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Abstract 

We have investigated the evolution of the electronic properties of La1-xSrxCrO3 (0 ≤ x ≤ 1) 

epitaxial films deposited by molecular beam epitaxy (MBE) using x-ray diffraction, x-ray 

photoemission spectroscopy, Rutherford backscattering spectrometry, x-ray absorption 

spectroscopy, electrical transport, and ab initio modeling. LaCrO3 is an antiferromagnetic 

insulator whereas SrCrO3 is a metal. Substituting Sr2+ for La3+ in LaCrO3 effectively dopes holes 

into the top of valence band, leading to Cr4+ (3d2) local electron configurations.  Core-level and 

valence-band features monotonically shift to lower binding energy with increasing x, indicating 

downward movement of the Fermi level toward the valence band maximum. The material 

becomes a p-type semiconductor at lower doping levels and an insulator-to-metal transition is 

observed at x ≥ 0. 65, but only when the films are deposited with in-plane compression via 

lattice-mismatched heteroepitaxy. Valence band x-ray photoemission spectroscopy reveals 

diminution of electronic state density at the Cr 3d t2g-derived top of the valence band while O K-

edge x-ray absorption spectroscopy shows the development of a new unoccupied state above the 
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Fermi level as holes are doped into LaCrO3. The evolution of these bands with Sr concentration 

is accurately captured using density functional theory with a Hubbard U correction of 3.0 eV 

(DFT + U).   Resistivity data in the semiconducting regime (x ≤ 0.50) do not fit perfectly well to 

either a polaron hopping or band conduction model, but are best interpreted in terms of a hybrid 

model. The activation energies extracted from these fits are well reproduced by DFT + U.    

I. Introduction 

Perovskite oxides remain a focus of attention over the past two decades following the 

discoveries of high-temperature superconductivity in cuprates and colossal magnetoresistance in 

manganites.1,2  Hole-doping plays a crucial role in the emergence of these fascinating 

properties.1,3  Determining how the electronic and magnetic structures evolve with hole-doping is 

critical to understanding the rich range of observed phenomena.  In many cases, the parent 

compounds LaMO3 (M = Ti - Co) are insulators and some are thought to exhibit strong electron 

correlation effects.4,5 Substitution of La3+ by Sr2+ introduces holes at the top of valence band 

(VB), thereby driving the system to a metallic state, accompanied by either a Pauli paramagnetic 

(M = Ti and V) or a ferromagnetic (M = Mn and Co) ground state.5-9   

Compared to other A-site doped, first-row transition-metal complex oxides, La1-xSrxCrO3 

(LSCO) is relatively unexplored, particularly at a fundamental level.  LSCO and its derivatives 

exhibit mixed electronic and ionic conductivity and are of interest for electrodes in solid oxide 

fuel cells,10,11 chemical sensors, and thermal and photocatalysts.12 Understanding the intrinsic 

electronic, optical, and chemical properties of LSCO is thus of vital importance for this material 

to be most effectively utilized in these applications. From the relatively spares literature available, 

it appears that LSCO behaves rather differently than analogous LSMO systems. No insulator-to-
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metal transition has been found even at the highest reported Sr doping level (x = 0.5),13-18 in 

contrast to La1-xSrxMO3 (M = Ti, V, Mn and Co), which exhibit such a transition at x ≤ 0.17.6-8  

Previous investigations of LSCO have utilized polycrystalline powder samples. Webb et al.13 

measured conductivities between 77K and 1300K for samples with x up to 0.2. These authors 

report room-temperature resistivities ranging from 200 Ω-cm at x = 0.0 to ~0.9 Ω-cm at x = 0.2.  

Likewise, Karim and Alfred 14 made an analogous set of samples with x up to 0.4, measured 

transport from 300K to 2000K, and reported room-temperature resistivities ranging from ~500 

Ω-cm at x = 0.0 to ~36 Ω-cm at x = 0.4.  Fitting ρ(T) vs T data over these rather wide 

temperature ranges using both standard semiconductor ( ߩ ן expሺಶೌೖ೅)) and  polaron hopping 

ߩ ) ן ܶexpሺಶೌೖ೅) ) models revealed clearly better agreement for polaron hopping.  In this scenario, 

Cr4+ cations accompanying Sr doping tend to distort the surrounding lattice, thereby trapping 

holes in the associated potential wells and becoming somewhat conductive. The activation 

energy for small polaron hopping was estimated to be 0.1–0.2 eV depending on the Sr 

concentration. 

Spectroscopic investigations of occupied and unoccupied bands of LSCO using highly 

surface sensitive ultraviolet photoemission spectroscopy (UPS) and bremsstrahlung isochromat 

(BI) spectroscopy, respectively, showed only very slight movement of the highest (lowest) 

occupied (unoccupied) band toward the Fermi level in going from x = 0.1 to x = 0.5. 

Significantly, a gap of ~2.5 eV remained at x = 0.5.15  Maiti et al.15  also reported that LSCO 

turns black for very low Sr doping level (x = ~0.1%).  A closely-related study involving x-ray 

photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS) concluded that the 

doped holes remain localized on Cr4+ sites, in support of the small polaron model.16  These 
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previous studies raise a number of questions with regard to fundamental properties of LSCO and 

pertaining to other hole-doped complex oxides.  

