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We develop a method for studying the real time dynamics of Heisenberg operators in strongly-
interacting nonequilibrium quantum impurity models. Our method is applicable to a wide range
of interaction strengths and to bias voltages beyond the linear response regime, works at zero tem-
perature, and overcomes the finite-size limitations faced by other numerical methods. We compare
our method with quantum Monte Carlo simulations at a strong interaction strength, at which no
analytical method is applicable up to now. We find a very good coincidence of the results at high
bias voltage, and in the short time period at low bias voltage. We discuss the possible reason of the
deviation in the long time period at low bias voltage. We also find a good coincidence of our results
with the perturbation results at weak interactions.
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I. INTRODUCTION

Understanding strongly-correlated open quantum im-
purity systems is an important unsolved problem in
condensed matter physics, and is relevant to a wide
variety of experimental fields. In cases ranging
from molecular electronics junctions,1–6 low-dimensional
mesoscopic systems7–9 and out-of-equilibrium correlated
materials,10–12 a need exists for reliable theoretical treat-
ments which go beyond linear response from equilibrium.
The combination of correlated quantum physics and the
lack of a description in terms of equilibrium statistical
mechanics presents a major challenge in this regard, and
while a variety of powerful approximate schemes have
been developed,13–23 the entire spectrum of interesting
parameters is not reliably covered by these methods.
This makes numerically exact results highly desirable;
however, even when one is interested only in the proper-
ties of a stationary state, the only recourse which does not
involve approximations is often to consider time propaga-
tion from some simple initial state to the nonequilibrium
steady state. Moreover, in some cases one can observe a
system’s time-dependent response to a quench,24–27 and
thus a theoretical treatment capable of following the sys-
tem’s time evolution is needed.20,28–33

A great deal of progress has been made by consider-
ing the special case of nonequilibrium quantum impurity
models, where transport between sets of infinite, triv-
ial, noninteracting leads occurs through a finite, nontriv-
ial, interacting region.7,34,35 The nonequilibrium Ander-
son model, where the dot is modeled as a single spin-
degenerate electronic level with on-site Coulomb inter-
action, exhibits a range of exotic phenomena related to
Kondo physics36 and has drawn a particularly great deal
of attention. While this model and its extensions are still
an infinite many-body problem and remain under active
research even at equilibrium,36–42 the local nature of the

interactions in impurity models results in major simpli-
fications, and in recent years a great deal of progress
has been made in the development of numerically exact
methods which solve for transport properties in impurity
models.43–62 These controlled methods remain limited in
their applicability; in particular, quantum Monte Carlo
(QMC) methods45,51,55 are generally slow to converge at
low temperatures and long times, while time-dependent
density matrix renormalization group (tDMRG)49,50 and
numerical renormalization group (NRG)44,63 methods
are effectively limited to systems where the leads can be
efficiently mapped onto reasonably short 1D chains with
a small site dimension, in such a way that entanglement
along the chain remains low. In recent years, impurity
models have also been of interest as auxiliary systems in
the study of large or infinite interacting lattices, by way
of the DMFT approximation.64–66

It is therefore necessary to continue exploring new nu-
merical methods. In this regard, the following observa-
tion is of some interest: when studying real time dynam-
ics, it is possible to solve the Schrödinger equation and
obtain the evolution of quantum states. However, quan-
tum states contain all the information about a quantum
system, most of which is redundant when one is only
interested in very few or even a single observable. An
alternative route is to solve the Heisenberg equation and
obtain the evolution of a specific observable operators.
Solving the Heisenberg equation may allow for some sim-
plification or optimization. We note that similar ideas
have been discussed in the context of tDMRG, where
matrix product operators can be more efficient for de-
scribing dynamics than matrix product states.67–72 The
entanglement area laws which make DMRG perform so
well for the ground states of gapped systems, however,
do not extend to nonequilibrium situations and metallic
systems. It is not therefore clear that tDMRG should be
an optimal scheme for such systems as impurity models.
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We propose a different approach: to express the solution
of the time-dependent observable operators, we construct
a set of basis operators, similar to how one might choose
basis vectors in the Hilbert space. As will be shown, we
can choose the basis operators so that the observable that
we are interested in is itself a basis operator at time zero.
The time-dependent observable operator then starts from
a point on an axis of the operator space and explores the
other dimensions at a finite rate, thus facilitating an effi-
cient evaluation of the time evolution in our basis. This
allows us to work with an infinite model and circumvent
finite-size effects.

In this paper, we develop a numerical operator method
(NOM) for nonequilibrium quantum impurity models,
based on previous work by one of the authors.73,74 We
apply the method to the real time transport dynamics of
the Anderson impurity model. Our method is in princi-
ple applicable to arbitrary bias voltage and interaction
strength. It describes infinite reservoirs (which are diffi-
cult within tDMRG) at absolute zero temperature (which
is difficult for QMC), and can therefore be expected to be
advantageous in some regimes. We compare our results
with perturbation theory at weak interactions and with
QMC at strong interactions. We find perfect coincidence
in most cases where it is expected, and discuss possible
reasons for deviations in problematic regimes.

The contents of the paper are arranged as follows. In
sec. II, we introduce the model and the preliminary trans-
formation of the Hamiltonian. In sec. III, we show the
details of the NOM. In sec. IV, we show the validity and
power of our method by giving some examples and com-
paring our method with the others. At last, a concluding
section summarizes our results.

