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For a capacitor made of a semiconducting carbon nanotube (CNT) suspended above a metallic
gate, Coulomb correlations between individual electrons can lead to a capacitance that is much larger
than the geometric capacitance. We argue that when the average spacing n−1 between electrons
within the low density 1-dimensional electron gas (1DEG) in the CNT is larger than the physical
separation d between the CNT and the gate, the enhancement of capacitance is expected to be
big. A recent experiment,1 however, has observed no obvious increase of capacitance even at very
low electron density. We show that this smaller capacitance can be understood as the result of the
confining potential produced by the potential difference between the source/drain electrodes and
the gate, which compresses the 1DEG when the electron number decreases. We suggest that by
profiling the potential with the help of multiple split gates, one can return to the case of a uniform
1DEG with anomalously large capacitance.

I. INTRODUCTION

One of the great features of low-dimensional materi-
als is that their properties can be continuously altered
using electrostatic gating. Such gating allows one to
tune the bulk electron density widely and reversibly,
and thereby probe different regimes of electronic behav-
ior simply by turning an experimental knob. What’s
more, the material’s response to the applied voltage gives
information about the electronic compressibility, which
is in turn a reflection of the nature of the interactions
and correlations between electrons. For example, for
a gated two-dimensional electron gas (2DEG), the two-
dimensional electron density n2 can be tuned by changing
the gate voltage V , and the resulting differential capac-
itance C ∝ dn2/dV of the gate-2DEG system can be
used as a probe of quantum and many-body correlated
electron physics. The general promise of capacitance as
a probe of low-dimensional materials has been appreci-
ated for several decades2–7, and has recently been used
as the basis for a number of dramatic observations in
graphene8–10.

One particularly striking observation is that electron
correlations can lead to an enhancement of the capac-
itance above the normal “geometric” value Cg. For ex-
ample, for a low-density 2DEG, the capacitance has been
predicted to follow the relation2

(C/A)−1 = (Cg/A)−1 − 1.5n
−1/2
2 (1)

(in Gaussian units), where A is the capacitor area. The
second term on the right hand side of Eq. (1) arises as
a consequence of spatial correlations between electrons,
which lower the total energy of the electron gas rela-
tive to the uniform state and thereby drive up the ca-
pacitance. While a similar result is often explained in
terms of the exchange interaction and referred to as a
“quantum capacitance”, its origin can be understood at
the level of a classical electron crystal (a Wigner crys-
tal), where positional correlations between electrons re-
duce the total electrostatic energy2,11. An analogous re-

sult to Eq. (1) has been observed already for a num-
ber of two-dimensional systems, including GaAs5,6, the
LaAlO3/SrTiO3 interface12, and graphene in a magnetic
field13,14.

Recently, however, it was pointed out that Eq. (1)
cannot retain its validity at arbitrarily small electron
density11. Indeed, at sufficiently small density that the

typical distance between electrons n
−1/2
2 becomes much

longer than the distance d to the metal gate, Eq. (1)
gives a negative result for C. Such negative values of
the capacitance are forbidden by thermodynamic sta-
bility criteria15 (assuming that the capacitance is mea-
sured in the low frequency limit). This failure of Eq.
(1) points to the appearance of new physics in the very
low-density regime. This physics was outlined for two-
dimensional systems in Ref. 11, where it was shown that
at n2d

2 � 1 the interactions between electrons become
strongly screened by image charges in the metal gate, so
that the electron-electron repulsion takes the form of a
dipole-dipole interaction. Such screening allows for an
enormous enhancement of the capacitance over the geo-
metric value in the low-density limit. It also implies a
re-entrance of the Fermi liquid phase at small n2, and an
ultimate saturation of the capacitance at C/A ∼ me2/~2
in the limit n2 → 0, where m is the effective electron
mass16, e is the electron charge, and ~ is the reduced
Planck constant.

So far, however, experiments have been largely unable
to probe this low-density regime of “dipolar electrons”.
While some efforts have come close12, experiments on
two-dimensional electron systems have been largely hin-
dered by the ability to make very thin devices. The pres-
ence of disorder is also a ubiquitous confounding factor,
since disorder produces strong spatial modulation of the
electron density when the electron number is low.

Recently, however, developments in ultra-clean, gated
carbon nanotube devices have shown the promise to over-
come both of these difficulties1. In such one-dimensional
devices, a single semiconducting CNT is suspended above
a gate electrode, as illustrated in Fig. 1, and its capaci-
tance is measured at low temperature. Importantly, ex-
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isting devices exhibit a very large ratio of the length L
to the gate distance d, and can have their total electron
number N tuned incrementally from zero. These condi-
tions together raise the possibility of convincingly prob-
ing the dipole-interacting regime of electron behavior, in
which the inter-electron separation is much larger than
d.