1. Are the relatively high resistivities and activations energies for electronic transport 

intrinsic to LSCO, or the result of grain boundaries or other defects in these 

polycrystalline specimens? (The fact that pure LCO, an insulator in the bulk, was 

reported to exhibit measurable conductivity at ambient temperature suggests the presence 

of oxygen vacancies and/or electrically active impurities, both which dope the material.) 

2. Are the doped holes in LSCO indeed trapped on Cr4+ sites, or are they itinerant? How can 

polycrystalline LSCO turn black for as little as ~0.1 at. % Sr doping (x = 0.001) and yet 

remain nonmetallic up to x = 0.5? 

3. Are the electrical properties of epitaxial LSCO at lower temperatures (100 – 300K) best 

described in terms of polaronic hopping, as are those for polycrystalline LSCO at higher 

temperatures (300 – 2000K)? 

4. How important is electron correlation in LSCO? 

Our goal in the present work is to answer these and other fundamental questions by the 

preparing high-purity epitaxial films of La1-xSrxCrO3 over the full range of composition (0 ≤ x ≤ 

1) and to determine the associated intrinsic electronic properties. Combining LCO and SCO to 

make epitaxial LSCO and understanding the results is aided by detailed understanding of the end 

members. One end member, LaCrO3 (LCO), is a G-type antiferromagnetic insulator.4 A long-

standing debate in the literature regarding the properties of LCO was recently resolved by a 

combined experimental and theoretical investigation which revealed that LCO deposited by 

molecular beam epitaxy (MBE) exhibits a gap of 2.8 eV arising from intra-Cr d-d transitions, 

and that the O 2p-Cr 3d charge-transfer gap is between 4.7 and 5.0 eV, depending on strain.19 
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The properties of the other end member, SrCrO3 (SCO), have also been controversial. SCO was 

first claimed to be a paramagnetic metallic oxide,20 but a more recent pressure-dependent 

electrical resistivity study indicated that it is an insulator at ambient pressure and undergoes a 

transition to a metal with increasing pressure.21  SCO should be metallic by virtue of the presence 

of holes at the top of the VB, which is strongly Cr 3d derived, viz. Cr4+ (t2g)2. By preparing 

model epitaxial films of SCO by MBE and performing detailed characterization, Zhang et al.22 

revealed the intrinsic properties of this material. Even when deposited with sufficiently high 

oxygen flux to fully oxidize Cr in evolving LCO films, MBE-grown SCO was shown to be 

markedly oxygen deficient and nucleate as a mixture of rhombohedral, semiconducting SrCrO2.8 

(R-SCO) and cubic, perovskite SrCrO3 (P-SCO). The driving force behind R-SCO formation is 

that Cr4+ is more stable in tetrahedral than octahedral coordination, as judged by the metastability 

of bulk oxides containing Cr4+ in octahedral coordination. R-SCO(001) epitaxial films contain 

{111}–oriented planes of SrO2 with adjacent layers of tetrahedrally coordinated Cr4+. These O-

deficient planes act as fast diffusion paths for O2- anions, leading to relatively low-temperature 

oxidation (~250oC) of R-SCO to the perovskite structure (P-SCO) in air. Although the oxidation 

kinetics for SCO are too slow for complete oxidation in the MBE pressure regime, total 

oxidation readily occurs at atmospheric pressure at rather low temperatures. 

Our epitaxial La1-xSrxCrO3 films (0 ≤ x ≤ 1) were deposited on LaAlO3(001) substrates using 

MBE with the attendant high degree of control over film structure and composition. In contrast 

to previous studies on polycrystalline samples going up to x = 0.5 which were found to be highly 

resistive and yielded no hint of an insulator-to-metal transition, our epitaxial films are 

considerably more conductive for all nonzero doping levels, approach metallicity at x = 0.50, and 

clearly undergo an insulator-to-metal transition at x = 0.65. Moreover, our pure LCO is so highly 
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resistive that it exhibits no measureable conductivity, as expected due to its insulating character 

of bulk material, indicating high purity and negligible oxygen vacancy conditions. Valence band 

XPS and O K-edge XAS reveal a clear transfer of spectral weight from the occupied Cr 3d t2g 

valence band to a split-off unoccupied state above the Fermi level of the same symmetry with 

hole doping.  This result is also predicted by the density functional simulations utilizing the 

general gradient approximation (GGA) and Hubbard U correction. 

II. Experimental and modeling methods 

Epitaxial La1-xSrxCrO3 films with x = 0, 0.12, 0.25, 0.50, 0.65, 0.75, 0.85 and 1.0 and 

thicknesses of 20-80 nm were grown on LaAlO3(001) substrates by MBE. The substrates were 

loaded into an ultrahigh vacuum chamber and cleaned at 700 °C for 20 min in an oxygen partial 

pressure of 6.0 × 10-6 Torr prior to film growth. La, Sr and Cr were evaporated from high-

temperature effusion cells and evaporation rates were calibrated each time prior to growth using 

a quartz crystal oscillator (QCO) positioned at the substrate position. The substrate temperature 

was set to 700 °C and the O2 partial pressure was kept at ~ 3.0 × 10-6 Torr during growth. In situ 

reflection high-energy electron diffraction (RHEED) was used to monitor the overall growth rate 

and surface structure. After deposition, the substrate temperature was lowered at a rate of 

50°C/min while the background O2 was pumping out. The pure SrCrO3 films were subjected to 

an additional anneal in air at 250oC for 3 hours to insure complete oxidation and formation of the 

perovskite phase.22  This step was found to not be important for LSCO films grown on 

LaAlO3(001), because upon air annealing, the changes in resistivity were negligible (see Fig. 