II. THE MODEL AND THE

TRANSFORMATION OF THE HAMILTONIAN

A. The Anderson impurity model

The NOM is designed for solving the Heisenberg equa-
tion of motion. In this paper, we discuss its application
to the study of transport through the nonequilibrium
Anderson impurity model, an archetypal model for the
description of electron-electron interactions in quantum
junctions.75 The model involves an impurity site coupled
to two (“left” and “right”) electronic reservoirs or leads:

Ĥ =
∑

k,α,σ

ǫk ĉ
†
kασ ĉkασ+

g√
2

∑

k,α,σ

(

ĉ†kασ d̂σ +H.c.
)

+Ĥimp.

(1)

Here d̂σ is an electronic annihilation operator at the im-
purity, while ĉkασ is an electronic annihilation operator
in the reservoirs. α ∈ {L,R} denotes the left and right
reservoir, respectively, σ ∈ {↑, ↓} denotes the spin and k
is an index corresponding to a reservoir level with energy
ǫk. g describes the coupling strength between the im-
purity and the reservoirs (taken to be level-independent

here). Ĥimp is the local Hamiltonian at the impurity site,
and is expressed by

Ĥimp = ǫd
∑

σ

d̂†σ d̂σ + Ud̂†↑d̂↑d̂
†
↓d̂↓, (2)

where ǫd is the level energy and U is the Coulomb inter-
action. We concentrate on the particle-hole symmetric
point ǫd = −U/2 throughout the paper. We further de-
fine the impurity level broadening Γ = ρπg2 (ρ denoting
the density of states of the reservoir). As is customary
in the field, Γ will be used as the unit of energy.

We assume an infinitely sharp cutoff in the reser-
voirs at a finite bandwidth D. It is worth noting that
our method can in principle be used for an arbitrary
frequency-dependent coupling Γ (ω). We work at zero
temperature, and take the chemical potentials of the left
and right reservoirs to be µL = V/2 and µR = −V/2, re-
spectively; V is therefore a bias voltage across the junc-
tion. At large V , the system is driven beyond the linear
response regime and can no longer be described well in
equilibrium terms.

B. The Wilson transformation

We will not directly apply the NOM to the Hamil-
tonian Eq. (1), but instead begin by discretizing the
system and mapping it onto a one-dimensional chain
with only nearest-neighbor couplings by way of a Wil-
son transformation. The reason for this is one of nu-
merical efficiency: the NOM works well when each cre-
ation and annihilation operator appears in only a few
terms of the Hamiltonian. In the transformed Hamil-
tonian, this is true for operators either at the impurity
site or on the Wilson chain. However, in the original

Hamiltonian Eq. (1), the operator d̂σ appears in an infi-

nite number of terms of the form
(

ĉ†kασ d̂σ +H.c.
)

, since

the infinite reservoirs must be described by an infinite
(or at least large) number of k indices. We note that
the Wilson transformation, which entails logarithmic dis-
cretization, is not a unique choice in this regard: a more
general Lanczos transformation allows for arbitrary dis-
cretization schemes, and has been successfully employed
in performing similar mappings, for example in the con-
text of recent DMRG41 and configuration interaction42

solvers for equilibrium impurity models. It should also be
mentioned that the Wilson transformation used was em-
ployed within the time-dependent numerical renormal-
ization group (tNRG) method to access the real time
dynamics of quantum impurity models coupled to both
a single bath43 and multiple baths.63 We mention briefly
that within the method described in this work, the loga-
rithmic discretization of the Wilson chain suppresses the
growth of the basis we will employ compared to a uniform
discretization, thus resulting in improved computational
efficiency.
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To proceed, it is useful to recombine the field operators
in the two reservoirs into pairs ĉk±σ = 1√

2
(ĉkLσ ± ĉkRσ),

where ĉk+σ is called the symmetric operator and ĉk−σ

the antisymmetric operator. The Hamiltonian is then
divided into symmetric and antisymmetric parts: Ĥ =
Ĥ+ + Ĥ−, where

Ĥ− ≡
∑

k

ǫk ĉ
†
k−σ ĉk−σ (3)

and

Ĥ+ ≡
∑

k

ǫkĉ
†
k+σ ĉk+σ + g

∑

k,σ

(

ĉ†k+σ d̂σ +H.c.
)

+ Ĥimp.

(4)
The symmetric Hamiltonian describes an impurity cou-
pled to a single band, and can be transformed into a
Wilson chain by a logarithmic discretization of the band.
Following ref. 36, we then have

Ĥ+ =Ĥimp +

√

ΓD

π

∑

σ

(

d̂†0σ d̂σ +H.c.
)

+
∞
∑

n=0

tn

(

d̂†nσ d̂n+1,σ +H.c.
)

,

(5)

where d̂nσ with n = 0, 1, · · · denotes the field operator
on the Wilson chain, Γ the impurity level broadening,
D the bandwidth of the reservoir, and tn the coupling
between neighboring sites on the chain. For constant Γ,
an analytical expression for the coupling strength can be
obtained:

tn =
D

4

(

1 + Λ−1
) (

1− Λ−n−1
)

√
1− Λ−2n−1

√
1− Λ−2n−3

Λ−n/2, (6)

where Λ > 1 is a discretization parameter.
Finally, the full Hamiltonian consists of the combina-

tion of the antisymmetric part and the Wilson chain,
which are commutative with each other. It can be ex-
pressed as

Ĥ =
∑

k

ǫk ĉ
†
k−σ ĉk−σ + Ĥimp +

√

ΓD

π

∑

σ

(

d̂†0σ d̂σ +H.c.
)

+
∞
∑

n=0

tn

(

d̂†nσ d̂n+1,σ +H.c.
)

.