FIG. 1. (Color online) Experimental set-up of the CNT de-
vice. A CNT (purple) is suspended above a gate electrode
(blue) between source and drain electrodes (orange). L is
the length of the CNT, w is its radius, d is the separation
between the CNT and the metallic gate, and n−1 is the aver-
age distance between electrons. VDS denotes the source-drain
voltage, which is much smaller than the the gating voltage
Vg. • symbols represent electrons and ◦’s denote the induced
positive charges on the gate.

The one-dimensional nature of a CNT, however, pro-
duces qualitative changes to the capacitance at low elec-
tron density that have so far not been studied theoret-
ically. In this paper we address this problem, describ-
ing the nature of electron correlations across all different
regimes of the total electron number N and deriving an-
alytical expressions for the differential capacitance. Our
analytical results are confirmed with simple numeric cal-
culations. We focus everywhere on the case of a semi-
conducting CNT, where electrons have a finite effective
mass at low density. The case of a metallic CNT, where
electrons have a linear, Dirac-like dispersion relation, re-
quires separate consideration.

In describing the behavior of the system, we focus on
two cases for the experimental environment. In the first
case (Sec. II), we imagine that the system is spatially
uniform, so that electrons are not subjected to any ex-
ternal potential, as in previous work11. However, we find
a big discrepancy between the predicted results for this
case and the experimental data in Ref. 1. A considera-
tion of the experimental setup leads us to the second case
(Sec. III), in which electrons are subjected to a confin-
ing electrostatic potential, as might arise naturally from
the applied potential difference between source/drain and
gate electrodes. As shown in Sec. III, this confining po-
tential is crucial for understanding previously-published
experimental data. In Sec. IV, we check our calcula-
tions using a variational method that properly accounts
for the quantum kinetic energy ignored in Sec. II and
III. The results are found to closely align with those of
the previous sections, thereby justifying a simple clas-
sical description. We conclude in Sec. V by discussing

the outlook for future experiments. We also discuss how
the case of a spatially-uniform system can be realized us-
ing a setup with multiple gates, which would allow for a
significantly larger capacitance.

II. SPATIALLY-UNIFORM CASE

In this section we consider a model in which the CNT is
not subjected to any external potential, and its electron
charge is simplified as a 1D uniform electron gas which
forms a capacitor with the metallic gate placed below it.
The CNT’s radius w is ∼ 1 nm, much smaller than its
length L (which in Ref. 1 is 880 nm) or the gate distance
d (130 nm in Ref. 1). The linear density of electrons
along the nanotube is n = N/L, where N is the total
electron number. The typical distance between electrons
in experiment is n−1 = 50−880 nm. The relevant length
scale for describing quantum mechanical effects is the
effective Bohr radius, a∗B = ~2/me2 ≈ 8.9 nm. This
large Bohr radius arises in experiment from stretching or
curvature effects in the nominally metallic CNT, which
open up a small band gap ∆ = 34 meV, and then the
effective mass of electrons is small: m ≈ m0/170 (where
m0 is the bare electron mass).

Our general approach to calculating the capacitance
(as outlined, for example, in Ref. 11) is to first evalu-
ate the total energy E of the CNT-gate system and then
calculate its second derivative with respect to the total
electron number. In particular, the differential capaci-
tance is given by the formula

C =

(
d2E

e2dN2

)−1
=

(
dµ

e2dN

)−1
, (2)

where µ = dE/dN is the chemical potential, which in-
cludes interactions both between electrons within the
CNT and between electrons and the positive charge in
the gate. Equation (2) implies that capacitance can be
thought of as equivalent to electron compressibility: large
capacitance arises in situations where electrons are easily
compressible. We concentrate throughout this paper on
the limit of zero temperature, which provides an accurate
estimate for the capacitance whenever the thermal energy
kBT is much smaller than the typical interaction energy
per electron. More generally, for finite temperature sys-
tems one can calculate the capacitance by replacing the
energy E in Eq. (2) with the Helmholtz free energy.