S1).23 However, we cannot rule out such an effect in LSCO films grown on substrates which 

induce in-plane tensile strain, such as SrTiO3(001), which exhibit rather different electronic 

properties, as discussed below.  
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High-resolution XPS using monochromatic Al Kα1 x-ray (hν = 1486.6 eV) was carried out at 

normal emission (electron take-off angle = 90o relative to the surface plane) with a VG/Scienta 

SES 3000 electron energy analyzer in an appended chamber. The total energy resolution was 0.5 

eV. The binding energy scale was calibrated using a polycrystalline Au foil placed in direct 

electrical contact with the film surface on the bench after deposition.  XAS were measured in 

total electron yield (TEY) mode at beamline U4b of the National Synchrotron Light Source 

(NSLS) by measuring the sample drain current and were normalized to the current from a 

reference Au-coated mesh in the incident photon beam. The energy resolution was set at 180 and 

260 meV for the O K and Cr L3,2 edges, respectively. The photon energy scales of the O K- and 

Cr L3,2-edges were calibrated using a method discussed elsewhere.24 Hard x-ray XPS (HAXPES) 

at hν = 4000 eV were measured at beamline X24a of the NSLS.  The total energy resolution for 

these experiments was 0.5 eV. Microstructure and lattice parameters were determined using 

high-resolution x-ray diffraction (XRD) with a Philips X’Pert diffractometer equipped with a Cu 

anode. A hybrid monochromator, consisting of four-bounce double crystal Ge (220) and a Cu x-

ray mirror, was placed in the incident beam path to generate monochromatic Cu Kα x-rays (λ = 

1.54056 Å) with a beam divergence of 12 arc seconds. The electrical resistivity measurements 

were performed using van der Pauw method in the temperature range of 100-330 K. The cation 

compositions of films in the alloys series were determined by Rutherford backscattering 

spectrometry (RBS) using 2 MeV He ions. 

All calculations were performed using the periodic model. The LSCO lattice was represented 

using a 2×2×2 cubic perovskite supercell. The Sr concentration was varied in increments of 

12.5%. In each case, all non-equivalent geometrical arrangements of the La and Sr atoms as well 

as several spin-configurations within the Cr sublattice were considered. The calculations were 
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performed using the Vienna Ab initio Simulation Package (VASP).25,26  The projected 

augmented wave (PAW) method was used to approximate the electron-ion potential.27  

Exchange-correlation effects were treated within the Perdew−Burke−Ernzerhoff (PBE) 

functional form of the GGA, modified for solids (PBEsol).28  The plane-wave basis with a 500 

eV cutoff was used.  Most of the calculations were performed using the 4 × 4 × 4 Monkhorst-

Pack k-point mesh with its origin at the Γ point; the 8 × 8 × 8 mesh was used for selected cases. 

The charge and spin density distribution was analyzed using the Bader method.29 The total 

energy was minimized with respect to the lattice parameters and internal coordinates. The 

energies of self-consistent calculations were converged to 10−6 eV/cell, and the lattice and atomic 

positions were relaxed until the forces on the ions were less than 0.02 eV/Å. It is well-known 

that the GGA does not describe localization of holes.30  In our case, this shortcoming is 

manifested by delocalization of holes over all Cr species equally at all concentrations.  To 

mitigate this problem, we have used the GGA+U approach to describe the on-site electronic 

correlations of the Cr 3d orbitals, where the parameter U was varied between 1 and 4 eV. The 

value U = 3 eV was found to result in the best agreement with the spectroscopic measurements. 

III. Results and discussion  

LCO exhibits an orthorhombic structure (space group Pbnm) with lattice parameters a = 

5.513 Å, b = 5.476 Å, and c = 7.759 Å at room temperature. However, LCO can also be viewed 

as a pseudocubic cell with aLCO = 3.885 Å. Bulk SCO adopts a cubic perovskite structure with a 

lattice constant of ap-SCO = 3.819Å.22 Assuming a linear Vegard’s law type dependence of lattice 

parameters on composition, we can estimate the lattice parameters for La1-xSrxCrO3 films with 

different x and their lattice mismatch with LAO (aLAO = 3.796 Å) substrate. Doing so shows that 

the in-plane mismatch on LaAlO3(001) should range linearly from +2.3% at x = 0 to +0.61% at x 
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= 1. Assuming the critical thickness is not exceeded, the tetragonality and, thus, the strain should 

decrease as x increases.   