(7)

In the limit Λ → 1, the transformed Hamiltonian
Eq. (7) is equivalent to the original Hamiltonian Eq. (1).
We can therefore fully eliminate the error caused by the
Wilson transformation by taking the limit Λ → 1. It
has been argued76 that the Wilson chain is not a ther-
mal reservoir due to a finite heat capacity, which scales
as 1/ lnΛ in the limit Λ → 1, such that the temperature
of the Wilson chain is not fixed in a transport setup.
However, the dissipated energy in the setup within a fi-
nite time is also finite, such that the chains simulate true

reservoirs for any given finite time if Λ is close enough
to 1. Due to the fact that the NOM operates on a set
of truncated Heisenberg-picture operators, the length of
the Wilson chain does not significantly impact the com-
putational scaling and can essentially be taken to infin-
ity (see Fig. 1 and the corresponding discussion there).
It can therefore be expected that it be valid to study
the dynamics up to some finite timescale even after a
Wilson transformation with Λ > 1. In practice, for the
timescales explored here, we find that setting Λ = 1.2
is sufficient for converging the discretization error. We
have verified that further reducing Λ to 1.02 does not sig-
nificantly modify the results; we further note that within
standard tDMRG this is generally difficult to achieve and
often values of Λ ≃ 2 are used.76

III. THE NUMERICAL OPERATOR METHOD

A. The current operator

We study the current I (t) ≡
〈

Î (t)
〉

through the im-

purity at a finite bias voltage V . The current operator is
given by

Î (t) = − ig

2

∑

k,σ

(

d̂†σ (t) ĉk−σ (t)−H.c.
)

, (8)

where we have employed the antisymmetric field opera-
tors ĉk−σ (t) in order to express the difference between
the currents as measured in the left and right reservoirs.
We assume that the reservoirs and the impurity site are
initially decoupled from each other. The two reservoirs
begin in their respective equilibrium states as determined
by the Fermi distribution fα(ǫk) = θ (µα − ǫk), while
the impurity site is empty. We switch on the coupling
g at t = 0 and track the time evolution of the current.

Since
[

Ĥ+, ĉk−σ

]

= 0, it is straightforward to find that

ĉk−σ (t) = e−iǫktĉk−σ. We therefore introduce a new
field operator ĉ−σ = 1√

ρ

∑

k e
−iǫktĉk−σ, and re-express

the current as

I (t) = 2

√

Γ

π
Im

〈

d̂†σ (t) ĉ−σ

〉

. (9)

The problem is therefore reduced to the calculation of

d̂†σ (t), which will be addressed by computational means
in the following subsection.

B. Iterative solution of the Heisenberg equation of

motion

To obtain the time dependence of d̂†σ, we solve the
Heisenberg equation of motion

dd̂†σ (t)

dt
= i

[

Ĥ, d̂†σ (t)
]

. (10)
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Since the antisymmetric Hamiltonian Ĥ− commutes with

d̂†σ, this becomes

dd̂†σ (t)

dt
= i

[

Ĥ+, d̂
†
σ (t)

]

. (11)

The symmetric Hamiltonian Ĥ+ describes a semi-infinite
Wilson chain with the impurity site as its first site. To
simplify the notation, we relabel the impurity site index
as −1 such that the impurity annihilation operator is

d̂−1,σ ≡ d̂σ. The symmetric Hamiltonian is then

Ĥ+ =ǫd
∑

σ

d̂†−1,σ d̂−1,σ + Ud̂†−1,↑d̂−1,↑d̂
†
−1,↓d̂−1,↓

+

∞
∑

σ,n=−1

tn

(

d̂†nσ d̂n+1,σ +H.c.
)

,
(12)

where t−1 ≡
√

ΓD
π .

In order to express d̂†−1,σ (t), we construct a set of ba-
sis operators. At each site j = −1, 0, . . ., we choose some
linearly independent set of sixteen local operators gen-

erated by d̂†jσ and d̂jσ and including the unit operator.

These are denoted by ω̂i
j for i ∈ {1, 2, . . . , 16}, and ev-

ery operator acting only on site j can be expressed as a
linear combination of the sixteen ω̂i

j . We then propose

that a basis operator Ôα in the full symmetric subspace
be expressed as the product of on-site operators in an
ascending order:

Ôα =

∞
∏

j=−1

ω̂
αj

j . (13)

Here α is an aggregate index representing a vector αj

with j ∈ {−1, 0, 1, . . .}, which identifies the basis ele-

ment in the full operator Hilbert space. The basis
{

Ôα

}

is complete in the sense that any operator can be decom-
posed as a linear combination of its members. Addition-
ally, the coefficients of this decomposition are unique.

In the basis just described the solution of the Heisen-
berg equation Eq. (11) can be written as

d̂†σ (t) =
∑

α

aα (t) Ôα. (14)

In tDMRG terms, one might say that our operator is
represented by a sum of terms of bond order 1, which is
clearly very different from a matrix product operator. To
obtain the coefficient aα (t) corresponding to each basis

operator Ôα, we derive an iterative equation by propa-
gating from time t to time t+∆t (where ∆t is some small
time interval) by using the forward Euler method:

d̂†σ (t+∆t) = d̂†σ (t) + i∆t
[

Ĥ, d̂†σ (t)
]

+O
(

∆t2
)

. (15)

We throw out terms of O
(

∆t2
)

and above, a valid ap-
proximation in the limit ∆t → 0. Next, substituting

Eq. (14) into Eq. (15), we obtain

d̂†σ (t+∆t) =
∑

α

aα (t) Ôα + i∆t
∑

α

aα (t)
[

Ĥ, Ôα

]

.