A. High Density Regime: n� 1/a∗B

For an interacting electron system, when the average
distance between electrons is much smaller than the ef-
fective Bohr radius a∗B , the electrons can be considered to
be weakly interacting and are spread uniformly over the
nanotube. Thus, at sufficiently high density, the CNT
can be modeled as a metallic wire, and the dominant
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contribution to the total energy E comes from the elec-
trostatic energy of the wire-gate system. Such a system
has total energy e2N2 ln(2d/w)/L, which corresponds to
a chemical potential µ = dE/dN = 2e2n ln(2d/w),17 so
that the capacitance is

C ≈ Cg =
L

2 ln(2d/w)
. (3)

We refer to this quantity as the geometric capacitance.
One can note, however, that Eq. (3) gives an ex-

pression for the capacitance that is exact only when
n � 1/

√
a∗Bw. At densities 1/a∗B � n � 1/

√
a∗Bw,

though the electron gas is still in the weakly interact-
ing regime, the argument inside the logarithm is mod-
ified due to short-range correlations between electrons.
Such correlations emerge at small enough electron sep-
aration r that the Coulomb repulsion e2/r is larger in
magnitude than the typical kinetic energy ∼ ~2n2/m,
and they produce a truncation of the electron-electron
interaction at short distances. As a consequence, in this
density range the argument of the logarithm is replaced
by dn2a∗B . Since this replacement produces only a small
correction, one can still say that Eq. (3) is correct to
within a logarithmic factor whenever na∗B � 1.

B. Intermediate Regime: 1/a∗B � n� 1/d

When n � 1/a∗B , the typical Coulomb energy ∼ e2n
dominates over the kinetic energy ∼ ~2n2/m, and the
electrons assume a correlated state reminiscent of a
Wigner crystal. (Indeed, such a Wigner-crystal-like state
has already been reported experimentally in semicon-
ducting CNTs18.) One can therefore estimate the total
energy of the electron system by modeling it as a line of
classical point charges with the gate-screened interaction
V (r) = e2/r − e2/

√
r2 + (2d)2. This approach gives

E = nL

{
− e

2

4d
+

∞∑
i=1

[
e2

i/n
− e2√

(i/n)2 + (2d)2

]}
, (4)

where the first term inside the braces represents the at-
traction of a given electron to its own image charge, and
the sum describes the repulsion between electrons. This
classical description, which ignores the quantum kinetic
energy of electrons, is justified in detail in Sec. IV.

Evaluating Eq. (4) in the limit nd2 � 1 and taking the
derivative with respect to n gives

µ ' e2
[
2n ln(2dn) + 0.768n− 1

4d

]
, (5)

so that the capacitance

C ≈ L

2[ln(2dn) + 1.384]
. (6)

This expression implies a marginal, logarithmic increase
in the capacitance with decreasing electron density,

C/Cg ' 1 + [ln(1/nw)− 1.384]/[ln(2nd) + 1.384]. Such a
small correction to the geometric capacitance is similar to
the situation in 2D, where electron correlations provide
a small, positive correction to the geometric capacitance
at intermediate electron density2,11. This enhancement
of the capacitance is a manifestation of electron correla-
tions, which allow the electrons to lower their energy for
a given concentration by avoiding each other spatially,
and thereby achieve a higher compressibility.

C. Low Density Regime: n� 1/d

In the regime of very low electron density, n� 1/d, the
distance between neighboring electrons is much longer
than the distance between an electron and its image
charge in the metal gate. As a result, the electron-
electron interaction takes the form of a dipole-dipole po-
tential: V (r) ' 2e2d2/r3. Consequently, the total energy
can be calculated as

E ' nL

[
− e

2

4d
+

1

2

∞∑
i=1

4e2d2

(i/n)3

]
.

Therefore, by Eq. (2),

µ ' − e
2

4d
+ 9.62e2d2n3 (7)

and

C ' 0.035L

d2n2
. (8)

Thus, when the electron density is made sufficiently
low that nd � 1, the capacitance grows very quickly
with decreased n, as in the 2D case11. This large capaci-
tance can be seen as a consequence of the screening of the
electron-electron interactions by the metal gate, which
renders them effectively short-ranged. This truncation
of the interaction, together with the positional correla-
tions between electrons, allows the electrons to be highly
compressible, and drives the capacitance far above the
geometric value given by Eq. (3).

