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We argue that at finite carrier density and large displacement fields, bilayer graphene is prone
to ` = 0 and ` = 1 Pomeranchuk Fermi surface instabilities. The broken symmetries are driven by
non-local exchange interactions which favor momentum space condensation. We find that electron-
electron interactions lead first to spontaneous valley polarization, which breaks time-reversal invari-
ance and is associated with spontaneous orbital magnetism, and then under some circumstances to
a nematic phase with reduced rotational symmetry. When present, nematic order is signaled by
reduced symmetry in the dependence of optical absorption on light polarization.

I. INTRODUCTION

The search for a microscopic theory of superconductiv-
ity, ultimately brought to a conclusion by the successful
work of Bardeen, Cooper, and Schrieffer1, led a number
of early condensed matter theory researchers2–4 to specu-
late on the possibility that interactions could under some
circumstances lead to momentum-space order responsi-
ble for equilibrium currents. Since orbital magnetism al-
ways accompanies spontaneous spin-polarization because
of spin-orbit coupling, we now know that ` = 0 Pomer-
anchuk5 instabilities can lead to spontaneous circulating
currents. Similarly ` = 1 Fermi surface instabilities can
potentially lead to spontaneous longitudinal currents.

An ` = 1 Fermi-surface distortion transfers occupa-
tion between quasiparticle states with opposite current
components along the continuously variable direction in
which overall current flows, as illustrated schematically in
Fig. 1. For a translationally-invariant electronic system it
is known from both microscopic-quantum-mechanical6,7

and Fermi-liquid-theory8 points of view that such a dis-
tortion corresponds simply to a Galilean boost which
raises the center-of-mass kinetic energy and does not
change the interaction energy. An ` = 1 charge-channel
Pomeranchuk instability is therefore an impossibility in
an electron fluid. In this article we show how the sim-
ple, but highly unusual electronic structure of graphene
bilayers with low carrier densities and large displacement
fields can lead to both ` = 0 and ` = 1 Pomeranchuk in-
stabilities, although not to spontaneous longitudinal cur-
rents.

In a crystal the Pomeranchuk instability notion refers
to Fermi-surface distortions which reduce lattice symme-
tries. Here ` = 1 charge-channel distortions have also
been viewed9 as extremely unlikely, although instabilities
in p-wave spin channels preserving time reversal symme-
try have been proposed under certain conditions.10 In-
stabilities with ` = 2, which lead to electron nematic
states, do on the other hand appear to occur11,12 in a
variety of different systems and spin-channel ` = 0 in-
stabilities, which lead to ferromagnetism, are of course
common. In this article we point out that a Bernal-
stacked graphene bilayer (BLG) in which a gap has been
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FIG. 1: (color online) ` = 1 Pomeranchuk instability of a con-
ventional Fermi liquid and of density-unbalanced BLG. The
lower panels illustrate the quasiparticle band dispersions that
correspond to the Fermi surfaces illustrated in the top pan-
els. a) The circular orange Fermi circle with Fermi radius kF0

denotes the occupied states of a two-dimensional Fermi sea.
A Pomeranchuk instability occurs when energy is reduced by
a momentum-space angle-dependent change in Fermi radius
that is proportional to cos(`θ). For ` = 1 the distorted Fermi
surface, indicated here by the dashed black circle, is simply
shifted in momentum space. b) The disk-shaped orange re-
gion with inner and outer Fermi radii kF0,in and kF0,out de-
notes occupied conduction band states in unbalanced BLG.
Shifts in the inner and outer Fermi radii that are proportional
to cos(θ) and have opposite signs for the inner and outer Fermi
lines, thicken and thin the disk in opposite directions as in-
dicated by the black dashed lines. The distorted phase has
lower exchange energy because the occupied states are more
concentrated in momentum space.

opened by a transverse electric field is ideally suited to
host both ` = 0 and ` = 1 Pomeranchuk instabilities
because its electron and hole Fermi seas are disks that
are spread widely over momentum space, as illustrated
in Fig. 1(b).13 Both ` = 0 and ` = 1 Fermi surface distor-
tions can lower energy by compactifying the Fermi sea,
thereby realizing the momentum-space condensation en-
visaged by London4 more than seventy years ago.
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II. FERMI-SURFACE INSTABILITIES IN
BILAYER GRAPHENE