RHEED patterns for the LSCO film series are shown in Fig. 1. A range of film thicknesses 

was explored: 20 nm at x = 0, 80 nm at x = 0.10, 51 nm at x = 0.25, 62 nm at x = 0.50, 28 nm at 

x = 0.66, 54 nm x = 0.75, 37 nm at x = 0.85, and 42 nm at x = 1.0. The epitaxial nature of all 

films is clearly seen. No polycrystalline rings characteristic of disordered secondary phases are 

present. XRD direct-space maps along with out-of-plane θ-2θ scans (see Figs. S2 and S3)23 were 

used to extract unit cell volumes for each film and these are plotted in Fig. 2, along with 

expectations based on two limiting cases – full relaxed bulk-like and fully coherently strained 

films.  The larger error bars are due to the presence of a range of lattice parameters being present 

due to partial relaxation. With the exception of the x = 0.50 film, all exhibit unit cell (u.c.) 

volumes intermediate between the two limiting cases, indicating partial relaxation; the x=0.50 

film is fully relaxed.  None of the solid solution films exhibits an anomalously large u.c. volume 

as occurs when a high concentration of oxygen vacancies is present, resulting in chemical 

expansivity along the unclamped c direction.22  

We show in Fig. 3 core-level spectra for all four elements in LSCO for different x.  Spectra 

collected in situ immediately after film deposition reveal the absence of impurities to within the 

detection level of XPS down to the probe depth at normal emission (~5 nm).   However, the 

high-binding energy side of the O 1s spectra contain additional peaks associated with adsorbed 

H2O, OH and organic contamination on the surface resulting from post-growth air exposure 

required to make the Au contact. Based on the relative intensities of the contaminant and lattice 

O 1s peaks, along with C 1s intensities, we estimate the thickness of the contamination layer for 

all samples except the x = 0.75 film to be of the order of 0.5 - 1 nm. For x = 0.75, the 
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contamination thickness is at most ~ 2 nm.  Moreover, this contamination is easily removed by 

room-temperature O2 plasma treatment in the MBE chamber, establishing that it is surface bound, 

and not an integral part of the film.  However, doing so over-oxidizes Cr in the near-surface 

region to Cr6+, thereby obscuring vital information on the conversion of Cr3+ to Cr4+ with 

increasing x.  Therefore, we have chosen to not take this cleaning step.  

The La 4d and Sr 3d line shapes are not affected by valence changes resulting from Sr doping 

whereas the Cr 2p line shape is strongly affected.  Additionally, the low-binding energy side of 

the O 1s lattice peaks is unaffected surface contamination. Accordingly, we use the inflection 

point on the low binding energy side of the O 1s peak, rather than the peak energy. Thus, the La 

4d, Sr 3d and O1s spectra can be used to track changes in the chemical potential with x.31  All 

three core levels shift by nearly identical amounts to lower binding energy with increasing x. The 

core-level binding energy shift (ΔE) is given by  ΔE = -Δμ + KΔQ –ΔVM + ΔER, where Δμ is the 

change in chemical potential, ΔQ is the change in the number of valence electrons on the 

photoemitting atom, K is a constant, ΔVM is the change in the Madelung potential, and ΔER is 

the change in the extra-atomic relaxation energy caused by the screening of the core-hole by 

metallic conduction electrons, or by polarization of surrounding media for insulators.31  There is 

no change in the formal charge of O, Sr, and La as x increases, resulting in ΔQ = ~0. The similar 

shifts seen in the O 1s, Sr 3d, and La 4d peaks indicate that the change in the Madelung potential, 

which shifts anion and cation binding energies in opposite directions, is negligibly small. Core-

hole screening by conduction electrons is also considered to be negligibly small in transition-

metal oxides.32 Therefore, the common shift measured for the O 1s, Sr 3d, and La 4d core levels 

is largely due to the shift in chemical potential. We thus take the average of the three core-level 

shifts as a measure of Δμ. Fig. 4a plots Δμ averaged over the three core levels as a function of x 
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and indicates a monotonic downward shift in chemical potential with hole doping. This trend is 

similar to that seen in hole-doped early 3d transition metal oxides such as La1-xSrxTiO3 and La1-

xSrxMnO3.31,33 The trend in chemical potential nicely parallels the trend in room-temperature 

resistivity, which is shown in Fig. 4b. 

 Returning to Fig. 3, the Cr 2p spectra are rather complex by virtue of multiplet splitting and 

shake-up, in addition to the modified valence induced by Sr doping, changes in the chemical 

potential with x, and the presence of Cr6+ peaks at ~579.5 eV and ~588.5 eV for the films with x 

= 0.12, 0.50 and 0.85.34  The latter result from surface oxidation of B-site Cr during the brief air 

exposure required to place the film surface in electrical contact with the grounded Au foil. This 

feature is not visible in the Cr 2p spectrum measured at hν = 4000 eV (not shown) for which the 

electron attenuation length is ~3.3 times larger than it is at hν = 1486.6 eV, indicating that the 

Cr6+ is confined to the surface.35  In order to extract information on the mix of Cr3+ and Cr4+ for 

the different x values, we thus focus primarily on line shape changes, rather than on absolute 

binding energies. The centroid of the Cr 2p3/2 peak for pure LaCrO3 (Cr3+) is at 576.0 eV, in 

good agreement with that for epitaxial α-Cr2O3/Pt(111).36 The intensity in the 576–578 eV range 

gradually increases with increasing x. This systematic change is due to an increase in the Cr4+ 

concentration as more Sr2+ substitutes for La3+.22  This trend is similar to that seen in the Y1-

xCaxTiO3,37 and La1-xCaxVO3,7 in which the concentrations of Ti4+ and V4+ increase with Ca2+ 

substitution as holes are doped onto 3d transition metal sites. In contrast, there are no striking 

changes in the Mn, Fe  or Cu 2p line shapes with Sr doping in La1-xSrxMnO3, 
33 La1-xSrxFeO3, 38 

and La2-xSrxCuO4.32 The latter are charge-transfer insulators according to the Zaamen-Sawatzky-

