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Graphene irradiated by a circularly polarized laser has been predicted to be a Floquet topological
insulator showing a laser-induced quantum Hall effect. A circularly polarized laser also drives the
system out of equilibrium resulting in non-thermal electron distribution functions that strongly
affect transport properties. Results are presented for the Hall conductance for two different cases.
One is for a closed system such as a cold-atomic gas where transverse drift due to non-zero Berry
curvature can be measured in time of flight measurements. For this case the effect of a circularly
polarized laser that has been switched on suddenly is studied. The second is for an open system
coupled to an external reservoir of phonons. While for the former, the Hall conductance is far from
the quantized limit, for the latter, coupling to a sufficiently low temperature reservoir of phonons
is found to produce effective cooling, and thus an approach to the quantum limit, provided the
frequency of the laser is large as compared to the band-width. For laser frequencies comparable
to the band-width, strong deviations from the quantum limit of conductance is found even for a
very low temperature reservoir, with the precise value of the Hall conductance determined by a
competition between reservoir induced cooling and the excitation of photo-carriers by the laser. For
the closed system, the electron distribution function is determined by the overlap between the initial
wavefunction and the Floquet states which can result in a Hall conductance which is opposite in
sign to that of the open system.

PACS numbers: 73.43.-f, 05.70.Ln, 03.65.Vf, 72.80.Vp

I. INTRODUCTION

A corner stone in condensed matter has been the dis-
covery of the quantum Hall effect1,2 where electrons con-
fined to two-dimensions (2D) and subjected to an ex-
ternal magnetic field exhibit transport properties that
are remarkable in their insensitivity to material param-
eters. In particular for the case of the integer quantum
Hall effect, the Hall conductance (σxy) is quantized in
integer multiples of the universal conductance e2/h (i.e.,
σxy = Ce2/h) with the integer C being a geometric or
topological property of the band-structure, known as the
Chern number.3–5 Not surprisingly, the discovery of this
effect has lead to tremendous interest in exploring similar
topologically protected transport in other systems. An
important contribution in this direction was the theoret-
ical proposal of the quantum Hall effect in the absence
of a magnetic field, but in the presence of a staggered
magnetic flux which still breaks time-reversal symme-
try.6 Soon after, topologically protected transport in 2D
and 3D in time-reversal preserving systems was discov-
ered.7–10 There is also now a growing interest in general-
izing these concepts to strongly interacting systems.11

Another intriguing class of systems are those that show
topological behavior only dynamically, an example of
this are the Floquet topological insulators (TIs) where a
time-periodic perturbation modifies the electron hopping
matrix elements in such a way as to mimic a magnetic
flux.12–15 Since time-dependent Hamiltonians do not con-
serve energy, the concept of energy-levels do not exist.
For the particular case of time-periodic Hamiltonians, a

quasi-energy spectrum may still be constructed from the
eigenvalues of the time-evolution operator over one pe-
riod.16,17 In this language, Floquet TIs have bulk quasi-
energy bands with non-zero Berry-curvature and Chern
number, and support edge-states in confined geometries.
12–15,18–25

However there are many open questions in the study of
Floquet TIs that are unique to the fact that these systems
are out of equilibrium. Firstly, much of the discussion in
the literature assumes that these quasi-energy levels play
the same role as the true energy levels of a static Hamil-
tonian, which leads to theoretical predictions of quan-
tum Hall-like quantized transport,12,18 with strong ex-
perimental signatures of robust chiral edge transport in
optical waveguides.26 However in a nonequilibrium sys-
tem the electron distribution function, which enters in
all measurable quantities, is not known apriori and de-
pends sensitively on relaxation mechanisms,27–32 and at
least on shorter time-scales, on how the external peri-
odic drive has been switched on.30,33–37 Moreover, un-
like static Hamiltonians, there may not even be a one
to one correspondence between the Chern number of the
bulk quasi-bands and the number of edge-states in the
quasi-spectrum,23 and hence some new topological in-
variants may be necessary for time-periodic systems.38,39

Often dissipative coupling to suitably chosen reservoirs
can strongly modify topological properties40,41 thus re-
quiring new measures for topological order in open and
dissipative systems.42–44

Understanding these issues is particularly important
due to several experimental realizations of Floquet sys-
tems such as in optical waveguides,26 cold atoms in peri-
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odically modulated optical lattices,45 2D Dirac fermions
on the surface of a 3D TI irradiated by a circularly po-
larized laser,46,47 and chiral transport in graphene irra-
diated by THz radiation.48,49

In this paper we study graphene irradiated by a cir-
cularly polarized laser, taking into account the full time-
evolution of the system, and also accounting for coupling
to an external reservoir of phonons. A similar study was
carried out for 2D Dirac fermions30 where it was shown
that in the absence of coupling to an external reservoir,
i.e., when the system was an ideal closed quantum sys-
tem, the electron distribution function retained memory
of the state before the laser was switched on, and also
depended on the laser switch-on protocol. It was also
shown that coupling to phonons makes the system lose
memory of these initial conditions, yet the electron dis-
tribution function was still far out of equilibrium even
when the phonons were an ideal reservoir. The effect of
the electron distribution function on the photoemission
spectra was discussed.

In this paper our goal is to study the effect of the elec-
tron distribution function on the dc Hall conductance
both for an ideal closed quantum system, and for an open
system. A computation of the Hall conductance requires
going beyond the continuum model of Dirac fermions be-
cause the Berry curvature for a Floquet system becomes
mathematically ill-defined in the continuum, in the vicin-
ity of k-points where laser induced inter-band transitions
are allowed. On a lattice on the other hand, even in the
presence of resonances, the Berry-curvature remains well
defined. Thus in this paper we generalize the treatment
of Ref. 30 to graphene with the aim of exploring the dc
Hall conductance.

