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Abstract: 
 

The nature of a material’s Fermi surface is crucial to understanding its electronic, 
magnetic, optical, and thermal characteristics. Traditional measurements such as angle 
resolved photoemission spectroscopy and, de Haas-van Alphen quantum oscillations can 
be difficult to perform in the vicinity of a pressure-driven quantum phase transition, 
although the evolution of the Fermi surface may be tied to the emergence of exotic 
phenomena. We demonstrate here that magnetic x-ray diffraction in combination with 
Hall effect measurements in a diamond anvil cell can provide valuable insight into the 
Fermi surface evolution in spin- and charge-density-wave systems near quantum phase 
transitions. In particular, we track the gradual evolution of the Fermi surface in elemental 
chromium and delineate the critical pressure and absence of Fermi surface reconstruction 
at the spin-flip transition.  
 
I. Introduction 

 
The need to delineate the electronic and magnetic character of a material becomes 

particularly acute at a phase transition. The evolution of a metal’s Fermi surface often 
provides the key. When the transition occurs at zero temperature absolute, the complexity 
grows. As with many aspects of quantum phase transitions, such as the influence of 
quantum fluctuations and changes in scaling exponents and universality classes [1], the 
evolution of the Fermi surface is not always understood and often difficult to measure. In 
metal-insulator transitions, a potential violation of Luttinger’s theorem demands either a 
first order transition or non-Fermi-liquid behavior [2]. In antiferromagnetic heavy 
fermions, the change of Fermi surface is possibly related to the localization of itinerant 
charge carriers [3], and non-Fermi-liquid behavior has become a common theme [4]. 
Experimentally, however, parsing Fermi surface changes is difficult, especially when the 
quantum phase transition is driven by pressure. Angle-resolved photo-emission 
spectroscopy (ARPES) requires samples in vacuum with well-prepared surfaces [5-6], 
while de Haas-van Alphen (dHvA) and Shubnikov-de Haas quantum oscillation 
techniques require large magnetic fields, which can result in structural or electronic 
changes to the system.  
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2kF-density wave systems have been discussed extensively as a class of materials 
for studying continuous quantum phase transitions and related quantum critical behavior 
[7-10]. These systems encompass many types of Fermi surface instability, such as nesting 
[11], saddle points [12] and hot spots [7-10], and could even extend to quasi-particle 
interference in high-Tc cuprates, where the ordering wave vector at a given energy is 
strongly dependent on the detailed dispersion of the band structure near the Fermi surface 
[13]. In general, incommensurate charge and spin order [14] can arise from local entities, 
through mechanisms such as electron-phonon coupling [15-17] and Ruderman–Kittel–
Kasuya–Yosida (RKKY) exchange interactions [18]. On the other hand, itinerant 
instabilities have been identified in many incommensurate CDW and SDW materials [11, 
19-21], and those 2kF systems are often sensitive to athermal tuning parameters such as 
chemical doping/alloying [6, 19, 20], impurities [22], and pressure [23, 24]. The Fermi 
surfaces of these 2kF systems at ambient pressure are often calculable with ab initio band 
structure calculations [6, 25, 26] and directly measureable through techniques such as 
ARPES [5, 6]. The pressure evolution of the incommensurate ordering wave vectors can 
be measured directly using diffraction techniques [24, 27, 28] to reflect features on the 
Fermi surface [7-10, 19-21].  

 
While diffraction of the 2kF wave vector probes the gapped part of the Fermi 

surface, an independent measurement of the remaining itinerant carriers is necessary to 
fully explore the Fermi surface evolution. Compatibility with pressure, a common tuning 
parameter for such systems, is highly desirable. Hall Effect measurements offer suitable 
sensitivity to changes in the Fermi surface consonant with a pressure-cell environment.  

 
Here, we use a combination of x-ray diffraction and Hall measurements to 

provide insight into the evolution of the Fermi surface in the spin-density-wave 
antiferromagnet chromium over a large range in pressure-temperature phase space, 
including a pressure-driven, spin-flip quantum phase transition.  Spin-flip transitions are 
common phenomena in many types of antiferromagnets [21, 29-31], and often can be 
tuned by external parameters such as magnetic field [29, 32], pressure [33], and even 
surface boundary conditions [30]. In 2kF spin density wave antiferromagnets, the spin 
orientations are not necessarily constrained by the Fermi surface instability [30]. 
Nevertheless, in certain cases the first-order spin-flip transition is sufficiently strong to 
drive a discontinuous change in the wave vector Q [21].  