Allen (ZSA) classification scheme and the top portion of the VB is primarily of O 2p character.39 

As a result, holes from Sr doping are injected primarily into O 2p-derived states, leaving the 
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transition metal valences largely unchanged.  The observation of a gradual increase in Cr valence 

from 3+ to 4+ with increasing x is consistent with the top of the VB be primarily of Cr 3d t2g 

character in LCO.19 The observation of a Cr4+ fraction in direct proportion to the Sr 

concentration does not necessarily mean that holes accompanying Sr doping are trapped on Cr 

sites. Itinerant holes on Cr sites in La1-xSrxCrO3 will also lead to the same fraction of Cr ions 

exhibiting Cr 2p spectra characteristic of Cr4+ because the time scale core-level photoemission 

well above threshold is much shorter than the time required for free carriers (either holes or 

electrons) to move from one lattice site to another, as has been observed for Sr1-xLaxTiO3.40 

The change in Cr valence with Sr doping level and the associated effects on electronic 

structure are clearly seen in Cr L-edge and O K-edge XAS, as shown in Figs. 5. These spectra 

are not affected by changes in the chemical potential, and the higher energy resolution aids in 

observing the transition from Cr3+ to Cr4+.  As x increases, the centers of gravity of the Cr L2 and 

L3 peaks move to higher x-ray energies. Moreover, the multiplet splitting pattern changes from 

one characteristic of Cr3+ for LCO to one representative of Cr4+ for SCO.  Indeed, the latter 

matches well the Cr L2,3 spectrum published for bulk, polycrystalline CaCrO3.41 The O K-edge 

spectra change dramatically as x increases. The Cr L-edge spectral line-shape for LCO (Cr4+) and 

its evolution to SCO (Cr3+) is consistent with earlier polycrystalline LSCO studies by Sarma et 

al.16  We also observe the same set of O K-edge peaks, labeled A1-A3 (LaCrO3) and B1-B3 

(La0.5Sr0.5CrO3) in Fig. 5, published earlier.16  These spectra probe the transition from O 1s to 

unoccupied states with at least partial O 2p character hybridized with Cr 3d states. The 

interaction of the core hole with the valence electrons leads to a perturbation to the electronic 

structure of the final state, complicating direct comparison of XAS spectra with the ground-state 

density of states. While this perturbation has been found to be substantial for transition metal L-
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edge XAS, detailed calculations of the effect of the O1s core hole in transition metal oxides 

demonstrate that its effect on the band structure is weak.42,43 Thus, the O K-edge spectra can be 

qualitatively related to unoccupied density of states of primarily transition metal character, 

provided there is enough hybridization with O 2p to generate measurable oscillator strength. 

Indeed, new unoccupied states appear at lower x-ray energies as the VB is doped with holes 

accompanying Sr doping. Specifically, a new feature at ~529 eV becomes visible at the lowest 

alloying level investigated (x = 0.12). As argued below, we assign this feature to a Cr 3d-derived 

band split-off from the VB proper in LCO.  This new band results from hole doping, and it falls 

at a lower binding energy than the bottom of the conduction band proper, thus placing it in the 

gap. 

The VB XPS and the O K-edge XAS data can be combined to provide a glimpse into the 

evolution of the electronic structure of both occupied and unoccupied bands as x increases.  

However, these spectra must first be put on a common binding energy scale, and this is done in 

Fig. 6a.  All XPS spectra are referenced to the Fermi level. The O K-edge XAS yields the energy 

difference between the O 1s orbital and unoccupied bands above the Fermi level with a least 

partial O 2p character. In order to put XPS and XAS on a common energy scale, the energies of a 

common core orbital probed in both experiments (in this case, O 1s) must be known. The 

interaction of the excited electron and its core hole is in general greater for XAS than in XPS 

well above threshold by some amount, and we will call this quantity δ.  Thus, if ܧ௖ is the energy 

of some empty conduction band state populated by the O K-shell x-ray absorption process (and 

negative by sign convention), and ݄ߥ௑஺ௌ is the corresponding x-ray energy based on a properly 

calibrated monochromator, then ݄ߥ௑஺ௌ ൅ ߜ ൅ ௖ܧ ൌ  ௑௉ௌைଵ௦.  We have used δ = 1.0 eV for LCO andܧ

all LSCO alloys, and δ = 0.7 eV for pure SCO.  For the O K-edge, a rigid shift of 0.5 -1 eV has 
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been employed for directly comparing the XAS with the DFT partial density of states for p-type 

oxides.44 The value for SCO is smaller than that for the alloys and pure LCO because of more 

effective core-hole screening by conduction band electrons in SCO.  Based on this analysis, we 

plot in Figs. 6a XPS VB and O K-edge XAS on a common energy scale and relabeled our 

absorption peaks to include the photoemission peaks (A-H).  