Usually Hall conductance is measured in solid-state
systems using four terminals or leads, two for driving
the current, and two transverse leads across which the
voltage is measured.50 However in cold-atomic gases one
may study the Hall conductance even without leads, by
applying a small potential gradient, and studying the
transverse drift of the particles in time of flight mea-
surements.45 Thus, our results for the closed system is
applicable for such a set-up. Our results for the open
system is more relevant to a solid-state device where the
electron-phonon scattering is strong.

We now discuss some subtleties related to transport in
two dimensions. In general the conductance and conduc-
tivity are related as conductance =conductivity×LD−2.
Thus for D = 2, both the conductance and conductivity
become independent of the sample size, and a four termi-
nal measurement of the conductance also measures the
conductivity, the latter being typically evaluated within
the linear-response Kubo formalism. At the same time,
conductance of mesoscopic systems can also be computed
within a Landauer formalism provided there is no inelas-
tic scattering in the system.50 For larger systems, where
electron-electron or electron-phonon scattering becomes
important, the Landauer formalism can no longer be ap-
plied.

The Landauer formalism can be generalized to time-
periodic systems,51 and this approach has been used to
compute the two terminal24,27 and four terminal29 con-
ductance of graphene sheets irradiated by a laser. This
formalism again assumes that there is no inelastic scat-
tering, and that energy is conserved upto an integer times
the laser frequency, with the electron occupation proba-
bilities primarily determined by the overlap of the Flo-
quet states with the states in the leads. Our treatment
in this paper, employing the Kubo formalism is in the
opposite limit where the sample size is large so that in-
elastic electron-phonon scattering is important. Thus our
results are in a regime complementary to that addressed
in Ref. 29. In this limit of large system size, the mean
chemical potential of the leads maintains the average fill-
ing (in our case we are always at half filling), while the
voltage difference that maintains current flow is modeled
as a small electric field maintained across the sample, and
which is treated within the linear-response Kubo formal-
ism.
The outline of the paper is as follows, in Section II

the model is introduced, a Kubo formula for the dc Hall
conductance is derived, and the “ideal” quantum limit
explained. In Section III the dc Hall conductance is
presented for the closed system and compared with the
“ideal” case. In Section IV we generalize to the open sys-
tem where the electrons are coupled to a phonon reser-
voir. The rate or kinetic equation accounting for inelastic
electron-phonon scattering in the presence of a periodic
drive is derived. The results for the Hall conductance
at steady-state with different reservoir temperatures are
obtained and compared with results for the closed sys-
tem and with the ”ideal” case. Finally in section V we
present our conclusions.

II. MODEL

We study graphene irradiated by a circularly polar-
ized laser, and also coupled to a bath of phonons. The
Hamiltonian is,

H = Hel +Hph +Hc (1)

where (setting ~ = 1) Hel is the electronic part,

Hel = −th
∑

k

(

c†kA c†kB
)

(

0 hAB
k (t)

[

hAB
k (t)

]∗
0

)(

ckA
ckB

)

,

hAB
k (t) =

∑

i=1,2,3

eia(
~k+ ~A(t))·~δi (2)

~δi are the nearest-neighbor unit-vectors on the graphene

lattice, ~δ1 =
(

1
2 ,

√
3
2

)

;~δ2 =
(

1
2 ,−

√
3
2

)

;~δ3 = (−1, 0). The

circularly polarized laser enters through minimal substi-

tution ~k → ~k + ~A(t), where

Ax(t) = θ(t)A0 cosΩt;Ay(t) = −θ(t)A0 sinΩt (3)
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We assume that the laser has been suddenly switched
on at time t = 0. This assumption holds equally well for
lasers switched on over a time which is short as compared
to the period 2π/Ω of the laser.

The translation vectors ~a1,~a2 for graphene are ~a1 =
a
2

(

3,
√
3
)

;~a2 = a
2

(

3,−
√
3
)

, while the reciprocal lat-

tice vectors (~bi · ~aj = 2πδij) are ~b1 = 2π
3a

(

1,
√
3
)

;~b2 =
2π
3a

(

1,−
√
3
)

. As written above, hAB
k is not invariant un-

der translations by integer multiples of a reciprocal lattice

vector, ~k → ~k + ni
~bi. In order to recover this symme-

try it is convenient to make the transformation ckB →
ckBe

ia~k·~δ3 .52 Then since, a(~δ1−~δ3) = ~a1, a(~δ2−~δ3) = ~a2,
after this transformation, hAB

k becomes

hAB
k (t) = eia

~A(t)·~δ3 +
∑

i=1,2

ei
~k·~ai+ia ~A(t)·~δi (4)

Dissipation affects the electron distribution and thus
the topological signatures such as the Hall conductance.
Here we consider dissipation due to coupling to 2D
phonons

Hph =
∑

q,i=x,y

[

ωqib
†
qibqi

]

(5)

where the electron-phonon coupling is

Hc =
∑

~kqσ,σ′=A,B

c†~kσ
~Aph(q) · ~σσσ′c~kσ′

(6)

~Aph(q) =
[

λx,q
(

b†x,q + bx,−q

)

, λy,q
(

b†y,q + by,−q

)]

(7)

As is standard practice, we have denoted the sub-lattice
labels A,B in terms of a pseudo-spin label σ, a nota-
tion that will be adopted throughout the paper. Above
we have made the assumption that phonon induced scat-
tering between electrons with different quasi-momenta
do not occur. Thus electronic states at different quasi-
momenta k are independently coupled to the reservoir.