Recent progress14 has made it possible to prepare and
study the electronic properties of two-dimensional (2D)
electron systems based on single- and few-layer graphene.
This advance has provided researchers with a new fam-
ily of materials whose electronic structure is at the same
time remarkably simple and remarkably variable. Single-
layer graphene is described by a massless-Dirac-fermion
model with conduction and valence bands that touch at
two different points in momentum space and disperse lin-
early over a wide energy region. The parabolic band dis-
persion near the Fermi level of a neutral Bernal-stacked
bilayer graphene allows electron-interaction-driven insta-
bilities, which have been studied by using mean-field15,16

or renormalization-group-based approaches.17 Clear evi-
dence for strong many-body effects has already been ob-
tained in several recent experiments.18–29. In a neutral
Bernal-stacked bilayer with a very strong electric field
directed perpendicular to the layers30, the Fermi level
lies within the conduction band of one layer and the va-
lence band of the other. Inter-layer hybridization with
strength γ1 opens up an avoided crossing gap centered at
a finite 2D wavevector magnitude between states local-
ized in opposite layers, yielding an unusual semiconduc-
tor with an electrically tunable gap. Our interest here is
in the electronic properties of degenerate electrons in the
conduction band (or holes in the valence band) of this
layer-unbalanced configuration of BLG.

When angular variation of the avoided crossing gap
due to trigonal warping effects is neglected,31 the conduc-
tion band minimum occurs along a circle in momentum
space and the non-interacting electron Fermi surface is
an annulus as indicated in Fig. 1(b). Because the band
density-of-states diverges as energy approaches the con-
duction band minimum it is clear, as noted previously
by others,32,33 that interactions may play a central role
in determining electronic properties and that instabili-
ties that break symmetries are likely. The possibilities
include ferromagnetism32 and density-wave33 states. In
this paper we argue that momentum space condensation
of the type imagined by London, Heisenberg and others,
which has not previously been observed, is also a possi-
bility.

We illustrate our main point by considering a toy
model which ignores trigonal warping and spin and val-
ley degrees-of-freedom, and by using mean-field theory to
estimate its Fermi-liquid parameters. The Hartree-Fock
energy functional34 is

EHF[{nk}] =
∑
k

[εb(k)− µ]nk −
1

2A

∑
k,k′

nkVk−k′nk′ ,

(1)
where εb(k) are bare-band energies, which are isotropic
and thus depend only on k = |k|, and A is the 2D elec-
tron system area. In our toy model we assume that the
interaction Vk−k′ depends only on |k − k′|. Expanding
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FIG. 2: (color online) The “outer-inner” pseudopotential

U
(`)
out,in as a function of the dimensionless parameter ✏ = b/(2k̄)

for ` = 0 (s-wave) and ` = 1 (p-wave). We remind the reader
that b measures the thickness of the ring: b ! 0 in the limit in
which the Fermi energy "F equals the band-edge energy ✏min.
In this plot we have taken for simplicity q̄TF = 1. The top
panel refers to a very small screening parameter, � = 0.01,
while the upper panel refers to maximally-screened Thomas-
Fermi interactions, � = 1.0.
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FIG. 2: (color online) The dimensionless “outer-inner” pseu-

dopotential U
(`)
out,in vs. ε = b/(2k̄) for ` = 0 (s-wave) and ` = 1

(p-wave). This plot is for δ = 2/(aeff k̄) = 1 where aeff and k̄
are defined in the main text. The parameter b measures the
thickness of the ring and b→ 0 in the limit in which the Fermi
energy εF equals the band-edge energy εmin. The left panel
is for a very small screening parameter, λ = 0.01, while the
right panel is for fully screened Thomas-Fermi interactions,
λ = 1.0.

this energy functional in powers of the deviation δnk from

the occupation numbers n
(0)
k corresponding to the undis-

torted Fermi surface yields an energy expression of the
Fermi-liquid-theory form:

EHF[{nk}] = E0+
∑
k

εHF
b (k)δnk−

1

2A

∑
k,k′

δnkVk−k′δnk′ ,

(2)
where the Hartree-Fock band energy εHF

b (k) is defined by

εHF
b (k) = εb(k)−

∫
d2k′

(2π)2
n

(0)
k′ Vk−k′ . (3)

Because the total energy is prone to cancellations
between quasiparticle-velocity renormalizations and
quasiparticle-interaction effects, we must treat the two
contributions on an equal footing. Below we consider the
quasiparticle-velocity renormalization first and use this
analysis to define our notation.

We begin by calculating the Hartree-Fock velocities,
i.e. the momentum-space radial derivatives of the quasi-
particle energy at the outer (n = out) and inner (n = in)
Fermi circles. The velocities are most conveniently eval-
uated by replacing the derivative with respect to k in
Vk−k′ by a derivative with respect to k′. When the in-
teraction correction to the velocity is integrated by parts,

this derivative then acts on n
(0)
k′ picking out states at the

Fermi energy. We find that

vHF
n (k) = sgn(n)|vn(k)|+ 1

2π~

∫ 2π

0

dϕ

2π
cos(ϕ)

×
{

[k′Vk−k′ ]k′=kF0,out
− [k′Vk−k′ ]k′=kF0,in

}
,

(4)

where φ is the difference between the angular coordinates
of k and k′, and we have noted that Vk−k′ depends only
on φ once k and k′ are fixed35. This leads to

v?out

vout
= 1 + αout

(
U

(1)
out,out −

√
kF0,in

kF0,out
U

(1)
out,in

)
, (5)
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FIG. 3: (color online) Valley polarization and deformation of quasiparticle bands due to ` = 0 and ` = 1 Pomeranchuk insta-
bilities in unbalanced BLG. These results were obtained with an external potential difference corresponding to a perpendicular
electric field of 1 V/nm between layers. Valley polarized quasiparticle bands are plotted for three different total carrier densities.
The upper and lower panels illustrate conduction band energy dispersions and constant energy contours respectively. The left
and right columns are for momenta near the K′ and K valleys. The ` = 0 instability is signaled by unequal occupation of the
two valleys. The ` = 1 instability is signaled by broken rotational symmetry within an occupied valley. The solid black line
marks the position of the Fermi level, chosen as the zero of energy: εF = 0. For this calculation we used a k-point sampling
density near the Dirac cones equivalent to a density of 4608× 4608 points in the whole Brillouin zone.

where v?out ≡ vHF
out(kF0,out), αout ≡ e2/(~vout), U

(m)
n,n′ ≡

Vm(kF0,n, kF0,n′) (kF0,n kF0,n′)
1/2

/(2πe2) is a dimension-
less interaction parameter that is symmetric in the n, n′

inner/outer indices, and the Vm’s are Fourier components
of the interaction’s φ-dependence. The corresponding ex-
pression for v?in can be obtained by interchanging the in
and out labels.

To look for Pomeranchuk instabilities we paramaterize
the inner (n = in) and outer (n = out) Fermi surfaces in
terms of dimensionless distortion functions:

kF,n = kF0,n[1 + an(θ)] ≡ kF0,n + δkF,n(θ) , (6)

and expand these in terms of their angular momentum
components an(θ) =

∑+∞
`=−∞ an`e

i`θ. The distorted state
has a δnk which is non-zero only in the vicinity of the
inner and outer Fermi lines. It is easy to verify that the
first-order correction to the energy vanishes. To obtain
the second-order correction we linearize the Hartree-Fock
energies around kF0,in and kF0,out:

εHF
b (k) '

{ −~v?in(k − kF0,in)

~v?out(k − kF0,out)

and add the quasiparticle interaction contribution to ob-
tain the energy change for small distortions:

E(2)

A
=

~
4π

∑
n,n′

+∞∑
`=−∞

{
v?nδn,n′

− e2

~
sgn(nn′)U (`)

n,n′

}
k

3/2
F0,n, k

3/2
F0,n′ an`a

∗
n′` .