(16)

Calculation of the commutator
[

Ĥ+, Ôα

]

is trivial and

easily computerized. The important point is now that
at every stage of the computation, each Ôα appearing in
the expansion with a nonzero coefficient can be written
as the product of a finite number of (non-unit) local oper-
ators. Meanwhile, each term in the Wilson Hamiltonian
Eq. (12) involves at most four local operators which act
either at the same site or at two adjacent sites. There-
fore, even though the Hamiltonian Ĥ+ contains an infi-

nite number of terms, the commutator
[

Ĥ+, Ôα

]

is al-

ways finite in length for any finite Ôα. In fact,
[

Ĥ+, Ôα

]

generates only very few terms when Ôα is short, as is
the case when the propagation time t is not too large.
That the commutator between the Hamiltonian and the
basis operator contains a finite number of terms is a nec-
essary condition in order for the NOM to be applica-
ble. This condition can generally be satisfied for lattice
models with only short-ranged interactions, but will ob-
viously work best on low-dimensional lattices, which have
a smaller coordination number.

Let us write
[

Ĥ, Ôα

]

=
∑

α′ hα,α′Ôα′ and substitute

this into Eq. (16). We get

d̂†σ (t+∆t) =
∑

α

aα (t) Ôα + i∆t
∑

α,α′

aα (t)hα,α′Ôα′ .

(17)

Noticing that d̂†σ (t+∆t) =
∑

α aα (t+∆t) Ôα according

to Eq. (14) and the expression of d̂†σ (t+∆t) is unique
due to our definition of basis operators, we finally obtain
the recurrence relation

aα (t+∆t) = aα (t) + i∆t
∑

α′

hα′,αaα′ (t) . (18)

By using Eq. (18), we can in principle obtain the coeffi-
cients aα (t) at arbitrary times by an iterative procedure:
we begin from an input aα (t = 0) which depends on the
operator we wish to evaluate, and advance by a sequence
of time steps of size ∆t.

We must store all nonzero coefficients aα (t) along with

their corresponding Ôα at time t in order to compute
aα(t + ∆t). This demands that the number of nonzero
coefficients remain manageable. Fortunately, at t = 0

only a single nonzero coefficient is needed to express d̂†σ
(assuming that we choose d̂†j,σ as one of our ω̂i

j). In a

geometric picture, one could say that our target d̂†σ (t)
begins at t = 0 exactly on an axis of the operator space
at the initial time, and the super operator [Ĥ+, ] acting

on d̂†σ is quite inefficient at generating new nonzero di-
mensions. This property guarantees that our algorithm
be extremely fast at short times. This property can only
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be taken care of within the Heisenberg picture: in the
Schrödinger picture, the operator Ĥ+ acting on a unit
basis vector (which is not an eigenstate of the Hamil-
tonian or extremely local) will immediately generate an
infinite number of additional terms, stemming from the
infinite number of terms in Ĥ+. This difference between
the two pictures is what makes the Heisenberg picture a
far more efficient one to study real time dynamics within
the NOM. This is understandable, since in the Heisenberg
picture we are restricting our focus to a single observable
once a time, while in the Schrödinger picture obtaining
the quantum state is equivalent to obtaining all possible
observables and should in general be harder.

C. The truncation scheme

While the number of nonzero aα (t) is always finite,
it also increases exponentially as the operator is propa-
gated to longer times. To keep the iterative process fea-

sible, we must limit the number of pairs
(

aα, Ôα

)

that

are stored in memory. When the number of stored pairs
exceeds a given value (which we will denote by M), we
perform a truncation and throw out some number of the

least important
(

aα, Ôα

)

. The determination of the rel-

ative significance of the
(

aα, Ôα

)

at each step, i.e., the

truncation scheme, is critical: for our purposes, a good
algorithm is needed to allow the algorithm to accurately
describe I (t) at long times.

To proceed in deriving an optimal truncation scheme

for the current, let us substitute the expansion for d̂†σ (t)
into Eq. (9) to obtain an expression for the current:

I (t) = 2

√

Γ

π

∑

α

Im
{

aα (t)
〈

Ôαĉ−σ

〉}

. (19)

In considering this equation, an immediate and naive idea

might be to relate the magnitude
∣

∣

∣
Im

{

aα (t) 〈Ôαĉ−σ〉
}∣

∣

∣

to the significance of
(

aα, Ôα

)

. However, this idea fails,

since it leads to an underestimation of the importance of
|aα (t)|, which has an inheritable significance. To see this,
one should consider the fact that in the iterative relation
Eq. (18), a coefficient aα (t) with a large magnitude also
has an important contribution to aα′ (t+∆t). On the
other hand, a small coefficient |aα (t)| ∼ 0 can generally
be thrown out, since its contribution to aα′(t + ∆t) is
limited by

|δα,α′aα (t) + i∆t · hα,α′aα (t)|
≤ δα,α′ |aα (t)|+∆t |hα,α′ | |aα (t)| , (20)

where the second term vanishes in the limit ∆t → 0
(since |hα,α′ | is bounded). In the other words, if |aα (t)|
is very small, throwing out

(

aα, Ôα

)

has no effect on

the current at the subsequent time. However, a coeffi-

cient with small
∣

∣

∣
Im

{

aα (t)
〈

Ôαĉ−σ

〉}
∣

∣

∣
cannot be safely

thrown out, since it may have a significant contribution
to I (t+∆t) even though its contribution to I (t) is es-
sentially zero.