Finally, if the electron density is reduced so far that
n � a∗B/d

2, then the dipolar interaction between elec-
trons becomes too weak to maintain a strong degree of
spatial correlation between electrons. In other words,
one can think that the zero-point fluctuations of an elec-
tron in the confining potential created by its neighbors
become comparable in amplitude to the spacing between
electrons. In this case, the Wigner-crystal-like correla-
tions between electrons are melted, and the system can
again be described as a weakly-interacting liquid. In such
a situation the total energy of the electron system is dom-
inated by the kinetic energy, and the capacitance is pro-
portional to L/na∗B . This extreme low density regime is
never reached in the experiments of Ref. 1, and is ne-
glected for the remainder of this paper in order to relate
more closely to experiment.
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The behavior of the capacitance across different elec-
tron density regimes is shown in Fig. 2. The capacitance
C shows a very weak dependence on the electron density
when nd � 1, while at nd � 1 the capacitance rises
quickly with decreasing electron concentration.

(6)

(8)
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FIG. 2. Capacitance per unit length, C/L, for a CNT with-
out a confining potential, plotted as a function of the electron
density n multiplied by the gate distance d. The solid line
shows a numerical evaluation of C using Eqs. (4) and (2).
Dashed lines illustrate the asymptotic behaviors of C in dif-
ferent density limits. At small n, the capacitance is described
by Eq. (8). In the intermediate regime, the behavior is de-
scribed by Eq. (6). At much larger n, C saturates at the
geometric value, Eq. (3).

Interestingly, the first experimental measurement of
the capacitance of a single CNT capacitor observed a
similar trend of increasing capacitance with decreasing
electron density19. This experiment, however, reported
only a small increase in the capacitance relative to the un-
correlated state, rather than the large effect depicted in
Fig. 2. This absence of large capacitance enhancement
in this experiment can likely be attributed to the rela-
tively large experimental temperature (T ≈ 77 K), which
destroys electron correlations when the electron density
is low and the typical electron-electron interaction en-
ergy is weak. In particular, for the experiment of Ref.
19, the temperature was large enough that kBT ∼ e2/d,
which implies that electron correlations are lost at all
n . 1/d and the theory outlined in this section no longer
holds. Since the increase in capacitance is relatively weak
at nd & 1 (as shown in Fig. 2), one can conclude that
only a relatively small enhancing effect of the capacitance
should be expected. Disorder effects may also contribute
to the observed absence of large capacitance at low den-
sity.

Fortunately, more recent experiments1 have performed
capacitance measurements at much lower temperature
(4 K), for which strong electron correlations can persist
down to low densities n � 1/d. These experiments are
considered in detail in the following section.

III. CAPACITANCE IN THE PRESENCE OF A
CONFINING POTENTIAL

In the previous section, we derived the dependence of
the capacitance on the electron density for a CNT system
without a confining potential, and we showed that C rises
sharply at small n � 1/d. A recent experiment1, how-
ever, showed no such enhancement of the capacitance,
even when (N/L)d is made as small as ≈ 0.15. In this
experiment, the capacitance was studied by examining
the Coulomb blockade in the source-drain current (rather
than by measuring the impedance produced by a small
AC modulation of the gate voltage, as is typical for 2D
systems). The authors of Ref. 1 found that the spac-
ing in the source-drain voltage VDS between successive
Coulomb blockade conductance peaks was nearly con-
stant, ∆Vg = 31.5 ± 1.5 mV, which suggests a constant
capacitance Cm = e/∆Vg ≈ 46 nm. This spacing was
consistent over the reported range of electron number,
1 ≤ N ≤ 17, which corresponds to an electron density
0.001 nm−1 < n < 0.019 nm−1.

Inserting the experimental parameters from Ref. 1 into
the theoretical prediction of the previous section gives the
result shown in Fig. 3. As can be seen from this figure,
this theory predicts a capacitance that is larger than the
experimentally observed value by as much as 20 times.
The experimental results also do not exhibit the sharp
upturn in capacitance at small electron density that is
characteristic of the theory in the previous section.

10-3 10-2101

102

103

n Hnm-1L

C
Hn

m
L

FIG. 3. Prediction for the capacitance C as a function of
the electron density n using the experimental parameters of
Ref. 1. The solid line is the prediction of the theory for a
uniform gas (see Sec. II). The dashed line shows the actual
capacitance Cm = 45.7 nm measured experimentally.

In order to resolve this discrepancy, we consider the
effects of the confining potential produced by the elec-
trodes. In the experiment, a potential difference Vg ≈
0.5 − 1 V is applied between the gate electrode and the
CNT in order to bring the Fermi level close to the bottom
of the conduction band. This potential produces signifi-
cant electric fields, as depicted in Fig. 4, which imply that
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the electric potential along the CNT is non-uniform.
In order to estimate the strength of this confining po-

tential, we solve for the electrostatic potential of a system
of three coplanar metallic strips held at different voltages
(due to the small size of the CNT, we can ignore its role
in modifying the potential). An analytic solution for the
potential is presented in Appendix A. These metallic
strips are assumed to have infinite length in the direc-
tion perpendicular to the CNT, but finite width, which
in experiment is s ≈ 300 nm for the source/drain elec-
trodes and L = 880 nm for the gate. This assumption of
infinite length is justified by the large ratio of the elec-
trodes’ length to their width, which in Ref. 1 is ≥ 100.
The assumption of coplanarity is justified by the small
value of d/L.