 
II. Experimental Methods 
 

 Non-resonant magnetic diffraction under pressure was carried out at beam line 4-
ID-D of the Advanced Photon Source, using horizontally polarized 20 keV x-rays 
diffracting in the vertical plane [27, 28, 34]. A major improvement over previous work 
[34] was to utilize a pair of wide-angle (60o 2θ) perforated diamond anvils [28] (Fig. 1) to 
significantly reduce the elastic background.  
 

The cubic lattice in the paramagnetic phase of Cr allows a three-fold degeneracy 
of Q along each of the cubic axes. For each Q, the SDW is either longitudinal to Q or 
along two transverse directions. In addition, there is a charge density wave (CDW) as a 
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second-harmonic of the SDW with a wave vector 2Q [35]. Single crystal Cr samples 
(99.996%, Alfa Aesar) were prepared as square plates with typical size 80×80×40 μm3 
[36] for scattering-optimized diamond anvil cells. The samples were aligned with the 
surface normal of the plate oriented along the [0,0,1] direction, which is approximately 
parallel to the compression axis of the pressure cell upon loading. The sample, high-
pressure cell, and diffraction geometry allowed x-ray magnetic diffraction to be 
performed with the azimuthal vector (0,0,1) inside the diffraction plane, and accessing 
the (1,±δ,0)/(±δ,1,0), (0,1,±δ)/(1,0,±δ) orders.  

 
The cross section of non-resonant x-ray magnetic diffraction is in practice only 

sensitive to the out-of-plane spin component ܵୄ [37]. For the azimuthal vector (0,0,1) 
inside the diffraction plane, only the (1,±δ,0) and (±δ,1,0) orders are observable in the 
longitudinal spin structure. For the same azimuthal condition in the transverse spin 
configuration, the (1,0,±δ) and (0,1,±δ) orders become observable (Fig. 1), while 
diffraction of (1,±δ,0) and (±δ,1,0) is no longer present. Thus, measuring these sets of 
diffraction orders can determine whether the sample has longitudinal or transverse spin 
order or coexisting domains of both structures. 

 
Both CDWs and SDWs were probed in detail at five different pressures. The 

SDW intensity ISDW was measured for SDWs around (1,0,0) or (0,1,0), with a summation 
of (0,1,δ) and (1,0,δ) to account for the degenerate transverse-SDW (TSDW) along the L-
domain. The CDW intensity ICDW was measured around the (2,0,0), (1,1,0), and (2,1,1) 
orders, before converting to that of the (2Q,0,0) order. The wave vector Q was 
determined at each pressure by averaging over measurements of five to fourteen different 
CDW/SDW orders with CDWs around the (2,0,0), (1,1,0), and (2,1,1) orders and SDWs 
around (1,0,0).  The widths of both the lattice and magnetic diffraction peaks are all 
instrument resolution limited in Fig. 2, thus the pressure inhomogeneity over the Cr 
sample is estimated to be less than 0.04 GPa at the spin-flip transition [34]. The 
observation of CDWs along all three cubic axes also rules out significant pressure 
anisotropy [34]. 
 

 For the transport measurements, polycrystalline Cr samples (99.999% pure, ESPI 
Metals) of 150×150×30 μm3 size were prepared in a manner similar to the single-crystal 
diffraction samples [36], except the raw material was first thermally annealed at 1050 oC 
for 20 hours in an Ar/H2 (85%/15%) mixture atmosphere. Since RH of Cr is largely 
isotropic [38], we chose to use polycrystalline specimens because of the available higher 
level of purity. Four gold leads were spot-welded in the van der Pauw geometry to every 
Cr sample [39]. Data presented here were measured on three polycrystalline Cr samples, 
with an ambient-pressure residual resistivity ratio of 70-110 between 300 K and 4 K, and 
a 4 K resistivity at all pressures with ρ0 = 0.10-0.14 μΩ-cm. Electrical measurements 
were carried out in a Physical Property Measurement System (Quantum Design, Inc.) 
using a pressure cell designed for measurements in the multidimensional H-P-T space 
[40]. Sapphire seats and thermally-hardened MP35N gaskets were used to minimize 
magnetic field distortion. The resistivity in the Hall geometry ρxy(H) was measured 
between ±0.5 T using a Lakeshore 370 ac resistance bridge and a Lakeshore 3708 
preamplier. Given the typical residual resistivity ρ0, the field range puts our Hall 
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measurement in the low field limit with ωcτ<1 [41], where ωc is the cyclotron frequency. 
The antisymmetrized ρxy(H) component was fit to a polynomial form, and the linear 
component in field was used to calculate RH. This procedure eliminates other spurious 
contributions to ρxy(H) such as conventional longitudinal magnetoresistance.  