With this in mind, it is clear that using |aα (t)| as
our measure of significance is reasonable. However, it
also has the disadvantage of not being optimized specif-
ically to the current. Therefore, it may be better to
give weight to the contributions of both |aα (t)| and
∣

∣

∣
Im

{

aα (t)
〈

Ôαĉ−σ

〉}∣

∣

∣
. At short times, it is easy to see

that the value of |aα (t)| fluctuates strongly with differ-
ent α (for instance, consider |aα(0)|), such that |aα (t) | is

a more important measure than
∣

∣

∣
Im

{

aα (t) 〈Ôαĉ−σ〉
}
∣

∣

∣
.

At long times, however, we find that the value of the
contributing |aα (t) | at different α is of similar size, a
fact which may be understandable as a kind of ther-

malization of d̂†σ (t) in the operator space. This leads

to
∣

∣

∣
Im

{

aα (t)
〈

Ôαĉ−σ

〉}
∣

∣

∣
being more important at long

times. In practice, we have used the weight function

Wα (t) = |aα (t)|+ γeβt
∣

∣

∣
Im

{

aα (t)
〈

Ôαĉ−σ

〉}∣

∣

∣
, (21)

where γ, β > 0 are numerical parameters and the choice
of their value (which should affect the performance of the
algorithm but not the physical result) is decided empir-
ically. After each time step, we arrange the current set

of stored operators and coefficient
(

aα, Ôα

)

in descend-

ing order according to their respective weights Wα (t),

and keep the M pairs
(

aα, Ôα

)

with the largest Wα.

The remaining pairs are discarded. Our experience sug-
gests that this truncation scheme performs far better at
long times than the more general alternative truncation
scheme Wα (t) = |aα (t)|, which is not specifically tai-
lored to the current (see Fig. 5 and the discussion in
Appendix A). It is worth of mentioning that, if choosing
Wα (t) = |aα (t)|, we can obtain the current for any pos-
sible values of voltage bias in a single calculation, which
saves the computational time.

D. Evaluating the expectation value

To obtain the current as expressed in Eq. (19), we need

to calculate the expectation value
〈

Ôαĉ−σ

〉

with respect

to the initial state. According to the definition of basis
operators, this requires evaluating expectation values of
the form

〈 ∞
∏

j=−1

ω̂
αj

j ĉ−σ

〉

. (22)

Since ω̂
αj

j is a product of second quantization operators,

Eq. (22) can be expanded using Wick’s theorem. And we
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are able to calculate the contraction of an arbitrary pair
of field operators.

There are two kinds of nonzero contractions in

Eq. (22), which are
〈

d̂†nσ d̂n′σ

〉

and
〈

d̂†nσ ĉ−σ

〉

. Using

the initial condition of subsection III A, a tedious but
straightforward calculation gives

〈

d̂†nσ d̂n′σ

〉

=

∞
∑

m=0

unmun′m

2dm

{

ˆ

D
2Λm

D

2Λm+1

dǫ [fL (ǫ) + fR (ǫ)]

+ (−1)n+n′

ˆ − D

2Λm+1

− D
2Λm

dǫ [fL (ǫ) + fR (ǫ)]

}

(23)

and

〈d̂†nσ ĉ−σ〉 =
∞
∑

m=0

unm

√

1

dm
(24)

[

ˆ

D
2Λm

D

2Λm+1

dǫ+ (−1)n
ˆ − D

2Λm+1

− D
2Λm

dǫ

]

[

e−iǫt fL (ǫ)− fR (ǫ)

2

]

,

where fα (ǫ) = θ (µα − ǫ) is the Fermi distribution, dm =
D
2

(

1
Λm − 1

Λm+1

)

the width of the m-th discretized energy
bin, and unm a set of orthogonal coefficients in the Wil-
son transformation. unm is generated by the recurrence
relation

un+1,m =
1

tn

(

D (1 + Λ)

4Λm+1
unm − tn−1un−1,m

)

, (25)

with the initial conditions u0m = 1√
2

√
1− Λ−1Λ−m/2

and u1m = 1√
2

√
1− Λ−3Λ−3m/2. A special case is

〈

d̂†nσ d̂n′σ

〉

= 1
2δn,n′ for even (n+ n′).

There are four numerical (as opposed to physical) pa-
rameters in the algorithm: the time interval ∆t, the
maximum number of stored coefficients M , and the two
parameters γ and β which define the truncation weight
function Wα. Our algorithm becomes numerically ex-
act in the limit M → ∞ and ∆t → 0, regardless of γ
and β. To obtain convergence, we start from an initial
guess (∆t,M) for these values and calculate the current
I (t) (∆t,M). We then set ∆t → ∆t/2 and M → 2M and
repeat the calculation to obtain I (t) (∆t/2,2M). The dif-

ference
∣

∣I (t) (∆t,M) − I (t) (∆t/2,2M)

∣

∣ provides us with an
approximate estimate of the error, and we can now iter-
ate this procedure until the error is small enough for our
requirements, at which point we say that convergence is
reached.

This concludes our discussion of the algorithm. In the
next section, we will present several examples and com-
parisons with other methods.
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Figure 1. The time dependent current I (t) computed at
Λ = 1.02 (represented by solid lines) and at Λ = 1.2 (rep-
resented by symbols) at several different bias voltages V and
two different interaction strengths U . The results at Λ = 1.02
coincide with those at Λ = 1.2, indicating that the latter is
small enough to attain convergence of the discretization of
reservoirs at these parameters and timescales. (Top panel)
The interaction strength is U = Γ. (Bottom panel) The in-
teraction strength is U = 0.01Γ.