If one defines the coordinate x as the position along
the CNT axis relative to the center of the CNT, then the
electric potential V has a parabolic maximum at x = 0,
so that the confining potential can be written

U(x) = −eV (x, d) ' U(0) +
e2

D3
x2

where U(0) is a constant and D is a length scale that de-
scribes the strength of the confinement. The expression
for D is given in Appendix A, and for the experiments of
Ref. 1, D ≈ 72− 90 nm.

When a small number of electrons are added to the
CNT, the confining potential pushes these electrons to
occupy a region near the center of the gate electrode, so
that the electron-populated region has an effective length
2Le that is shorter than the total CNT length L. As N
is reduced, electrons are more easily compressed by the
confining potential and Le shrinks. This reduction of the
effective length of the capacitor tempers the increase of
C at low density that was derived in the previous section.

In the remainder of this section we calculate the capac-
itance in different regimes of the total electron number,
taking into account the compression effect produced by
the confining potential. We focus our discussion here on
the case where the local electron density is everywhere
smaller than 1/a∗B and larger than a∗B/d

2, which is the
relevant case for existing experiments. Within this range
of density, we focus on only two regimes: N/Le � d−1

and N/Le � d−1, or equivalently (as shown below), N �
(D/d)

3/2
and N � (D/d)

3/2
. These two regimes corre-

spond, respectively, to the regime of a Wigner crystal-like
state with unscreened interactions, and the regime of a
“dipole crystal” with strongly-screened interactions.

A. High Density Regime: N � (D/d)3/2

Because of the confining potential, the electron den-
sity n varies with position x in order to maintain a
constant value of the electrochemical potential µ0 =
U(x) + µ (n(x)) (see Fig. 4). In the regime of relatively
high electron density, electron interactions are essentially

FIG. 4. (Color online) Confining potential acting on electrons
in the CNT formed by fields between source/drain electrodes
and the gate. (a) Schematic of the electric field produced by
the potential difference between the source/drain electrode
and the gate. The source-drain voltage VDS is neglected here.
(b) This field produces a confining potential U(x) along the
CNT which leads to non-uniform electron density, so that the
electrochemical potential µ0 = U(x) + µ(n(x)) is constant.
The effective length 2Le is defined by n(±Le) = 0.

unscreened by the gate, and the contribution to the chem-
ical potential from electron interactions is given by Eq.
(5), µ (n(x)) ≈ e2n[2 ln(2dn) + 0.768]. (Here, the n-
independent term in µ is ignored, since this just redefines
the reference point for µ).

Thus, the electrochemical potential can be written

µ0 =
e2

D3
x2 + n(x)e2[2 ln(2dn(x)) + 0.768].

Rearranging this expression for n(x) gives

n(x) =
µ0/e

2 − x2/D3

2 ln(2dn(x)) + 0.768
.

A solution can be obtained for n(x) by taking suc-
cessive approximations for the slowly-varying logarithm
ln(2dn(x)); we treat this factor first as a constant of or-
der unity and later replace n(x) inside the logarithm with
the calculated average value N/(2Le). Since

N = 2

∫ Le

0

n(x)dx,
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this approach gives

Le ' D
{
N ln

[
1.23N

(D/d)3/2

]}1/3

,

µ0 '
e2

D

{
N ln

[
1.23N

(D/d)3/2

]}2/3

.

Thus, as announced earlier, N/Le � d−1 is equivalent to

N � (D/d)
3/2

, and the resulting capacitance

C ' 1.5{
ln
[

1.23N
(D/d)3/2

]}2/3
d

(
D

d

)3/2 [
N

(D/d)3/2

]1/3
. (9)

One can notice that Eq. (9) represents a qualitatively
different dependence of the capacitance on electron num-
ber than the corresponding expression for the uniform
gas, Eq. (6). Rather than weakly increasing as the num-
ber of electrons in the CNT is reduced, Eq. (9) implies
that the capacitance decreases with decreased N . This
decline of the capacitance is a result of the confining
potential, which causes the effective capacitor length to
shrink, and this shrinking of the effective length dom-
inates over the weak effect of electron-electron correla-
tions.