Before discussing the effects of Sr doping, we first consider the spectra for pure LCO shown 

at the bottom of Figs. 6a.  The VB spectrum for LCO consists of three features labeled A at ~ 6 

eV, B at ~ 3.2 eV and C centered at ~ 1.5 eV. DFT calculations reveal that feature A is mostly O 

2p derived with a minor Cr 3d contribution arising from O 2p-Cr 3d hybridization. Feature B is 

O 2p non-bonding derived, and feature C is dominated by the occupied Cr 3d t2g orbital in a high-

spin configuration with a minor admixture of O 2p character. The three spin-up (↑) Cr 3d t2g 

states are occupied and form the top of valence band, while other Cr eg↑, t2g ↓ and eg ↓ states are 

unoccupied and form the bottom of conduction band.  Therefore, we assign the peak labeled as D 

at -4 eV as due to excitation from O1s to the unoccupied Cr eg↑ and t2g ↓ states hybridized with 

O 2p. The broad feature at -6 eV (labeled E) is assigned to excitation to a hybridized La5d 

derived state, with a small O2p-Cr eg ↓ component at lower energy. These assignments are 

consistent with our DFT band structure calculations and with assignments for LaCrO3 

powders.16,45  

As can be seen by examining the complete O K-edge XAS data set in Fig. 5, the broad 

feature E (labeled B3 in Fig. 5) shifts to higher x-ray energy due to the change in orbital 

character from La 5d to Sr 4d with increasing x. Additionally, three new features (labeled as F, G 

and H in Fig. 6a) grow in intensity with increasing x and dominate the spectra for higher x values.  

It is useful to interpret these features by first analyzing the spectrum for SCO, where essentially 
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all Cr is +4 and has a (t 
2g↑)2 electron configuration. The XAS spectral features for SCO 

correspond to excitation into the unoccupied t2g↑, eg↑, t2g↓ and eg ↓bands with a degeneracy ratio 

of 1:2:3:2. We note that the spectral intensity will be different from the degeneracy ratio because 

the XAS intensity depends on the extent of p-d hybridization. Thus, feature F in SCO is assigned 

to transitions to the unoccupied t2g↑ band, G to a mixture of eg↑ and t2g↓, and H to eg↓. These 

assignments are in accordance with those of CaCrO3
41 and CrO2.46 Both of these oxides contain 

Cr4+ in octahedral coordination. We also note that our assignments are in agreement with those 

labeled A1, A2, A3, B1, B2, and B3 elsewhere 16 and highlighted in Fig. 5.  Now, returning to 

LSCO, it is clear that feature F (t2g↑) results from O K shell excitation to the unoccupied band 

introduced by Sr doping. This band grows in intensity with increasing x and moves to lower 

binding energy (e.g. away from the VB) with increasing x, remaining well above the Fermi level 

for all x.  At the same time, features A, B and C in the VB spectra also shift to lower binding 

energies with increasing x. These shifts are consistent with the downward movement of chemical 

potential with hole doping, as deduced from the core-level spectra.  

The correlated shifts of occupied band C and unoccupied band F to lower binding energies 

with increasing x is strongly suggestive of band F being a split-off component of band C 

resulting from electron depopulation of C as holes are added to the top of the VB.  Sr doping in 

LCO thus converts LCO, an insulator, into a p-type semiconductor, as expected based on simple 

arguments. Measurable intensity at the Fermi level is observed for x ≥ 0.5, indicating degenerate 

p-type semiconducting, in accordance with the transport measurements.   

The same evolution is seen in our PBEsol + U calculations, which reveal that band F is a 

mixture of Cr 3d t2g and O 2p.  We show in Fig. 6b the theoretical densities of states (DOS) from 

PBEsol + U  with U = 3 eV after convolving the occupied and unoccupied states with a Gaussian 
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of full width at half maximum of 0.50 and 0.30 eV, respectively, to account for finite 

instrumental resolution in the XPS and XAS. As in the experimental data, the Cr 3d t2g feature in 

the VB (C) moves toward the Fermi level as x increases and at the same time, a new feature 

appears above the Fermi level corresponding to the empty hybridized Cr 3d t2g – O 2p band 

resulting from hole doping. Removal of electrons from the Cr 3d – O 2p hybridized band at the 

top of the VB (C) results in the generation of a virtual state in the gap (F), its energy being higher 

because it is unoccupied.  As a result, low-lying optical excitation channels of nominal d-to-d 

character are opened as Sr substitutes for La in the lattice, and these are clearly seen in the 

optical absorption spectra, which will be published in a separate paper on the optical properties 

of LSCO. The energy splitting between features C and F is best captured with U = 3 eV; a 

PBEsol calculation with U = 0 eV places these features much closer in energy than what we 

measure, indicating that correlation and the resulting localization of holes in important in 

describing LSCO. 

Fig. 7 shows the temperature dependence of the electrical resistivity, ρ(T), for the LSCO film 

series, along with fits of the data for x ≤ 0.50 to a model described below.  Films with x ≤ 0.50 

are clearly insulating or semiconducting (as defined using the criterion dρ/dT < 0 for all T) with 

rapidly decreasing resistance at all temperatures as x increases. Undoped LaCrO3 is not 

sufficiently conductive to be measureable using the conventional van der Pauw method (ρ  > 

~900 Ω-cm) . The room-temperature (RT) resistivities for the doped films in the semiconducting 

regime ranges from 0.77 Ω-cm at x = 0.04 to 0.017 Ω-cm at x = 0.50 and all values are given in 