 
III. Results 

 
For Cr at ambient pressure, the electronic and spin structures are both well 

understood [5, 25, 26, 35, 42]. The electronic structure of paramagnetic Cr has four bands 
at the Fermi surface: an electron octahedron at reciprocal lattice point Γ, a hole 
octahedron at Η with a matching (nested) shape, and two types of ellipsoids that act as 
charge reservoirs [25]. One type of ellipsoid is electron-like and resides between the two 
nesting bands along the 〈1, 0, 0〉 or Γ-Η direction. The other is hole-like and is isolated 
along the 〈1, 1, 0〉 direction at reciprocal point N. Upon the formation of the spin density 
wave, itinerant spins are aligned transverse to the wave vector Q=(1-δ, 0, 0)~(0.952,0,0) 
between TN=311 K and the spin-flip transition temperature TSF=123 K, and parallel 
(longitudinal) to Q below TSF (Fig. 1). For Cr at ambient pressure, there is no sign of an 
abrupt change in itinerant carriers at TSF, judging from both the electrical resistivity [23, 
35] and Hall coefficients [38]. 

 
It is known that hydrostatic pressure quickly suppresses the formation of the 

longitudinal spin configuration in Cr [33]. However, the detailed P-T space phase 
boundary has not been elucidated. The changes in spin configuration only can be probed 
directly by neutron and x-ray diffraction. Neutron magnetic diffraction demonstrated a 
monotonic reduction of TSF(P) to 90 K at P=0.6 GPa [33] and previous x-ray magnetic 
diffraction offered only a coarse boundary at P~1 GPa for T < 8 K [27]. Here we first 
finely delineate the spin-flip transition in Cr, using non-resonant x-ray magnetic 
diffraction technique (Fig. 1). The spin-flip transition is clearly manifested in Fig. 1 by 
the switch in observed SDW diffraction signals from (1, ±δ, 0) and (±δ, 1, 0) to (1, 0, ±δ), 
whereas the CDWs along all three cubic axes were observed at 1.45, 1.55, and 1.95 GPa 
(Fig. 2). Within the resolution of our pressure tuning capability, no phase coexistence was 
observed, and the boundary of the spin-flip transition can be precisely determined to be 
1.50±0.05 GPa at T=3.9 K.  

 
Given that the wave vector Q is reflective of the nesting condition at the Fermi 

surface [35], x-ray diffraction provides direct insight into the evolution of the nesting 
bands under pressure. The overall change in Q with increasing P indicates a change of 
both electron and hole octahedron sizes in the paramagnetic phase. This is likely due to a 
charge transfer effect under pressure. However, no discontinuity in Q larger than 0.0004 
r.l.u. was observed at the spin-flip transition (Fig. 2c), which rules out strong 
modifications of the two nesting bands at the pressure-driven quantum phase transition.  
 

The overall evolution of the Fermi surface is probed by Hall effect measurements 
from 0 to 7.6 GPa in pressure and 2 to 350 K in temperature (Fig. 3). The pressure range 
of this measurement extends to well above the measured 1.5 GPa spin-flip transition 
pressure. The ±0.5 T applied field used in these Hall measurements is much smaller than 
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the field required to perform dHvA measurements in chromium [35, 43] and causes no 
observable field-induced magnetostriction effect [44]. Our measured RH at P=0 (Fig. 3) is 
consistent with results in the literature [38], with a sharp rise in RH marking the opening 
of the SDW gap at TN=311 K and the gradual saturation with decreasing temperature at 
approximately TN/2. Below 140 K, RH is non-monotonic in temperature, with a sharp dip 
anomaly occurring at T~35 K. The pressure evolution of RH(T) exhibits several major 
trends. The high temperature rise in RH at TN(P) moves to lower temperature with 
increasing pressure, consistent with the pressure dependence of TN(P) in Cr [23]. By 
contrast, the 35 K dip feature in RH remains stable under increasing pressure, although its 
depth gradually reduces.  