Moreover we will later assume that the phonons have a
broad bandwidth so that inelastic scattering channels be-
tween electrons at all relevant quasi-energies and phonons
are possible. While electron quasi-energies form an infi-
nite ladder which may be regarded as photon absorption
and emission side-bands, the matrix elements between
different quasi-energy bands and phonons are suppressed
very rapidly as the number of photon absorption and
emission processes increase30. Thus for the laser ampli-
tude and frequencies we will be working with, to have
the most effective inelastic relaxation, it will be sufficient
to consider a maximum phonon frequency ωmax

q ≃ 6Ω.
A circularly polarized laser also opens up a gap ∆ at
the Dirac points which in the high frequency limit of
A0ath/Ω ≪ 1 is ∆ ≃ 2A2

0a
2t2h/Ω.

12,18 Thus we will
assume that the lowest phonon frequency available is
ωmin
q ≃ ∆ to allow for efficient relaxation near the Dirac

points.

A. Kubo formula for the Hall conductance

The Kubo formula for the Hall conductance is a lin-
ear response to a weak probe ~Apr that is applied over

and above the circularly polarized laser ~A. While the
Kubo formalism has been employed before for Floquet
systems12,53,54, yet we outline the derivation in order to
highlight the main assumptions, and also in order to gen-
eralize the derivation to open systems like the one studied
in this paper.
The electronic part of the Hamiltonian in the presence

of an external laser ~A and a probe field ~Apr is,

H ′
el =

∑

ijσσ′

c†iσh
σσ′

ij cjσ′e−i
∫

i
j ( ~A(t)+ ~Apr(t))·~dl (8)

Since cjσ = 1√
N

∑

k e
i~k·~jckσ, we see that the vector po-

tential corresponds to replacing ~k → ~k+ ~A+ ~Apr. Taylor
expanding with respect to the weak probe,

H ′
el ≃

∑

jrσσ′

c†j+r,σh
σσ′

j+r,j(t)cjσ′

(

1− i

∫ j+r

j

~Apr(t) · ~dl
)

= Hel +
∑

q

~jq · ~Apr
−q (9)

where ~Apr(r) = (1/
√
N)

∑

q e
i~q·~j ~Apr

q and

~jq =
1√
N

∑

k,qσσ′

c†k+q/2,σck−q/2,σ′

∂hσσ
′

k (t)

∂~k
(10)

The current-current correlation function which quantifies
how an electric field applied in the direction î, affects the
current flowing in the direction ĵ is given by

Rij(q, t, t
′) = −iθ(t, t′)

〈

Ψ(t0)

∣

∣

∣

∣

[

jiqI(t), j
j
−qI(t

′)

]∣

∣

∣

∣

Ψ(t0)

〉

(11)

where |Ψ(t0)〉 is the wavefunction at a certain reference
time t0, while the current operators are in the interaction
representation

~jkI(t) = Uk(t0, t)~jkUk(t, t0) (12)

where Uk(t, t
′) is the time-evolution operator due to the

electronic part of the Hamiltonian (Hel), and is given by

Uk(t, t0) =
∑

α=u,d

e−iǫkα(t−t0)|Φkα(t)〉〈Φkα(t0)| (13)

Above ǫkα=u,d are the quasi-energies while

|Φkα(t)〉 =
(

φ↑kα
φ↓kα

)

(14)

are the quasi-modes that are periodic in time.
Thus, Ukσσ′ (t, t0) =

∑

α e
−iǫkα(t−t0)φσkα(t)φ

σ′∗
kα (t0),

and in the interaction representation ckσ(t) =

Ukσσ′ (t, t0)ckσ′ (t0), c
†
kσ(t) = c†kσ′ (t0)Ukσ′σ(t0, t). The
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quasi-energies ǫkα represent an infinite ladder of states
where ǫkα and ǫkα+mΩ, for any integer m, represent the
same physical state corresponding to the Floquet quasi-
modes |φkα(t)〉 and eimΩt|φkα(t)〉 respectively. Confusion
due to this over-counting can be easily avoided by not-
ing that in all physical quantities and matrix elements,
it is always the combination e−iǫkαt|φkα(t)〉 = |ψkα〉
that appears, where |ψkα〉 are the solutions to the time-
dependent Schrodinger equation. There are only two
distinct solutions for |ψkα〉 which we label as α = u, d,
while we adopt the convention that the corresponding
quasi-energies lie within a Floquet Brillouin zone (BZ)
−Ω/2 < ǫkα < Ω/2.

Expanding the fermionic operators in the quasi-mode
basis at t0,

ck,b′ (t0) =
∑

α′

φb
′

kα′ (t0)γkα′ (15)

where γ†kα, γkα are the creation and annihilation opera-
tors for the quasi-modes at time t0, the response function
at q = 0 is found to be

Rij(q = 0, t, t′) = −iθ(t− t′)
1

N

∑

k,αβγδ

e−i(ǫkα−ǫkβ)(t−t0)e−i(ǫkγ−ǫkδ)(t
′−t0)

〈Φkβ(t)|
[

∂hk(t)

∂ki

]

|Φkα(t)〉〈Φkδ(t
′)|
[

∂hk(t
′)

∂kj

]

|Φkγ(t
′)〉

〈

ψ(t0)

∣

∣

∣

∣

[

γ†kβγkα, γ
†
kδγkγ

]∣

∣

∣

∣

Ψ(t0)

〉

(16)

Since the Floquet quasi-modes at any given time form a
complete basis that obey

[hk − i∂t] |Φkα〉 = ǫkα|Φkα〉 (17)

the following relation holds,

〈Φkβ |∇hk|Φkα〉 = i∂t [〈Φkβ |∇Φkα〉] + δαβ∇ǫkα
+(ǫkα − ǫkβ) 〈Φkβ |∇Φkα〉 (18)

Rij(t, t
′) depends not only on the time difference t − t′

but also on the mean time (t + t′)/2. In what follows
we will make some approximations that are equivalent to
averaging over the mean time.