(7)

This is our principal result. Note that for a Galilean-
invariant system which has only an outer Fermi radius

the two interaction contributions to the ` = 1 distor-
tion energy cancel, recovering the no go theorem6–8 men-
tioned previously. An ` = 1 Pomeranchuk instability oc-
curs when the determinant of the matrix

F =

(
v?out − (e2/~)U

(1)
out,out (e2/~)U

(1)
out,in

(e2/~)U
(1)
out,in v?in − (e2/~)U

(1)
in,in

)
(8)

is zero. Using Eq. (5) (and the corresponding equation
for v?in) we finally find the following criterion:

1−
(
αout

√
kF0,in

kF0,out
+ αin

√
kF0,out

kF0,in

)
U

(1)
out,in = 0 . (9)

Notice that this instability criterion depends only on the
“outer-inner” interaction.

We estimate the disk Fermi-liquid interaction parame-
ters using

Vk−k′ =
2πe2

|k − k′|+ λqTF
, (10)

where qTF is the Thomas-Fermi screening wave vector,
and λ ∈ [0, 1] is a dimensionless control parameter that
allows us to interpolate between bare-Coulomb (λ = 0)
and Thomas-Fermi (λ = 1) limits. The Thomas-Fermi
screening wave vector is proportional to the density-of-
states at the Fermi energy, N(0) = 2meff k̄/(π~2b) where
b = kF0,out−kF0,in, k̄ = (kF0,out +kF0,in)/2, and meff pa-
rameterize the band-energy dispersion at its minimum.
It follows that qTF = 2πe2N(0) = 4k̄/(aeffb) where
aeff = ~2/(meffe

2) is an effective Bohr radius. The inner-

outer interaction parameters U
(`)
out,in obtained using this

approximation depend on two dimensionless quantities,
ε = b/(2k̄) and δ = 2/(aeff k̄), and are plotted for ` = 0, 1
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FIG. 4: (color online) a. Spontaneous Hall effect vs. carrier density. The Hall effect [Eq. (11)] reflects spontaneous valley
polarization. We find that the Hall conductivity increases monotonically with carrier density until the minority (K′) valley with
opposite Hall conductivity starts to be occupied. The shaded regions indicate intervals of carrier density over which nematic
phases due to ` = 1 and higher order channel Pomeranchuk instabilities appear. The lower density instability occurs within
the majority valley and the higher density instability within the minority valley. b-c. Berry curvature and Bloch state orbital
magnetic moment in units of Bohr magnetons near the K valley in the limit of low carrier density.

in Fig. 2. The rapid variation at small ε is due to strong
Thomas-Fermi screening in this limit and are certainly
an artifact of using such a simple screening approxima-
tion to describe the ε → 0 limit in which Fermi-level
density-of-states diverges.

We can make two conclusions based on these estimates:
i) Interactions in the ` = 1 channel are strong enough to
produce an ` = 1 Pomeranchuk instability and ii) Inter-
actions in the ` = 0 channel are almost certainly stronger
than those in the ` = 1 channel. A single valley, ` = 0
charge channel instability, would imply phase separation
into low and high density regions, is forbidden by the
long-range Coulomb interaction. However, the presence
of valley and spin degrees of freedom allows ` = 0 in-
stabilities that lead to spin32 or valley polarized states.
` = 1 Pomeranchuk instabilities are likely only in states
which are already spin or valley polarized. Although mo-
mentum space is occupied asymmetrically when the ` = 1
instability occurs, we find that there is no longitudinal
current because of a cancellation between inner and outer
Fermi surface contributions.