B. Low Density Regime: N � (D/d)3/2

On the other hand, in the regime where electron-
electron interactions are strongly screened by the metal
gate, the effect of electron-electron correlations is large,
and competes with the shrinking effective length to de-
termine the overall capacitance. In this regime, the con-
tribution to the electrochemical potential arising from
electron-electron interactions is given by Eq. (7), so that
the electrochemical potential is

µ0 =
e2

D3
x2 + 9.62e2d2n3(x).

Solving this expression for the electron density gives

n(x) =

(
µ0 − e2x2/D3

9.62e2d2

)1/3

. (10)

Using the expressionsN = 2
∫ Le

0
n(x)dx and n(Le) = 0

gives

Le = 1.15d2/5D3/5N3/5,

µ0 = 1.32e2d4/5D−9/5N6/5,

so that, as announced earlier, the condition N/Le � d−1

is equivalent to N � (D/d)
3/2

. The corresponding ca-
pacitance C = e2(dµ0/dN)−1 is given by

C ≈ 0.629d

(
D

d

)3/2 [
N

(D/d)3/2

]−1/5
(11)
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FIG. 5. Graph of capacitance C as a function of electron num-
ber N in the presence of a confining potential. C is expressed
in units of d(D/d)3/2 and N is normalized by (D/d)3/2. The
solid line shows the numerical result for capacitance. The
dashed lines represent the asymptotic behaviors described by
Eqs. (9) and (11).
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FIG. 6. A comparison between the predicted behavior of
C(N) and the experiments of Ref. 1. The solid line is the
prediction of the theory derived in Sec. III. The dashed line
represents the experimentally-measured capacitance Cm.

Thus, in the low density regime, the system exhibits
an increase in the capacitance at small electron density,
as in the case of a uniform electron system, due to the
high electronic compressibility associated with the strong
screening of the electron-electron interaction. However,
the growth of the capacitance is largely muted by the
shrinking effective length, and retains only a very mild
dependence, C ∼ N−1/5.

A plot of C(N) is presented in Fig. 5 showing the dif-
ferent regimes of behavior. Notably, the capacitance no
longer varies monotonically with N , first decreasing with
N in the low density limit and then increasing again at
high density.

This theoretical result is compared to the experimen-
tal measurements of Ref. 1 in Fig. 6. The results are
qualitatively consistent with each other, suggesting that
the confining potential provides an adequate explanation
of the small, relatively constant capacitance seen in ex-
periment. A more accurate comparison to experiment
may require more careful modeling of the electrostatic
potential created by the experimental setup.
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IV. CORRECTIONS TO CAPACITANCE DUE
TO QUANTUM EFFECTS

So far, our calculations of the capacitance have em-
ployed a purely classical approximation, in which the
quantum kinetic energy of electrons is ignored. This
approximation is generally justified in the strongly-
interacting regime, where quantum effects provide only
a small correction to the total energy. Nonetheless, in
this section we carefully justify our previous results by
performing a calculation in which quantum mechanical
effects are properly taken into account.

Our goal is to accurately estimate the ground state
energy E of the interacting electron system as a func-
tion of the total electron number N ; the capacitance can
then be found by Eq. (2). In other words, we seek an
accurate estimate of the lowest-energy eigenvalue of the
Hamiltonian

H = −
∑
i

~2∇2
i

2m
+

1

2

∑
i6=j

V (rij).

(The additional interaction between an electron and its
own image charge does not enter the capacitance, and
can be ignored.) In order arrive at an estimate of E, we
use a variational method, in which the expectation value
of the Hamiltonian, 〈H〉λ = 〈Φλ|H|Φλ〉, is calculated for
a wide set of variational wavefunctions {|Φλ〉}, where λ
denotes some variational parameter that labels the dif-
ferent wavefunctions in the set. The ground state energy
E is associated with the minimum value of 〈H〉λ across
all possible values of λ.

Following Ref. 20, we use for our variational wavefunc-
tions the eigenstates of the exactly-solvable Calogero-
Sutherland model (CSM)21, so that the variational pa-
rameter λ describes the CSM interaction constant; λ = 1
corresponds to the non-interacting limit, while λ → ∞
corresponds to a perfectly-ordered crystal. In the limit
of large system size, the CSM eigenstates have a kinetic
energy per particle given by22

εk(n, λ) =
π2~2n2

6m

λ2

2λ− 1
,

while the interaction energy per particle is

εint(n, λ) =
n

2

∫
V (r)g(λ, r)dr.