The first approximation we make is to retain only di-
agonal components of the average below, since the off-
diagonal terms will be accompanied by oscillations of the
kind e−i(ǫku−ǫkd)(t+t′)/2,

〈[

γ†kβγkα, γ
†
kδγkγ

]〉

= δα,δδβ,γ

[

〈γ†kβγkβ〉

−〈γ†kαγkα〉
]

(19)

Thus we obtain,

Rij(q = 0, t, t′) = −iθ(t− t′)
∑

k,α,β

e−i(ǫkα−ǫkβ)(t−t′)

[

(ǫkα − ǫkβ) 〈φkβ(t)|
∂

∂ki
φkα(t)〉+ i∂t〈φkβ(t)|

∂

∂ki
φkα(t)〉

]

[

− (ǫkα − ǫkβ) 〈φkα(t′)|
∂

∂kj
φkβ(t

′)〉

+i∂t′〈φkα(t′)|
∂

∂kj
φkβ(t

′)〉
][

〈γ†kβγkβ〉 − 〈γ†kαγkα〉
]

(20)

Let us define

〈φkβ(t)|
∂

∂ki
φkα(t)〉 =

∑

m

eimΩtCm
βiα (21)

then,

Rij(q = 0, t, t′) = −iθ(t− t′)
∑

k,α,β,m,m′

eimΩt+im′Ωt′

e−i(ǫkα−ǫkβ)(t−t′)Cm
βiαC

m′

αjβ
[

ǫkα − ǫkβ −mΩ

][

− (ǫkα − ǫkβ)−m′Ω

]

×
[

〈γ†kβγkβ〉 − 〈γ†kαγkα〉
]

(22)

Now we average over one the mean time (t+t′)/2 over one
cycle of the laser. This is equivalent to keeping onlym′ =
−m terms so that the results become time-translationally
invariant,

Rij(q = 0, t, t′) = −iθ(t− t′)(−1)
∑

k,α,β,m

eimΩt−imΩt′

×e−i(ǫkα−ǫkβ)(t−t′)Cm
βiαC

−m
αjβ

[

ǫkα − ǫkβ −mΩ

]2[

〈γ†kβγkβ〉 − 〈γ†kαγkα〉
]

(23)

Denoting α = u, β = d, and setting m → −m in one of
the terms, we obtain,

Rij(q = 0, t, t′) = −iθ(t− t′)(−1)
∑

k,m

[

ǫku − ǫkd −mΩ

]2

×
(

e−i(ǫku−ǫkd−mΩ)(t−t′)Cm
diuC

−m
ujd

−e−i(ǫkd−ǫku+mΩ)(t−t′)C−m
uid C

m
dju

)[

〈γ†kdγkd〉 − 〈γ†kuγku〉
]

(24)

Fourier transforming this expression,

Rij(q = 0, ω) =
∑

k,m

[

ǫku − ǫkd −mΩ

]2

[

C−m
uid C

m
dju

ω + iδ + ǫku − ǫkd −mΩ
−

Cm
diuC

−m
ujd

ω + iδ − (ǫku − ǫkd −mΩ)

]

[

〈γ†kdγkd〉 − 〈γ†kuγku〉
]

(25)
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For the Hall conductance, we need the combination,

Rij(q = 0, ω)−Rji(q = 0, ω) =
∑

k,m

[

ǫku − ǫkd −mΩ

]2

×
(

C−m
uid C

m
dju − C−m

ujd C
m
diu

)

2 (ω + iδ)

(ω + iδ)
2 − (ǫku − ǫkd −mΩ)

2

×
[

〈γ†kdγkd〉 − 〈γ†kuγku〉
]

(26)

Thus the dc Hall conductance is

σij(ω = 0) =
Rij −Rji

2iω

∣

∣

∣

∣

ω=0

= i
∑

k,m

(

C−m
uid C

m
dju − C−m

ujd C
m
diu

)[

〈γ†kdγkd〉 − 〈γ†kuγku〉
]

(27)

Denoting the laser period as TΩ = 2π/Ω,

i
∑

m

(

C−m
uid C

m
dju − C−m

ujdC
m
diu

)

= i
1

T 2
Ω

∫ TΩ

0

dt1

∫ TΩ

0

dt2
∑

m

e−imΩ(t1−t2)

(

〈φkd(t1)|
∂

∂kj
φku(t1)〉〈φku(t2)|

∂

∂ki
φkd(t2)〉

−〈φkd(t1)|
∂

∂ki
φku(t1)〉〈φku(t2)|

∂

∂kj
φkd(t2)〉

)

(28)

Using
∑

m eimΩt = δ(t/TΩ), we obtain,

i
∑

m

(

C−m
uid C

m
dju − C−m

ujdC
m
diu

)

=

i
1

TΩ

∫ TΩ

0

dt

(

〈φkd(t)|
∂

∂kj
φku(t)〉〈φku(t)|

∂

∂ki
φkd(t)〉

−〈φkd(t)|
∂

∂ki
φku(t)〉〈φku(t)|

∂

∂kj
φkd(t)〉

)

= i
1

TΩ

∫ TΩ

0

dt

(

〈∂iφkd(t)|∂jφkd(t)〉 − 〈∂jφkd(t)|∂iφkd(t)〉
)

=
1

TΩ

∫ TΩ

0

dtFkd(t) (29)

where above we have used the orthonormality of the Flo-
quet states at any given time. Thus the dc Hall conduc-
tance is,

σxy(ω = 0) =
e2

2πh

∫

BZ

d2kF kd [ρkd − ρku] (30)

where F kd is the time-average of the Berry curvature over
one cycle,

F kd =
1

TΩ

∫ TΩ

0

dt 2Im

[

〈∂yφkd(t)|∂xφkd(t)〉
]