IV. RESULT AND DISCUSSION

A. Numerical parameters and convergence

We set the bandwidth of the reservoirs to D = 20Γ
and calculate I (t) at the particle-hole symmetric point
ǫd = −U/2 for different interaction strengths U and bias
voltages V . The choice of the truncation parameters γ
and β is empirical. We have tried different values in order
to minimize the error of I (t) at a given time for given
∆t and M , and found that γ = 2 and β = 3 is a good
choice for a wide range of parameters (see Appendix A
for more detail). With the truncation scheme we have
proposed, computation time is efficiently reduced to a
manageable level (see Appendix B for more detail): in
practice we find that M = 40000 for U = 4.0Γ or M =
60000 for the other values of U and ∆t = 0.008/Γ provide
a good estimate of I (t) for the parameters treated in
this paper. In general, however, we find that to obtain
accurate results at longer times a larger M is required,
such that the computational scaling in the propagation
time t is in practice substantially more than linear. In
the general case, this is of course a universal problem in
all numerically exact methods. We briefly mention that
under certain conditions it can be overcome by reduced
dynamics techniques,56,59,60 but this is beyond the scope
of this paper.

An important problem that has been mentioned in
sec. II is that the Wilson chain is not a thermal reser-
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Figure 2. The current I (t) at weak interaction strength
U = 0.01Γ and for a range of bias voltages V

Γ
= 1

2
, 1, 2, 3, 4, 5.

We compare results calculated with the NOM at finite band-
width, D = 20 (symbols connected by solid lines), with re-
sults calculated by second order perturbation theory at infi-
nite bandwidth, D → ∞ (dashed lines).

voir at Λ > 1. We circumvent this issue by converging
the data with the limit where Λ → 1 for finite times.
In Fig. 1, we present the results at different Λ for differ-
ent interaction strengths and bias voltages. We find that
Λ = 1.2 and Λ = 1.02 give comparable results, indicating
that the data is converged.

B. Weak and intermediate interactions

Having established that the NOM converges to a well-
defined answer, we now continue to argue that this
answer is correct. This will be done by performing
a set comparisons with trustworthy analytical and nu-
merical results. We begin at the limit of weak in-
teraction. For noninteracting (quadratic) systems, the
NOM has previously been discussed in the literature and
was shown to agree perfectly with the results of exact
diagonalization.77 We therefore begin with weakly inter-
acting systems at interaction strength U = 0.01Γ, where
second order perturbation theory in U may be expected
to work well.

In Fig. 2 we present a comparison between the NOM at
a bandwidth of D = 20Γ and perturbation theory. The
perturbation theory data comes from ref. 18, where the
flow equation technique (which is equivalent at steady
state to the Keldysh technique of ref. 78) was applied
to the Anderson impurity model at the wide band limit
D → ∞. As expected, the two data sets converge at low
voltages, e.g., at V = 0.5Γ and V = Γ. We also find
moderate deviation of our results from the perturbation
theory at high bias voltage, where one might expect the
bandwidth to be more important. In the presence of in-
teractions, the bandwidth affects the current even when
the transport window is narrower than the bandwidth
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Figure 3. The current I (t) at intermediate interaction
strength U = 4Γ for several different bias voltages V

Γ
= 1, 2, 3.

We compare results calculated with the NOM at finite band-
width, D = 20 (symbols connected by solid lines), with re-
sults calculated by second order perturbation theory at infi-
nite bandwidth, D → ∞ (dashed lines).

(V < D): due to inelastic scattering effects, levels in
the bands are effectively mixed. We note that the limit
D/Γ → ∞ is not reachable by our algorithm, and in gen-
eral the computational time increases significantly as we
increase the bandwidth D/Γ. In essence, a large band-
width acts oppositely to the beneficial effects of the log-
arithmic discretization with Λ > 1. The logarithmic dis-
cretization speeds up the algorithm by transforming the
model into a Wilson chain in which the coupling between
adjacent sites decreases exponentially with distance from
the impurity. The vanishing coupling far away from the
impurity site effectively suppresses the growth of the op-
erator space in the iterative process, thereby reducing the
computational time (see Fig. 7 and the discussion in Ap-
pendix B). As the bandwidth D increases, the coupling
grows according to Eq. (6), raising the coefficients |aα(t)|
and yielding slow convergence.

In Fig. 3, we further compare our method with pertur-
bation theory at an intermediate interaction strength of
U = 4Γ . Interestingly, the numerical curves continue to
fit well with the perturbative theory at low bias voltages,
but deviate from it qualitatively at high bias voltage.
This suggests that the second order perturbation theory
still works well at U = 4Γ and low voltage. At higher
bias voltages the deviation may be attributed to either
the failure of the perturbative approximation or the dif-
ference in bandwidth. The inelastic scattering at U = 4Γ
is stronger than that at U = 0.01Γ, such that the finite
D affects the current to a greater degree.

