from considering only the spectral flow
between two high-symmetry points in the SBZ. In a pre-
vious attempt at classifying TCIs with nonsymmorphic
space groups based on this approach14, the authors in-

correctly stated that a single glide plane cannot protect
a nontrivial topological phase. Besides looking at the
surface states, we also mathematically prove the Z2 clas-
sification which directly reveals the bulk band topology.
We emphasize that the new TCI phases can be realized
in both spinful and in spinless systems. In spinful sys-
tems, these TCIs can be realized by applying perturba-
tions that break TRS yet preserving glide plane or C2∗T .
The realization of TCIs in spinless systems is an inter-
esting subject that we leave to future work.
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