Here, g(λ, r) is the pair distribution function associated
with the eigenstate Φλ. While g(λ, r) has been studied
in some detail analytically23,24, closed-form expressions
are known only for the special values λ = 1/2, 1, 2, and
∞.22 Thus, following Ref. 20, we evaluate εint(n, λ) at
these special values, and then interpolate to other values
of λ by making a third-order polynomial fit as a function
of 1/λ.

The ground state energy per electron, ε(n), for a given
density n is equated with the minimum of the function

εk(n, λ) + εint(n, λ) across all values of λ. The chem-
ical potential is then calculated as µ = d(nε(n))/dn.
For the case without a confining potential, the capac-
itance is equated with e2L(dn/dµ), as implied by Eq.
(2). For the case with a confining potential, the capac-
itance is found by calculating the electrochemical po-
tential associated with a given total electron number,
µ0 = µ(n(x)) + e2D2/x3, as explained in Sec. III, and
then setting C = e2(dN/dµ0).

The resulting capacitance is plotted in Fig. 7 for the
range of experimental parameters explored in Ref. 1. As
can be seen, the results closely follow those derived from
the simple classical description of Sec. II and III, sug-
gesting that quantum effects indeed provide only a small
correction within the experimental range of electron den-
sity. One can also see in Fig. 8 the non-monotonic depen-
dence of the correlation strength on the electron density.
Indeed, as the electron density is first reduced beginning
at large density, the electrons become more strongly cor-
related as the typical ratio εint/εk ∼ (e2n)/(~2n2/m) ∼
(na∗B)−1 is increased, and correspondingly the value of
λ associated with the variational wavefunction increases.
On the other hand, at small enough density that n �
a∗B/d

2, the interactions between electrons is dipolar, so
that the ratio εint/εk ∼ (e2d2n3)/(~2n2/m) ∼ nd2/a∗B .
Consequently, the correlations between electrons become
weak again as the density is reduced further, and the
value of λ falls.

10
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(n
m
)
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B

FIG. 7. (Color online) Plot of the capacitance C against the
number of electrons N . The two solid lines of group A are re-
sults for the case without a confining potential. The thick line
(blue) is the result using the variational method presented in
Sec. IV, while the thin line (red) is calculated using the classi-
cal approach in Sec. II. The two solid lines of group B have the
same meaning but are for the case with a confining potential.
The dashed line (blue) indicates the experimentally-measured
value.

V. CONCLUSION

In this paper we have studied the 1D correlated elec-
tron gas in a gated carbon nanotube device. We cal-
culated the capacitance of the system in different den-
sity regimes, which exhibit different electronic behav-
iors. For a spatially uniform system, the electrons oc-
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FIG. 8. (Color online) Variational results for the chemical po-
tential µ and the variational parameter λ as a function of the
dimensionless concentration na∗B at d = 15a∗B . (a) The thick
solid line (blue) represents µ(n) in units of e2/a∗B . The thin
solid line (red) corresponds to the result obtained by the clas-
sical model in Sec. II. (b) The variational parameter λ associ-
ated with the minimum energy wavefunction at a given den-
sity n. Vertical dotted lines denote different regimes of elec-
tron density; from left to right: the low-density weakly inter-
acting regime at n � a∗B/d

2, the dipole-interacting Wigner-
crystal-like regime at a∗B/d

2 � n � 1/d, the unscreened
Wigner-crystal-like regime at 1/d � n � 1/a∗B , and the
high-density weakly interacting regime at 1/a∗B � n. In the
crystal-like regimes, the difference between variational and
classical results for µ is small and λ is relatively big, denoting
strong correlations. In the weakly-interacting regimes, the
difference in µ grows and λ approaches unity.

cupy a weakly-interacting phase at high electron density,
and correspondingly the capacitance is constant and rel-
atively small. As the electron density is lowered, the
electrons acquire strong, Wigner crystal-like correlations,
and the capacitance becomes weakly enhanced. At suf-
ficiently low electron density that nd � 1, the electron-
electron interactions are strongly screened by the metal
gate, and the capacitance increases sharply.