C. Strong interactions

Finally, we study the current I (t) within the
strong coupling regime by considering U = 8Γ. In
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Figure 4. The current I (t) at a large interaction strength
U = 8Γ and several different bias voltages V

Γ
= 1, 2, 3, 4, 5, as

calculated by the NOM (solid lines) and the QMC method of
ref. 55 (symbols connected by dashed lines).

nonequilibrium—that is, beyond linear response in the
voltage—exact analytical results are not available. Lin-
ear response is thought to be valid for voltages approxi-
mately limited by the Kondo temperature TK ∼ e−U/Γ,
and therefore quite small. We compare with numeri-
cally exact QMC results at a low but finite temperature
of T = 0.1Γ, in comparison with T = 0 in the NOM.
The short time behavior is accessible with continuous
time quantum Monte Carlo techniques,39,51 at least for
temperatures which are not too low. Newer bold-line
techniques55,79 allow access to longer times and lower
temperatures. We have compared the QMC results with
similar at T = 0.2Γ (not shown) and verified that within
the timescales accessed here, the effect of the finite tem-
perature is small. Also, within QMC we take soft band
edges, which are defined by a product of Fermi functions
having width ν = 0.1Γ, as in ref. 51. The QMC simula-
tions are otherwise performed at the same parameters as
the NOM.

The current I (t) at different bias voltages up to Γt =
2.5, as calculated by both methods, is displayed in Fig. 4.
The results are consistent at the highest voltage V = 5Γ.
However, even at V = 5Γ, it is clear that the NOM
gives a slightly larger current around the first peak at
Γt ∼ 0.5, which can be attributed to the difference in
temperature and band shape. At lower voltages the two
methods exhibit good agreement at short times, but devi-
ate significantly from each other at longer times. Though
steady state is not reached here, NOM appears to predict
a smaller steady state current than QMC. We do not be-
lieve that this can be explained by the difference in tem-
peratures, since from the previously mentioned check we
find that reducing the temperature in QMC leads to the
opposite trend. QMC studies similarly suggest that the
importance of the band cutoff width ν is relatively unim-
portant at these parameters. The rise in current at low

voltages may be associated with the formation of Kondo
resonances at the chemical potentials,33 and the failure of
the NOM at these parameters indicates a problem either
with the Wilson mapping (which implies low resolution
at high energies) or with our truncation scheme. In ei-
ther case, it requires further investigation which will be
left to future studies.

V. CONCLUSIONS

In summary, we have developed the numerical operator
method, or NOM, and applied it to the study of the real
time dynamics of strongly-correlated quantum impurity
models in nonequilibrium. This is a notoriously difficult
problem to which many techniques have been applied.
Our method is distinguished by three important features,
which we briefly outline below.

First, in the mapping of the reservoirs onto 1D chains,
any discretization scheme is supported. This is similar
to DMRG, but differs from NRG; in QMC the issue of
mapping onto a 1D chain need not arise. It also allows us
to efficiently take the limit Λ → 1 when using the Wilson
mapping.

Second, our method revolves around the solution of
the Heisenberg equation of motion. We carefully select
a basis in the operator space such that the superopera-
tor [Ĥ, . . .] acting on our chosen observable in this basis
generates only a small number of terms. This allows us
to effectively set the length of the reservoir chains to in-
finity, thus circumventing the finite-size scaling problems
encountered by other (non-QMC) numerical techniques.

Third, we provide a truncation scheme (see Eq. (21))
suited to the characteristics of the solution of the Heisen-
berg equation and optimized for specific observables.
Therefore, our algorithm is extremely fast and accurate in
the short time limit, and additionally provides a control-
lable scheme for obtaining high quality approximations
of physical observables at longer times. The downside of
this is that our method only addresses a single observable
per computation: to calculate an additional observable,
the entire time evolution process must be repeated. How-
ever, in many cases, only one or very few observables are
of interest.

We note that while these features are also shared
by tDMRG schemes formulated for matrix product
operators,71 our truncation scheme is different and does
not rely on the assumption of low entanglement, which
may not be appropriate for nonequilibrium dynamics.

As an example, we apply our method to the real
time dynamics of transport through the nonequilibrium
Anderson impurity model. We calculate the time de-
pendence of the current in a wide range of interaction
strengths and bias voltages going far beyond the linear re-
sponse regime in both quantities. We show that at small
interaction strengths, our results coincide with perturba-
tion theory in the interaction. We further compare our
results with QMC data at a large interaction strength
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for which no analytical method is known to be applica-
ble, and find good agreement as long as Kondo physics
does not come into play.

We have therefore established the NOM as a reliable
new formalism for exploring nonequilibrium transport
properties in the impurity models over a wide range of
parameters and at zero temperature. We expect to gener-
alize our method to more complicated quantum impurity
models and to two-time correlation functions in the fu-
ture, and further analyze its advantages and limitations.
In particular, a comparison with tDMRG is in order, and
the relative merits of the NOM basis and the truncation
scheme as opposed to those of matrix product operator
algorithms should be studied in detail. Finally, modifica-
tions to DMRG which have allowed for the study of finite
temperatures80–82 and open systems coupled to Marko-
vian baths83–85 should also be usable within the NOM.

ACKNOWLEDGMENTS

P. W. and S. X. were supported by the NSFC (Grants
No. 11304280 and No. 71103161). G. C. is grateful to
the Yad Hanadiv-Rothschild Foundation for the award of
a Rothschild Postdoctoral Fellowship, and acknowledges
NSF CHE-1213247 and NSF DMR 1006282. QMC im-
plementations were based on the ALPS86 libraries.

Appendix A: Convergence of the results

A self-consistent method for determining the accuracy
of the method is necessary for serious applications and
will need to be developed in the future. At this stage, we
can roughly estimate the truncation error for different
truncation schemes and the finite-∆t error by increasing
the number M of coefficients kept or by decreasing ∆t,
respectively, and observing how the results vary, since at
the limit of M → ∞ and ∆t → 0 the computation always
becomes exact.