Table I.  Seebeck measurements yield positive coefficients for x ≤ 0.50, indicating p-type 

conductivity. The RT resistivities of the epitaxial films are at least an order of magnitude lower 

than those for polycrystalline samples at comparable Sr doping levels except for x = 0, for which 
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the MBE-grown LCO is much more resistive than the analogous powder samples.13,14  Moreover, 

we find that unlike transport data for polycrystalline LSCO films taken from 300K to 2000K,13,14 

our data taken from 100K to 330K fit equally well to small polaron hopping ( ߩ ן ܶexpሺಶೌೖ೅) ) 

and to band conduction ( ߩ ן expሺಶೌೖ೅)) models. (See Fig. S423 and Table I).  Additionally, the 

estimated activation energies deduced from these fits (Table I) are lower than those reported for 

polycrystalline LSCO. These differences suggest that grain boundaries and electrically active 

defects and/or impurities play an influential role in determining transport properties in 

polycrystalline films.  Epitaxial LSCO also exhibits an insulator-to-metal transition at x = 0.65 in 

the temperature range ~200-300 K over which dρ/dT > 0, as also seen at x = 0.75, whereas 

polycrystalline LSCO exhibited no such transition, at least up to x = 0.50. The RT resistivities at 

higher x values of 0.65 and 0.75 are 0.003 and 0.002 Ω-cm, respectively. 

Additionally, dρ/dT > 0 for 50 K ≤ T ≤ 300 K for pure, epitaxial SCO, indicating metallicity 

over a broader temperature range and a RT resistivity of ~0.001 Ω-cm.  LCO is G-type 

antiferromagnet with a Neél temperature (TN) of 290 K. It has been shown that TN decreases 

linearly with increasing Sr doping level, with TN = 200 K at x = 0.50.17 In our resistivity data, the 

change of sign for dρ/dT occurs near this temperature for x = 0.65 and 0.75, but there is no 

discernible discontinuity in the region near TN  for x ≤ 0.50, suggesting a weak coupling between 

the charge carriers and magnetism. The Sr-induced insulator-to-metal transition in LSCO 

resembles that observed in La1-xSrxVO3, although the critical Sr concentration necessary for the 

transition (xc) is considerably higher in LSCO than in La1-xSrxVO3, for which xc = 0.17.  Finally, 

we note that the insulator-to-metal transition is observed only for LSCO films deposited on 

LAO(001), for which the films are in compressive in-plane strain over the entire composition 

range; no insulator-to-metal transition occurs when an analogous film series is deposited on 
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STO(001). In the latter, the LSCO films are in tensile strain for all x. The absence of strain 

effects may explain at least in part why polycrystalline bulk LSCO does not exhibit an insulator-

to-metal transition. In future work, it would be of interest to fully characterize the structural 

properties of the various LSCO films grown on different substrates to investigate the detailed 

interrelations between structure and transport. 

Based on these results, we suggest that LSCO is best described in terms of concurrent band 

conduction and polaronic hopping, at least for temperatures up to ~300K.  To investigate this 

possibility, we fit the transport data for the semiconducting films (x ≤ 0.50) to a hybrid model in 

which we assume that polaron hopping involving trapped holes is frozen out below some 

temperature, whereas itinerant holes from band conduction are present over the entire 

temperature range. Specifically, we fit the transport data to the function 

ሺܶሻߩ ൌ ଴݁ாೌ/௞்ߩ ൅ ஼்௘ಶೌ/ೖ೅ଵା௘൤೅బష೅౴೅ ൨     (1) 

Here T0 is the temperature at which polaron hopping freezes out, and ΔT is the temperature range 

over which this occurs. These fits are shown in Fig. 7 and are rather good over the entire 

temperature range and for all Sr concentrations. For all x values, T0 is 100 – 120K. A single 

activation energy was used in both terms for simplicity, and its best-fit values are 0.100, 0.084, 

and 0.051 eV for x = 0.12, 0.25 and 0.50, respectively. In some sense, this model aligns well 

with early theoretical descriptions of polaron hopping.  Holstein47 considered the electron-

phonon interaction required for polaronic motion as a small perturbation to the ground state of 

the system, which was taken to be a tight-binding-like electronic state in combination with a 

vibrational wavefunction.  In this model, electrons at low temperatures diffuse to adjacent lattice 

sites within Bloch-like states with no change in the vibrational state of the system. This mode of 
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transport is more band-like. As temperature increases, the band width drops due to the population 

of higher vibrational states and electron diffusivity diminishes. At approximately half the Debye 

temperature, the Bloch-like characteristics of the bands are lost and the mode of conduction 

changes from band-like to site hopping accompanied by changes in vibrational state, which is 

polaron hopping. This mode becomes completely dominant at sufficiently high temperatures and 

may explain why earlier high-temperature transport measurements for polycrystalline LSCO fit 

better to a polaron hopping model.  However, there could be a competition between these two 

modes of transport at lower temperatures, as suggested by the present data set.  

In order to understand polaron hopping in Sr-doped LCO more deeply, we used first 

principles modeling to correlate the local geometrical structure of Cr cations with the associated 

atomic charges in a SrnLa8–nCr8O24 supercell (n = 0, 1,…,8). Here, the lattice parameters pre-

determined using the PBE functional were fixed and only the internal coordinates were 

optimized using the PBE+U approach. For U ≥ 3, the lattice undergoes distortions and a 

distribution of Cr atomic charges expected for polarons resulting from localized holes occurs 

(see Figs. S5 and S6).23  The shorter Cr-O bond lengths correspond to Cr cations having the 

larger ionic charge and a calculated moment of ~2μB per Cr, as expected for Cr4+, whereas the 

longer Cr-O distances correspond to Cr species having the smaller ionic charge and a moment 

of~3μB, as expected for Cr3+. In contrast, U = 2.0 eV results in less charge localization and 

smaller lattice distortions, as evidenced by the hole charge and spin delocalization over several 

Cr sites (see Fig. S6).23  A similar physical picture emerges if the PBEsol + U functional is used 

instead. 