These predictions for the uniform system, however, are
qualitatively different from existing experimental mea-
surements, which show a capacitance that is roughly in-
dependent of electron concentration and much smaller
in magnitude. This discrepancy can be understood by
accounting for the effects of a confining electrostatic po-
tential that tends to push electrons toward the center of
the CNT, and thereby reduce the effective length of the
capacitor at small electron density. This shrinkage of the
effective capacitor length greatly reduces the capacitance

FIG. 9. (Color online) Possible realization of constant po-
tential along the CNT by using multiple split gates set at
different gate voltages. (a) A schematic of the device setup,
taken (with permission) from Ref. 1. (b) By adjusting the
voltages on the multiple gates, one creates a potential U2(x)
which compensates the confining potential U1(x) caused by
the source/drain-gate fields, resulting in a uniform potential
Vg = U1(x) + U2(x) across most of the CNT.

at small electron density, and results in an estimate for
the capacitance that is much more consistent with exper-
iment.

If, in the future, the confining potential could be elim-
inated, the dramatic increase in capacitance at low den-
sity would be restored, and this would permit more sen-
sitive probing of correlated “dipolar electron” physics.
Further studies should thus consider how to realize this
reduced confining potential in the experimental environ-
ment. One possible way is to use multiple gates with dif-
ferent voltages on each one, as depicted schematically in
Fig. 9, in order to tune the electrostatic potential along
the CNT. Such devices have already been fabricated1,
but careful attempts to realize a constant potential have
not yet been reported. Such a constant potential will be
achieved when a parabolic potential maximum simulated
by multiple gates precisely balances out the parabolic
minimum created by the source/drain-gate potentials.

Finally, as noted above, we have so far not consid-
ered the effect of finite temperature, while the experi-
ment of Ref. 1 was performed at T = 4 K. Nonetheless,
throughout the experimental range of electron density,
the typical electron-electron interaction energy ε is such
that ε/kB & 96 K� 4 K, and so our zero temperature
approximation is justified.
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Appendix A: Potential Produced by Three Coplanar
Metallic Strips

To calculate the potential V produced by three copla-
nar metallic strips placed next to each other, we first
consider them as separated from each other by a certain
distance b − a and then take the limit of b − a = 0 to
get the final result. The middle strip is set at a potential
Vg while the side ones are at V = 0. The electric field
is independent of the longitudinal coordinate (perpendic-
ular to the CNT and parallel to the gate electrode), so
that solving for the potential can be reduced to a two-
dimensional electrostatic problem, as shown in Fig. 10.
Therefore along the x axis, we have a field

Ex(x) =

∫ ∞
−∞

2ρ(x′)dx′

x− x′

where ρ(x′) is the surface charge density on the metallic
strips at x = x′.

FIG. 10. A schematic graph of three coplanar metallic strips
separated by a distance b− a and held at different potentials.

Then using Kramers-Kronig relations, we can define
a complex function f(ζ), ζ = x + iz, which satisfies

Ref(x) = Ex(x) and Imf(x) = −2πρ(x). Since

ρ(x) = 0, a < |x| < b or |x| > c
Ex(x) = 0, b < |x| < c or |x| < a

we guess f(ζ) = A√
(x2−a2)(x2−b2)(x2−c2)

. Then,

Vg =

∫ b

a

A√
(x2 − a2)(b2 − x2)(c2 − x2)

dx.

Taking b = a(1+ξ), and expanding for ξ � 1, we have

Vg ≈ A
a
√
c2−a2

π
8

A =
8a
√
c2−a2Vg

π

Using the uniqueness theorem, we know this is the only
solution to this configuration. Then on the middle strip,
the charge density is

ρ(x) ≈ 4a
√
c2−a2Vg

π2(a2−x2)
√
c2−x2

, |x| < a

and the electric field in the vertical direction, Ez(x, 0
+) =

2πρ(x), is

Ez(x, 0
+) ≈ 8

√
c2 − a2Vg
πac

+
8
√
c2 − a2Vg
πac

(
1

a2
+

1

2c2

)
x2.

where x� a. So near the surface of the middle metallic
strip at a height of d, the electric potential is

V (x, d) ≈ Vg − Ez(x, 0+)d = V (0)− e

D3
x2

where

V (0) = Vg − 8d
√
c2−a2Vg

πac ,

D =
[

πace2

8d
√
c2−a2eVg

1
1/a2+1/(2c2)

] 1
3

.

If we denote the width of the middle strip as L and
that of the side ones as s, then a = L/2, c = L/2 + s,
and

V (0) = Vg −
32d
√
s(L+s)Vg

πL(L+2s) ,

D =

[
π(L/s+2)e2

64d
√
L/s+1eVg

1
2+1/(1+2s/L)2

] 1
3

L.

Inserting the experimental parameters from Ref. 1 (d =
130 nm, L = 880 nm, V g ≈ 0.5 − 1 V, and s ≈ 300 nm)
gives D ≈ 72− 90 nm.
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