 
Similar dip features in RH were observed in high quality metals such as Cu, Ag 

[41] and single crystalline Mo [45] and W [46]. There exist several theories for the 
feature [38, 41, 46, 47]. The simplest explanation of the dip anomaly involves a 
competition of two relaxation times τ of itinerant electrons, originating from either Fermi 
surfaces of different topology and curvature such as belly and neck [41], or phonon 
scattering channels of normal vs. Umklapp processes [38, 46, 47]. While increases in 
impurity and disorder scattering have been experimentally shown to suppress the dip 
feature in RH, these effects simultaneously reduce the characteristic temperature and 
depth [41]. By contrast, we see in Fig. 3 that the dip feature remains constant in 
temperature at 35 K for the entire pressure range, indicating that the pressurization 
process has not substantially increased the role of disorder; similarly, we see a flat 
residual resistivity ρ0(P) [39]. This suggests that the processes driving the diminution of 
the dip depth alone are intrinsic to the itinerant electrons on the Fermi surface.  
 

For Mo and W, the Fermi surfaces are similar in shape and size to that of 
paramagnetic Cr, but without an itinerant instability capable of inducing a SDW state [25, 
26, 35]. Thus, a comparison of all three systems helps to illustrate microscopic details of 
the dip feature in RH. It has been suggested that the dip anomaly in RH is due to the 
Umklapp process between the non-nesting electron ellipsoid along the Γ-Η direction and 
the tip of the large hole octahedron at Η [46]. The hole octahedron seems to retain part of 
its density of states after the formation of an SDW [5], since it is larger than the electron 
octahedron in Cr. This Umklapp process is highly dependent on the anisotropy of the 
electron relaxation time τ(k) [38, 46, 47], which is in turn sensitive to the small 
separation between the two bands in reciprocal space. Hence the dip feature in RH appears 
to sensitively trace the small distance variation between hot spots on the Fermi surface. 
The reduction of RH dip depth under pressure signals a decreasing importance of 
Umklapp scattering with a growing isotropic electron relaxation time. This in turn 
indicates that the close proximity between the electron ellipsoid and the large nesting 
hole octahedron slowly increases over our measured pressure range.  
 
IV. Discussion 
 

Our x-ray magnetic diffraction and electrical Hall coefficient results reveal the 
pressure evolution of several reciprocal space distances between the two nested bands 
and from one charge ellipsoid to the hole octahedron, respectively. The charge-transfer 
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process in those three bands is gradual across a wide P-T phase space, without abrupt 
change at the spin-flip quantum phase transition. In addition, our measured RH(T=2 K, P) 
drops slowly and continuously with increasing pressure, correlating well with the 
reduction of the SDW gap size under pressure. A quantitative calculation of RH for a 
four-band model in Cr is difficult due to the differing carrier mobilities in the various 
bands [38]. However, being charge reservoirs, the hole and electron ellipsoids possess the 
majority of the remaining itinerant carriers in the low-temperature limit of the gapped 
state of the SDW. In the case of an abrupt Fermi surface reconstruction, the sudden 
change in the hole/electron ratio would noticeably alter RH. This suggests that there are 
no dramatic changes in any of the four bands at the pressure-induced spin-flip transition, 
which is consistent with a continuously evolving lattice (Fig. 1) and no detectable change 
of symmetry [48] seen by x-ray diffraction. Our results show that for itinerant spin 
systems a spin-flip quantum phase transition does not necessarily involve noticeable 
Fermi surface reconstruction, despite the clear first-order nature of the transition.  

 
Fermi surface evolution at quantum phase transitions traditionally has been 

characterized by dHvA techniques [49, 50]. This is true as well for Cr under pressure. 
Thus it is instructive to compare results from that approach to ours. Quantum oscillation 
measurements [43] reported a spin-flip transition at P=0.93±0.01 GPa and T=2 K and a 
simultaneous significant reconstruction of the Fermi surface. Our current work disagrees 
with these measurements in both the value of the critical pressure and the claim of a 
massive Fermi surface reconstruction associated with the spin-flip transition.  