As discussed above, the combined XPS and XAS measurements are best reproduced with the 

density of states obtained using U = 3.0 eV (Fig. 6). We therefore conclude that a U value of 3 
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eV is essential for accurately describing the electronic structure of LSCO, and thus that Sr-

doping of LCO induces the formation of hole-based polarons. We note that at higher Sr 

concentrations, this electronic structure can be described just as well in terms of polarons 

resulting from localized electrons (Cr3+) in a La-doped SrCrO3 lattice. 

To determine the energy barriers for Cr3+  Cr4+ polaron hopping, we applied the linear 

interpolation method, in which the reaction coordinate connecting two energy minima (R1 and 

R2) is defined as R = R1(1 – t) + R2t, where 0 ≤ t ≤1. This approach is appropriate for small 

atomic displacements. The energy barriers calculated using PBEsol+U with U = 3.0 eV for three 

Sr concentrations are shown in inset to Fig. 7. The shortest polaron hopping path that does not 

involve spin flip can be either along [001] or [110] lattice vectors, depending on the most 

favorable spin configuration (which, in turn, changes with Sr concentration). In addition, since 

both hole-based and electron-based polarons are mutually repulsive if their respective 

concentrations exceed one per supercell, their hopping is correlated. Specifically, the calculated 

energy barriers for x = 0.25 and 0.50 correspond to the simultaneous hopping of two holes. 

Additionally, there are several non-equivalent configuration of holes and Sr dopants at x = 0.25, 

0.50, resulting in a range of calculated energy barriers depicted by the connecting vertical lines at 

these concentrations in the inset. As the inset shows, the energy barrier for this hop is ~0.1 eV 

per hole, which is consistent with the experimental transport results. 

IV.  Summary 

We demonstrate that substituting Sr for La on the A site in epitaxial LaCrO3(001) deposited 

on LaAlO3(001) increases the electrical conductivity as a result of hole doping of the valence 

band, leading to an insulator-to-metal transition at 65% doping level. XPS reveals that the Fermi 
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level drops down toward the VB with increasing Sr concentration. These changes in electronic 

structure are manifested by the formation of a new band above the Fermi level seen in both 

experiment (XPS and XAS) and theory (PBE + U). This evolution in a natural consequence of 

adding holes to the Cr 3d t2g derived top of the valence band which has the effect of moving this 

unoccupied, split-off subband to higher energy, and a value of U = 3.0 eV is required to 

accurately theoretically account for its energy relative to the top of the valence band. The 

character of the charge and spin distributions obtained using this value of U points to the 

existence of the polaron contribution to electron transport and the calculated energy barriers for 

this mode of transport are consistent with the results of the experimental measurements.  
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Table I 

x in 
SrxLa1-

xCrO3 

ρ  at RT 
(Ω-cm) 

Correlation 
coefficient for 
semiconductor 
model 

Correlation 
coefficient for 
small polaron 
model 

Ea for band 
conduction 
model (eV)  

Ea for polaron 
hopping model 
(eV)  

0.12 0.44 0.998843 0.997976 0.084 0.100 

0.25 0.088 0.999575 0.998794 0.069 0.084 

0.50 0.018 0.993798 0.999433 0.035 0.051 
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Fig. 1 RHEED patterns for La1-xSrxCrO3/LaAlO3(001) film set in the [100] zone axis: (a) x=0, 20 
nm; (b) x=0.10, 80 nm; (c) x=0.25, 51 nm; (d) x=0.50, 62 nm; (e) x=0.66, 28 nm; (f) x=0.75, 54 
m,; (g) x=0.85, 37 nm; (h) x=1.0, 42 nm. 

 

 

 

 

Fig. 2 Unit cell volumes for the La1-xSrxCrO3/LaAlO3(001) film set taken from XRD direct space 
maps (see Supplemental Document23) along with the expected behavior for two limiting cases: (i) 
films with bulk volumes assuming a linear relationship between the end members, and, (ii) fully 
coherently strained films using Poisson ratios for SCO and LCO and assuming a linear 
relationship. Also shown is a single data point measured for SrCO2.8 deposited on LaAlO3(001).    
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Fig. 3 Cr 2p, O1s, La 4d and Sr 3d core-level spectra for La1-xSrxCrO3 as a function of x. 
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Fig. 4 (a) Average chemical potential shift (Δμ) deduced from O 1s, La 4d and Sr 3d binding 
energy shifts and (b) room-temperature resistivity vs. x. 
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Fig. 5 Cr L-edge and O K-edge XAS for the La1-xSrxCrO3 film series. 
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Fig. 6 (a) Valence band XPS and O K edge XAS spectra for the La1-xSrxCrO3film series; (b) 
analogous theoretical densities of states based on PBEsol + U (U = 3 eV).  
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Fig. 7 (a) ρ(T) for the La1-xSrxCrO3 film series with the exception of pure LaCrO3, which was too 
resistive to measure (open squares) along with fits of the data to eqn. 1 for x = 0.12, 0.25 and 
0.50 (solid curves). Inset – calculated activation energies from a linear interpolation method 
based on PBEsol + U (see text for details). 
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