III. TIGHT-BINDING CALCULATIONS AND
HALL CONDUCTIVITY SIGNATURES OF THE

INSTABILITIES

We have corroborated the conclusions made on the
basis of our toy-model calculations by performing self-
consistent π-band lattice Hartree-Fock calculations sim-
ilar to those described in Refs. 16,36. For these calcula-
tions we added interactions to a band model with nearest-
neighbor intra-layer hopping γ0 = 3.12 eV and inter-layer
hopping γ1 = 0.377 eV, ignoring other hopping parame-
ters for the sake of simplicity.37 The resulting bands near
the K and K ′ points are shown in Fig. 3. We have
suppressed spin-polarization instabilities in these calcu-
lations so that ` = 0 instabilities are manifested by spon-

taneous valley and not spin polarization. Because exter-
nal electric fields in unbalanced BLG lead to large Berry
curvatures Ωn,k of opposite sign in the vicinity of K and
K ′ valley points38 the anomalous Hall conductivity can
be used as an observable for spontaneous valley polariza-
tion. The Hall conductivity (per spin) is calculated by
integrating Ωn,k over occupied quasiparticle states near
the Dirac points,

σH =
e2

~

∫
d2k

(2π)
2

∑
n

fn,k Ωn,k , (11)

where fn,k is the Fermi-Dirac distribution and a sum is
carried over the band index n.

Fig. 4 plots the Hall conductivities evaluated for this
model and demonstrate that spontaneous valley polar-
ization occurs for carrier densities smaller than ∼ 25 ×
1011 cm−2, and that nematic order occurs for carrier den-
sities smaller than ∼ 9×1011 cm−2 and again near the on-
set of minority valley occupation. The associated Berry
curvatures and the orbital moments of the gapped chiral
band edges are represented together with the Hall con-
ductivity to represent the k space resolved contribution.

IV. OPTICAL CONDUCTIVITY SIGNATURES

The presence of either valley polarization or nematic
order should be observable via interband optical con-
ductivity measurements. Circular dichroism measure-
ments can detect valley polarization because the asso-
ciated optical transition matrix elements38 are valley de-
pendent. Valley-dependent population of states near the
band edges then leads to valley-dependent Pauli block-
ing and contrast between the absorption of left and right
circularly polarized light.

Broken rotational symmetry in a nematic phase also
has observable signatures in optical conductivity mea-
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surements comparing absorption of light that is is lin-
early polarized along different directions. For example,
the real part of the conductivity per valley and spin for
light polarized along the x axis is given by

σxx(ω) =
πe2

~ωA
∑
k

|Wk±|2 (f+,k − f−,k) δ(~ω −∆Ek)

(12)
where Wk± = 〈+k| jx |−k〉, |+k〉 and |−k〉 are con-
duction and valence band quasiparticle states, ∆Ek is
the band splitting and jx = ∂Hk/∂kx is the current
operator in the x-direction. At the band extrema,
the quasiparticle states are symmetric and antisymmet-
ric combinations of the conduction bands of the low-
potential graphene sheet and the valence bands of the
high-potential graphene sheet. It follows that for states
near the band edges Wk± ' cos θk. To illustrate how the
momentum-direction dependence of the optical conduc-
tivity is sensitive to the spontaneous anisotropy of the
nematic ground state, we evaluate the real part of the
conductivity for incident light polarized along direction ϕ
and a nematic state with conduction bands occupied be-
tween orientation angles θi and θf . We find that because
absorption is reduced by Pauli-blocking the conductivity
at the absorption edge is proportional to

σϕ ∝
(
θd + sin θd cos

(
θs

2
+ ϕ

))2

(13)

where θd = θf − θi and θs = θf + θi. Note that in the
absence of nematicity (θd = 2π) the optical absorption is
independent of ϕ.

V. DISCUSSION

Because the Fermi surface instabilities discussed in
this paper appear only at low carrier densities, compara-
ble to or smaller than typical disorder-induced density-
fluctuation scales for bilayer samples on silicon oxide
substrates, and because large electric fields are favor-
able for their occurrence, we anticipate that momentum
space condensation is at present a realistic possibility
only for dual-gated bilayer graphene samples on h-BN
substrates.39 We expect that trigonal warping of the un-
balanced bilayer conduction bands will favor momentum
space condensation over competing33 density-wave insta-
bilities. Because the ` = 1 Pomeranchuk instability is
likely only within states in which spin or valley polariza-
tion, or both, has already occurred, its appearance should
be signaled most clearly by observables which detect re-
duced orientational symmetry, for example polarization
direction dependence in interband optical absorption.
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