(31)

and as expected, the Hall conductance depends on the
occupation probabilities

ρkα=u,d = 〈γ†kαγkα〉 (32)

The “ideal” quantum limit corresponds to the case where
|ρkd − ρku| = 1, so that the Hall conductance is

σideal
xy = C

e2

h
(33)

with

C =
1

2π

∫

BZ

d2kFkd (34)

being the Chern number. It is important to note that
while the Berry-curvature is time-dependent, it’s inte-
gral over the BZ is time-independent, and a topologi-
cal invariant. However, once the population ρkd − ρku
becomes dependent on momentum, the integral of the
Berry-curvature weighted by the population is no longer
a topological invariant, and depends on time. The aver-
aging procedure outlined above corresponds to replacing
the time-dependent Berry curvature by its average over
one cycle.
In this paper we will study the time-averaged dc Hall

conductance defined in Eq. (30) for two cases. One is
when the occupation probabilities ρkd,u are for the closed
system with a quench switch-on protocol for the laser
(section III), while the second is for the open system cou-
pled to a reservoir, where the ρkd,u will be determined
from solving a kinetic equation (section IV). In order to
compute the Berry curvature Fkd, we will employ the
numerical approach of Ref. 55.

III. HALL CONDUCTANCE FOR THE CLOSED

SYSTEM FOR A QUENCH SWITCH-ON

PROTOCOL

Suppose that at t ≤ 0, there is no external irradiation,
and the electrons are in the ground-state of graphene.
Thus the wavefunction right before the switching on of
the laser is

|Ψin(t = 0−)〉 =
∏

~k

|ψin,k〉,

|ψin,k〉 =
1√
2

(

eiθk

1

)

(35)

where

tan θk =
sin(~k · ~a1) + sin (~k · ~a2)

1 + cos(~k · ~a1) + cos (~k · ~a2)
(36)

The time-evolution after switching on the laser is

|Ψ(t > 0)〉 =
∏

k

Uk(t, 0)|Ψin,k〉 (37)

where Uk(t, t
′) is the time-evolution operator given in

Eq. (13).
In practice, in order to determine the Floquet states,

it is convenient to solve the problem in Fourier space,

|φkα(t)〉 =
∑

m

eimΩt|φ̃mkα〉 (38)
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FIG. 1: (Color online) Hall conductance for the ideal
case (σxy = Ce2/h) and for a closed system after a

quench, for different strengths of the circularly polarized
laser of frequency: (a). Ω = 10th (b). Ω = 5th.

where |φ̃mkα〉 is a 2 component spinor which obeys,

∑

m

[Hnm
el +mΩδnm] |φ̃mkα〉 = ǫkα|φ̃nkα〉,

Hnm
el =

1

TΩ

∫ TΩ

0

dte−i(n−m)ΩtHel

=

(

0 hnmσσ′(k)
hnmσ′σ(k) 0

)

(39)

For graphene in a circularly polarized laser,

hnmσσ′ (k) =−thim−nJm−n (A0a)
∑

j=1,2,3

eia
~k·~aje−i(m−n)αj ,

hnmσ′σ(k)=−th(−i)m−nJm−n (A0a)
∑

j=1,2,3

e−ia~k·~aje−i(m−n)αj

(40)

where α1 = −α2 = π
3 , α3 = π and ~a1 = a

2

(

3,
√
3
)

,~a2 =
a
2

(

3,−
√
3
)

,~a3 = 0

(a)

(b)

FIG. 2: (Color online) Excitation density ρkd − ρku in
the closed system for a quench switch-on protocol for a

laser of frequency Ω = 10th and amplitude: (a).
A0a = 1.0 (b). A0a = 5.0.

We are interested in the time-averaged Hall conduc-
tance defined in Eq. (30). For this we need the over-
lap between the initial state before the quench and the
Floquet quasi-modes since they control the occupation
probabilities,

ρquenchkα=u,d = |〈φkα=u,d(0)|ψin,k〉|2 (41)

Fig 1 shows the Hall conductance for the ideal case
where only one Floquet band is occupied (ρkd =
1, σideal

xy = Ce2/h), and compared with the Hall con-
ductance for the quench. Thus each point in the plot
corresponds to a situation where initially the system was
in the ground state of graphene, and then at time t = 0
a laser of strength A0a and frequency Ω was switched
on suddenly. Notice that there are a number of topo-
logical phase transitions corresponding to jumps in the
Chern number as A0ath/Ω is varied. These topological
transitions can be quite complex with the Chern number
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changing by ±2,±3. As discussed in Ref. 24, this occurs
because when linearly dispersing Dirac bands cross, the
Chern number exchanges between ±1, while quadrati-
cally dispersing band-crossings cause the Chern number
to exchange between ±2, and their combined effect can
lead to the topological transitions observed here and in
Ref. 24.

Fig. 1 shows that the Hall conductance for the closed
system after a quench is smaller than that for the ideal
case, this is not surprising as a quench creates a nonequi-
librium population of electrons which for a closed system
of non-interacting electrons, has no means to relax. The
symmetry of the system dictates that the quasi-energies
are located symmetrically about zero. An intriguing ef-
fect that can occur is a reversal of the sign of the Hall
conductance due to a laser-like situation where the pop-
ulation in the “upper” quasi-band is higher. These popu-
lations are determined by the overlap of the initial wave-
function and the Floquet modes, thus as A0ath/Ω is var-
ied, this overlap can be higher with one quasi-band or
the other, leading to a reversal in the sign of the Hall
conductance that does not necessarily follow the sign of
C. This phenomena was also noticed in Ref. 36.