Fig. 5 shows how the currents at different times change
when M is increased for a set of different truncation
schemes. As discussed in the last paragraph of subsec-
tion III C, the truncation schemes that we consider are
spanned by the pair of positive numbers (γ, β). When
considering the shortest propagation time shown, t =
1.6/Γ (see panel (a)), all five truncation schemes with dif-
ferent (γ, β) converge to similar values at relatively low
M . In particular, as discussed in the subsection III C, the
red and black lines denote the two most successful trun-
cation schemes. By comparing the differences between
these two results, the truncation error may be judged to
be approximately 0.01/0.3 ≈ 3.3%. We note that this
is not a rigorous analysis and that an algorithm for self-
consistently evaluating the truncation errors within the
method remains an important goal for future work.

At t = 2.0/Γ (panel (b)), we clearly see that the trun-
cation error is strongly suppressed as γ increases from
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Figure 5. [Color online] The change of currents at the times
(a) t = 1.6/Γ, (b) t = 2.0/Γ, (c) t = 2.2/Γ and (d) t = 2.56/Γ
when as a function of M , the number of coefficients kept.
The different lines illustrate the dependence on the truncation
scheme, which is indicated by the pair (γ, β) as defined in
Eq. (21) of the manuscript. The other parameters are the
same as those of the V = 5Γ curve in Fig. 4 of the manuscript.

γ = 1 (the blue) to γ = 40 (the red), reflecting the fact
that the weight of the expectation value should be in-
creasingly significant in the truncation scheme as t grows
larger. At a still longer time t = 2.2/Γ, the truncation
schemes with small γ (the blue, green and pink lines)
clearly fail, exhibiting relative errors exceeding 100%.
Only the truncation schemes with γ = 40, β = 0 (red
line) and γ = 2, β = 3 (black line) continue to provide
consistent results. The black (2, 3) scheme is particularly
advantageous, and this advantage is even more signifi-
cant at the largest time t = 2.56/Γ (panel (d)). In this
case,all other schemes fail, and the (40, 0) scheme results
in an unphysical result (negative current). We conclude
that the weight of the expectation value in the truncation
scheme should be more significant at a larger time. For
this reason, an exponential weight function γeβt works
better than a constant weight function (β = 0) or the
truncation scheme which neglects the expectation value
(γ = 0).

We illustrate the convergence of results with decreasing
∆t in Fig. 6, using the truncation scheme defined by γ =
2, β = 3. While this is not a complete analysis, we can
see that the error caused by a finite ∆t in the range ∆t ≤
0.008/Γ increases slightly as t increases. However, even at
t = 2.1/Γ, nearly the largest time that we reach, the finite
∆t error remains around 0.003/0.3 = 1%, substantially
less than the truncation error. The truncation error is
therefore the dominant source of error in our algorithm.
We also note that the error increases very fast as ∆t goes
beyond 0.01/Γ, especially for the results at large t.
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Figure 7. (Left panel) The number of basis operators in the
memory before truncation (dashed line) and the elapsed CPU
time (solid line) as a function of t in a typical calculation.
(Right panel) The comparison of the elapsed CPU time at
different Λ. All the other parameters are taken the same as
those of Fig. 4, V = 5Γ curve.

Appendix B: Computational cost

The computational cost strongly depends on the in-
teraction strength U , the time step ∆t, the number of
stored coefficients M , the discretization parameter Λ,
and the truncation parameter γ. Increasing U signifi-
cantly raises the computation time. In the noninteract-

ing or weakly-interacting regime, the number of non-zero
aα(t) increases approximately linearly with t, but expo-
nentially with t in the strongly-interacting regime. It is
therefore more difficult to obtain a converged result at
large U . Reducing ∆t or increasing M obviously raises
the computational cost, but also improves the precision of
results. In practice, a balance between the computational
cost and the precision must be taken carefully. The cou-
pling between two neighboring sites of the Wilson chain
scales approximately as Λ−n/2. Increasing Λ reduces the
coupling between sites far from the impurity site, thus
effectively suppressing the growth of the active operator
space and leading to the reduction of the computational
cost. γ affects the computation time in a complex way:
with γ = 0, one avoids calculating the expectation value
of the basis operator at each step, and can obtain the
currents at arbitrary voltage in a single calculation since
the Heisenberg equation is independent to the voltage
bias. Taking γ = 0 therefore saves a lot of computation
time; however, this only works in the non-interacting or
weakly-interacting region. In the strongly-interacting re-
gion, taking γ = 0 leads to a very slow convergence at
large t and is not feasible in general.

In the left panel of Fig. 7, we have chosen one particular
dataset and plotted the number of basis operators kept
in memory before truncation at each step along with the
elapsed CPU time. The parameters taken are U = 8Γ,
M = 60000, τ = 0.008/Γ, γ = 2 and β = 3. We see that
the truncation becomes necessary, i.e., the number of op-
erators before truncation is beyond M , at t ∼ 0.15/Γ.
This is also the typical time scale at which the trunca-
tion begins to come into play in Fig. 1-4. The number
of basis operators before truncation, which roughly cor-
responds to the computational cost at each step, satu-
rates at a value ∼ 140000 within a short time t ∼ 0.2/Γ.
The computational time scales sub-linearly in t for very
short times (when the number of operators in the ba-
sis is still small), and becomes approximately linear in t
once the basis growth becomes limited by M . The right
panel of Fig. 7 shows the computational time at different
Λ. We see that the computational time is reduced as Λ
increases, coinciding with the above analysis. Roughly
speaking, the data of Fig. 1-4, were obtained from cal-
culations taking between a few days to over 10 days on
a single core. The interaction strength affected the total
computation time more strongly than any other param-
eter.
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