 
We note that the dHvA work was carried out in a magnetic field ranging from 8 to 

34 T [43]. The H-T phase diagram of the SDW in Cr is not well understood at ambient 
pressure [32, 35]. While the SDW in Cr is field independent up to at least 16 T, the spin-
flip transition is suppressed with an increasing field in a quadratic and Q-direction-
dependent manner [32]. The projected critical field for the spin-flip transition at T=0 
would be about 25 T, and is expected to be smaller when TSF decreases under pressure. 
Given that the magnetic field has a tendency to promote the transverse spin configuration 
[32], it is possible that the spin-flip transition pressure measured under a high field is 
significantly lower than our zero field value of Pc=1.50±0.05 GPa.  

 
Nevertheless, it is unclear how electron and hole ellipsoids in the four-band 

structure would be affected by a high magnetic field. Although the magnetostriction 
effect in Cr is negligible for H<1 T, it rises quickly to Δl/l = 1.2 10-6 under a magnetic 
field of 2.5 T [44]. By comparison, the relative lattice discontinuities at TSF(P=0) are only 
Δl/l = 4-5 10-6 [48], even smaller than the lattice discontinuity at TN(P=0) (Δl/l = 1 10-5) 
[44]. The lattice change under the high field for dHvA measurements is expected to be no 
less than lattice discontinuities at the spin-flip transition at H=0.  

 
The complex response of the Fermi surface to the application of large pressures – 

from changing the electron kinetic energy and thereby affecting the bandwidth of a 
particular band [27] to inducing charge transfer between bands [28] – is difficult to parse. 
The combined technique of x-ray magnetic diffraction and Hall measurements provides 
direct tracking of both the slow charge transfer process between nesting bands and the 
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overall P-T evolution of itinerant charge carriers. Despite the first-order nature of the 
spin-flip transition, we did not observe significant Fermi surface reconstruction at the 
quantum phase transition. The approach described here should be generalizable to metals 
and superconductors where the quantum phase transition may involve non-Fermi liquid 
behavior or the emergence of exotic ordered states, including even chromium’s 
continuous quantum phase transition between the transverse SDW and the paramagnet at 
P~10 GPa [23].  
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Figure captions: 
 
FIG 1. (Color online) (a) Physical geometry of x-ray diffraction within the high-pressure 
diamond anvil cell. A pair of wide-angle-perforated diamond anvils (blue) [29] and a 
gasket (orange) confine the pressure chamber containing the sample (not shown). Arrows 
show incident and scattered x-ray beam paths. (b, c) Spin structures and magnetic 
diffraction patterns for the longitudinal and transverse SDW in Cr, respectively. While 
diffraction of the (1,0,0) lattice order (white circles) is forbidden, different diffraction 
patterns of the SDW (orange circles) are present depending on whether spins S (green 
arrows) are longitudinal or transverse to the ordering wave vector Q (red arrows). 
Representative longitudinal (θ/2θ) scans of (c) lattice order (2, 0, 0), and SDW orders of 
(e) (1, δ, 0) and (f) (1, 0, δ) at 10 different pressures. All lattice peaks are normalized to 
unity, while vertical bars in (e) and (f) represent the scale of relative intensity for SDWs 
to their respective (2,0,0) order. All peaks are fit with a pseudo-Voigt form and a linear 
background. The spin-flip transition is between 1.45 and 1.55 GPa. The variation of 
magnetic diffraction intensity in (e) and (f) is due to the change of degenerate SDW 
domains along a particular cubic axis under pressure [27].  
 
FIG 2. (Color online) (a) Following the geometrical notation of Fig. 1b and 1c, the 
relative intensities ISDW/ICDW are separately tracked for individual cubic domains as a 
function of pressure. All show consistent behavior with the spin-flip phase transition. In 
this low-pressure range, both ISDW and ICDW decrease exponentially as a function of 
pressure [27]. Due to the scaling relationship ISDW ~ I2

CDW, all non-zero ratios of 
ISDW/ICDW increase with an exponential functional form. (b) Magnetic P-T phase diagram 
of Cr. The phase line between transverse (TSDW) and longitudinal (LSDW) phases is 
determined by neutron magnetic diffraction (circles) [34] and current x-ray magnetic 
diffraction (square) under pressure. (c) SDW wave vector Q as a function of pressure. 
Solid lines are guides to the eye.   
 
FIG 3. (Color online) Hall coefficient RH(T, P). The evolution of the Néel transition with 
P is marked for pressures from 0 to 7.6 GPa. The low-temperature dip at T ~ 35 K 
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remains essentially unchanged over the large pressure range, including the spin-flip 
transition, mitigating against any Fermi surface reconstruction. 
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