To highlight this effect, the excitation density ρkd−ρku
that enters in the Hall conductance is plotted in Fig. 2 for
two different cases. The upper panel of Fig. 2 is for the
case where the initial wavefunction has the higher overlap
with the lower (or negative energy) Floquet band so that
the Hall conductance is the same sign as the ideal case,
while the lower panel is for a case when the initial wave-
function has a larger overlap with the upper (positive
energy) Floquet band so that the Hall conductance has
the opposite sign to the ideal case. Also a very general
feature of the excitation density are spikes or enhanced
excitations at the Dirac points. We will show in the next
section that this feature will persist even for the open sys-
tem, though the spikes will broaden as the temperature
of the reservoir is increased.

Another feature one finds is that the Hall conductance
after a quench shows jumps that sometimes follow the
topological transitions governed by jumps in C, but not
always. For example, in the upper and lower panel of
Fig. 1, one finds a topological transition at A0a ∼ 2.5
where the Chern number changes from 1 → −2 → 1
very rapidly. The Hall conductance after the quench on
the other hand is sensitive to the first transition from
1 → −2, but not to the second from −2 → 1. A similar
effect is seen in the lower panel in Fig. 1 where σquench

xy

does not follow the topological transition at A0a ∼ 1.

The quench results presented here are relevant to the
experimental set-up in Ref. 45 where a Floquet topo-
logical system was realized in a closed cold-atomic gas,
and where transport measurements were performed by
tilting the system and observing the magnitude of the
transverse drift in time of flight measurements. Another
relevant situation is ultra-fast pump probe measurements
in solids using pulse lasers, when measurements are done
faster than phonon relaxation times.
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FIG. 3: (Color online) Hall conductance for the ideal
case (σxy = Ce2/h) and at steady state with a phonon

reservoir, for different strengths of the circularly
polarized laser and for laser frequencies: (a). Ω = 10th

(b). Ω = 5th.

IV. HALL CONDUCTANCE FOR THE OPEN

SYSTEM

We now present results for the Hall conductance when
the system is coupled to an ideal reservoir of phonons
that is always in thermal equilibrium at a temperature T .
Inelastic scattering between electrons and phonons will
cause the electron distribution function to relax, affect-
ing topological properties such as the Hall conductance.
We employ a rate or kinetic equation approach within
the Floquet formalism51,56,57 to study how the electron
distribution evolves from an initial state generated by a
quench switch-on protocol, and present analytic results
for the resulting steady-state. A similar treatment was
carried out for 2D Dirac fermions irradiated by a circu-
larly polarized laser and coupled to phonons,30 we gen-
eralize the approach of Ref. 30 to graphene.
For completeness we first briefly outline the derivation

of the kinetic equation. Let W (t) be the density matrix
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(a)

(b)

FIG. 4: (Color online) Excitation density ρkd − ρku at
steady state with phonons. The parameters are

A0a = 1.0,Ω = 10th, with the phonons at temperature
(a) T = 0.01th, (b). T = 1.0th.

obeying

dW (t)

dt
= −i [H,W (t)] (42)

It is convenient to be in the interaction representa-

tion, WI(t) = eiHphtU †
el(t, 0)W (t)Uel(t, 0)e

−iHpht, where
Uel(t, t

′) =
∏

k Uk(t, t
′) is the time-evolution operator for

the electrons under a periodic drive (see Eq. (13)). To
O(H2

c ), the density matrix obeys the following equation
of motion

dWI

dt
= −i [Hc,I(t),WI(t0)]

−
∫ t

t0

dt′ [Hc,I(t), [Hc,I(t
′),WI(t

′)]] (43)

where Hc,I is in the interaction representation. We
assume that at the initial time t0, the electrons and
phonons are uncoupled so that W (t0) = W el

0 (t0) ⊗

W ph(t0), and that initially the electrons are in the post-
quench state |Ψ(t)〉 described in Section III, while the
phonons are in thermal equilibrium at temperature T .
This is justified because phonon dynamics is much slower
than electron dynamics, so that the quench state of
section III can be achieved within femto-second time-
scales,46 while, the phonons do not affect the system until
pico-second time-scales.
Thus,

W el
0 (t) = |Ψ(t)〉〈Ψ(t)| =

∏

k

W el
k,0 (44)

where

W el
k,0(t) =

∑

α,β=±
e−i(ǫkα−ǫkβ)t|φkα(t)〉〈φkβ(t)|ρquenchk,αβ (45)

with

ρquenchk,αβ = 〈φkα(0)|ψin,k〉〈ψin,k|φkβ(0)〉 (46)

Defining the electron reduced density matrix as the one
obtained from tracing over the phonons, W el = TrphW ,
and noting that Hc being linear in the phonon operators,
the trace vanishes, we need to solve,

dW el
I

dt
= −Trph

∫ t

t0

dt′ [Hc,I(t), [Hc,I(t
′),WI(t

′)]] (47)

We assume that the phonons are an ideal reservoir and
stay in equilibrium. In that case WI(t) = W el

I (t) ⊗
e−Hph/T /Tr

[

e−Hph/T
]

(we set kB = 1).
The most general form of the reduced density matrix

for the electrons is

W el
I (t) =

∏

k

∑

αβ

ρk,αβ(t)|φk,α(t)〉〈φk,β(t)| (48)

where in the absence of phonons, ρk,αβ = ρquenchk,αβ and are
time-independent in the interaction representation. The
last remaining assumption is to identify the slow and fast
variables, which allows one to make the Markov approx-
imation.51 We assume that ρk,αβ are slowly varying as
compared to the characteristic time scales of the reser-
voir. We also make the so called modified rotating wave
approximation56 where it is assumed that the density ma-
trix ρk,αβ varies slowly over one cycle of the laser. The
last approximation is not necessary, and was not made
in Ref. 30, where it was observed that indeed the den-
sity matrix varies slowly over one cycle of the laser for
sufficiently weak coupling to the reservoirs.
We only study the diagonal components of ρk,αα, which

after the Markov approximation, obey the rate equation

ρ̇k,αα(t) = −
∑

β=u,d

Lk
αα;ββρk,ββ(t) (49)

Lk
αα,ββ are the in-scattering and out-scattering rates

which due to conservation of particle number obey
∑

α=u,d L
k
αα,ββ = 0.
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Thus to summarize, the main approximations made in
deriving Eq. (49) are57, a). the phonon bath is always
in thermal equilibrium, b). the system-bath coupling is
weak as compared to the laser frequency as well as the
bath relaxation rates, c). the bath correlation times are
short as compared to the time-scales over which the re-
duced density matrix for the electrons varies, d). a mod-
ified rotating wave approximation has been made where
the scattering matrix elements are replaced by their av-
erage over one cycle of the laser. This is valid when the
reduced density matrix varies slowly over one cycle of the
laser, which is typically the case when the system-bath
coupling is weak in comparison to the laser frequency.30

The Floquet kinetic equation fully takes into account the
time-periodic structure of the Floquet states. The re-
duced density matrix components ρk,αα are the occupa-
tion probabilities of these Floquet states, and it is these

probabilities that are assumed to be sufficiently slowly
varying in time.
While the physical initial condition corresponds to a

quench switch on protocol for the laser where ρk,αα(t =

0) = ρquenchk,α=u,d, the steady-state solution is independent of

this initial state and corresponds to ρk,αα(t = ∞) = ρkα,
where

ρku =
|Lk

uu,dd|
|Lk

uu,dd|+ |Lk
uu,uu|

; ρkd = 1− ρku (50)

Expanding 〈φkα(t)|c†kσckσ′ |φkβ(t)〉 in a Fourier series

such that 〈φkα(t)|c†k↑ck↓|φkβ(t)〉 =
∑

n e
inΩtCn

1k,αβ , and

Cn
2k,αβ =

(

C−n
1k,βα

)∗
, we find the following in-scattering

and out-scattering rates for a uniform phonon density of
states Dph,

Lk
uu,uu = Dph

[

λ2x
∑

n

(

Cn
1k,udC

−n
1k,du + Cn

2k,udC
−n
2k,du + Cn

1k,udC
−n
2k,du + Cn

2k,udC
−n
1k,du

)

+λ2y
∑

n

(

−Cn
1k,udC

−n
1k,du − Cn

2k,udC
−n
2k,du + Cn

1k,udC
−n
2k,du + Cn

2k,udC
−n
1k,du

)

]

×
[

θ(−ǫkd + ǫku + nΩ)(1 +N(−ǫkd + ǫku + nΩ)) + θ(ǫkd − ǫku − nΩ)N(ǫkd − ǫku − nΩ)

]

(51)

−Lk
uu,dd = Dph

[

λ2x
∑

n

(

Cn
1k,udC

−n
1k,du + Cn

2k,udC
−n
2k,du + Cn

1k,udC
−n
2k,du + Cn

2k,udC
−n
1k,du

)

+λ2y
∑

n

(

−Cn
1k,udC

−n
1k,du − Cn

2k,udC
−n
2k,du + Cn

1k,udC
−n
2k,du + Cn

2k,udC
−n
1k,du

)

]

×
[

θ(ǫkd − ǫku − nΩ)(1 +N(ǫkd − ǫku − nΩ)) + θ(−ǫkd + ǫku + nΩ)N(−ǫkd + ǫku + nΩ)

]

(52)

Above N(x) = 1/(ex/T − 1) is the Bose function. In pre-
senting our results we also consider an isotropic electron-
phonon coupling λx = λy so that the steady-state elec-
tron distribution function becomes independent of the
electron-phonon coupling.

Eqs. (51) and (52) imply that the population of the
two quasi-bands ρkd,u are determined by a sum over
phonon induced inelastic scattering between many quasi-
energy levels (denoted by the sum over n). These compli-
cated scattering processes imply a nonequilibrium (non-
Gibbsian) steady-state for the electrons even when the
phonons are in thermal equilibrium, unless the frequency
of the laser is so high that only a single term in the sum
over n survives30,31. In such a high-frequency limit, as
we shall show, the Hall conductance approaches a ther-
mal result, and in particular will approach Ce2/h as the
reservoir temperature is lowered. For lower laser frequen-
cies on the other hand, significant deviations from Ce2/h
will be found even when the phonons are at a very low
temperature.

Fig. 3 shows the steady-state Hall conductance
for three different reservoir temperatures (T =
0.01th, 0.1th, 1th), and for the same laser parameters as
the ones for which the quench results were discussed.
These results are plotted with those for the “ideal” case.
Fig. 3 (a) is for a fairly high frequency (Ω = 10th) and
shows that the steady-state Hall conductance approaches
the ideal limit of Ce2/h as the temperature of the reser-
voir is lowered, with the topological transitions charac-
terized by a thermal broadening. The excitation density
for the same laser frequency is shown in Fig. 3, and are
characterized by sharp spikes at the Dirac points at low
temperatures which then show thermal broadening as the
temperature of the reservoir is raised.

Fig. 3 (b) is for a lower laser frequency of Ω = 5th.
In this case, while for large laser amplitudes (A0a > 1),
the results are similar to panel (a), with the Hall con-
ductance approaching Ce2/h as the temperature of the
bath is lowered, marked deviations are seen for smaller
laser amplitudes (A0a < 1). For this case the Hall con-
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ductance, even with low temperature phonons, saturates
at a value very different from Ce2/h, infact almost ap-
proaching zero.
Even though we have a large sample in mind, where

the role played by the edges do not explicitly enter the
calculation, it is still instructive to study the quasi-energy
spectrum in a finite geometry (Fig. 6) to understand the
difference between the case of A0a > 1 and A0a < 1,
but at the same laser frequency Ω = 5th. One observes
that A0a > 1 is also the case where the laser frequency
is large as compared to the electron band-width (which
is strongly influenced by A0a), and all the edge-states
reside at the center of the Floquet BZ (ǫ = 0), with
the number of chiral edge modes equaling the Chern
number C. In contrast for laser frequencies compara-
ble to or smaller than the band-width, (A0a < 1), addi-
tional edge modes appear in the Floquet zone boundaries
(ǫ = ±Ω/2), and the number of chiral edge modes no
longer equal the Chern number C, which is no longer a
good or sufficient topological index. A modified topolog-
ical invariant has been introduced that correctly counts
the number of edges modes at the center and edges of
the zone-boundary38,39, however we find that the distri-
bution function at low frequencies is so far out of equi-
librium, that the Hall conductance is unrelated to this
new topological invariant, and almost approaches zero.
Thus highly nonequilibrium steady-states for small laser
frequencies prevent one to achieve Hall conductances of
O(e2/h).
Fig. 5 shows how the Hall conductance depends upon

the frequency of the laser for the closed as well as for the
open system, where for the latter the reservoir temper-
ature is fairly low (T = 0.01th). As the laser frequency
is increased, the Hall conductance for the open system
approaches the ideal quantum limit, and the results be-
come more and more like an equilibrium system where
the Floquet bands are occupied by the Gibbs distribu-
tion.30,31 The closed system of course corresponds to a
nonequilibrium situation as there is no mechanism for
thermalization, with the steady-state depending on the
overlap between the initial state and the Floquet state,
resulting in a Hall conductance that can have the oppo-
site sign to that of the open system.

V. CONCLUSIONS

We have studied the dc Hall conductance derived from
the Kubo formula, for graphene irradiated by a circularly
polarized laser. Results are presented for two situations,
one is for a closed system for a quench switch-on proto-
col for the laser, while the second is for an open system
coupled to an ideal phonon reservoir. For the closed sys-
tem, the electron distribution function retains memory
of the initial conditions which can lead to Hall conduc-
tances (Fig. 1) that are not only smaller in magnitude
than the ideal limit of Ce2/h, but also sometimes do not
follow the topological transitions in C as the laser param-
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FIG. 5: (Color online) Hall conductance for the closed
system after a quench, for the open system at

steady-state with phonons at T = 0.01th, and for the
ideal case (Ce2/h), plotted for different laser frequencies

and for the laser amplitudes: (a). A0a = 1.0 (b).
A0a = 5.0.

eters are varied, and can be of the opposite sign to the
ideal result. The latter occurs when the initial state has
a larger overlap (Fig. 2) with the “upper” Floquet band
which has a Berry curvature of the opposite sign to that
of the “lower” Floquet band. The results for the closed
system are most relevant for experiments in cold-atomic
gases such as the one of Ref. 45.

For the open system, as long as the laser frequencies are
larger than the electron bandwidth (for small laser ampli-
tudes A0a < 1, this condition is Ω > 6th), the main effect
of the reservoir is to cause an effective cooling that al-
lows the Hall conductance to eventually approach Ce2/h
as the reservoir temperature is lowered (Fig. 3, upper
panel and Fig. 5), with the Hall conductance following
the topological transitions with a characteristically ther-
mal broadening.

For the open system, surprises occur for laser frequen-
cies lower or comparable to the band-width (Fig. 3 lower
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FIG. 6: (Color online) Floquet spectrum over two
Floquet BZs for laser frequency Ω = 5.0th and for laser
amplitudes and Chern numbers, (a). A0a = 0.5, C = 3
(b). A0a = 1.5, C = 1. Additional edge states at the

Floquet zone boundaries appear for case (a).

panel). In this case, strong deviations of the Hall con-

ductance from Ce2/h occur, with the Hall conductance
almost approaching zero. This may be related to the
Hall transport measured in graphene irradiated by THz
laser,48,49 where the observed Hall effect was very small
compared to the quantum limit, and was accounted for
by a semi-classical Boltzman analysis.
Interestingly enough these strong deviations from the

quantum limit are also accompanied by the appearance
of edge-states in the BZ edges so that C is no longer a
good topological index. However the result we obtain
cannot be accounted for by any modified topological in-
dex that takes into account these new edge modes. This
is because, the electron distribution function for low laser
frequencies is highly out of equilibrium even when the
reservoir is ideal, with the resultant steady-state deter-
mined from solving a rate equation that accounts for laser
induced photoexcitation of carriers and phonon induced
inelastic scattering between many different quasi-energy
levels.
These results also suggest that due to the inherent

nonequilibrium nature of the problem, especially for low
laser frequencies, the Hall conductance will depend upon
the dominant inelastic scattering mechanism, and hence
the Hall conductance in large samples where electron-
phonon scattering is dominant will differ from the Hall
conductance in smaller samples29 where for the latter the
relaxation mechanism is determined by the location of
the Fermi-levels of the leads.24,27,29 It is of course inter-
esting to also consider samples of intermediate size where
both the leads as well as the phonons play a role in the
inelastic scattering.58

For the experimental feasibility of observing a large
Hall response of O(e2/h), one therefore needs laser fre-
quencies larger than the electron band-width as this sup-
presses photoexcited carriers, and eliminates edge-states
at the Floquet BZ boundaries making C the relevant
topological index. However, one needs to keep in mind
that the maximum voltage drop across a lattice site due
to the applied laser (∼ A0aΩ) cannot be too large in order
to avoid dielectric breakdown across orbital sub-bands, at
the same time the laser amplitude A0a should be large
enough so that the dynamical gap ∆ at the Dirac points
is larger than the temperature of the reservoir. With cur-
rent day experiments, one may realize these conditions in
artificial graphene lattices such as in cold-atomic gases45

and photonic waveguides.26
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