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We analyze the transfer of a quantum state between two resonators connected by a superconduct-
ing transmission line. Nearly perfect state-transfer efficiency can be achieved by using adjustable
couplers and destructive interference to cancel the back-reflection into the transmission line at the
receiving coupler. We show that the transfer protocol is robust to parameter variations affecting
the transmission amplitudes of the couplers. We also show that the effects of Gaussian filtering,
pulse-shape noise, and multiple reflections on the transfer efficiency are insignificant. However, the
transfer protocol is very sensitive to frequency mismatch between the two resonators. Moreover, the
tunable coupler we considered produces time-varying frequency detuning caused by the changing
coupling. This detuning requires an active frequency compensation with an accuracy better than
90% to yield the transfer efficiency above 99%.
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I. INTRODUCTION

The realization of quantum networks composed of
many nodes requires high-fidelity protocols that trans-
fer quantum states from site to site by using “flying
qubits”1,2. The standard idea of the state transfer be-
tween two nodes of a quantum network3 assumes that
the state of a qubit is first encoded onto a photonic state
at the emitting end, after which the photon leaks out and
propagates through a transmission line to the receiving
end, where its state is transferred onto the second qubit.
The importance of quantum state transfer has stimulated
significant research activity in optical realizations of such
protocols, e.g.,4–6, including trapping of photon states in
atomic ensembles7–10. Recent experimental demonstra-
tions include the transfer of an atomic state between two
distant nodes11 and the transfer between an ion and a
photon12.

An important idea for state transfer in the microwave
domain is to use tunable couplers between the quantum
oscillators and the transmission line13,14 (the idea is in
general similar to the idea proposed in Ref.3 for an optical
system). In particular, this strategy is natural for super-
conducting qubits, for which a variety of tunable cou-
plers have been demonstrated experimentally15–25 (these
couplers are important for many applications, e.g.,26–29).
Although there has been rapid progress in superconduct-
ing qubit technology, e.g.30–38, most of the experiments
so far are limited to a single chip or a single resonator
in a dilution refrigerator (an exception is39). Imple-
menting the quantum state transfer between remote su-
perconducting qubits, resonators, or even different re-
frigerators using “flying” microwave qubits propagating
through lossless superconducting waveguides would sig-
nificantly extend the capability of the technology (even-
tually permitting distributed quantum computing and
quantum communications over extended distances using
quantum repeaters). The essential ingredients of the
transfer protocol proposed in Ref.14 have already been

demonstrated experimentally. The emission of a proper
(exponentially increasing) waveform of a quantum signal
has been demonstrated in Ref.21, while the capture of
such a waveform with 99.4% efficiency has been demon-
strated in Ref.22. The combination of these two pro-
cedures in one experiment would demonstrate a com-
plete quantum state transfer (more precisely, the com-
plete first half of the procedure of Ref.14). Note that
Refs.21 and22 used different tunable couplers: a “tun-
able mirror”20 between the resonator and the transmis-
sion line in Ref.22 and a tunable coupling between the
qubit and the resonator19 (which then rapidly decays
into the transmission line) in Ref.21. However, this dif-
ference is insignificant for the transfer protocol of Ref.14.
Another promising way to produce shaped photons is to
use a modulated microwave drive to couple the supercon-
ducting qubit with the resonator40,41 (see also Refs.42,43

for implementation of optical techniques for shaped pho-
tons).

In this work we extend the theoretical analysis of the
state transfer protocol proposed in Ref.14, focusing on
its robustness against various imperfections. In our pro-
tocol a quantum state is transferred from the emitting
resonator to the receiving resonator through a transmis-
sion line (the state transfer using tunable coupling di-
rectly between the qubit and the transmission line has
also been considered in Ref.14, but we do not discuss it
here). The procedure essentially relies on the cancellation
of back-reflection into the transmission line via destruc-
tive interference at the receiving end, which is achieved
by modulation of the tunable couplers between the res-
onators and the transmission line. (Note that the pro-
tocol is often discussed in terms of a “time reversal”,
following the terminology of Ref.3; however, we think
that discussion in terms of a destructive interference is
more appropriate.) In Ref.14, it was shown that nearly
perfect transfer efficiency can be achieved if identical res-
onators and proper time-varying transmission amplitudes
of the two couplers are used. However, in obtaining this
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high-efficiency state transfer, only ideal design parame-
ters were assumed. Also, various experimentally relevant
effects, including multiple reflections and frequency mis-
match between the two resonators, were not analyzed
quantitatively.

In this paper we study in detail (mostly numerically)
the effect of various imperfections that affect the trans-
mission amplitudes of the couplers. In the simulations
we focus on two values for the design efficiency: 0.99
and 0.999. The value of 0.99 crudely corresponds to the
current state of the art for the two-qubit quantum gate
fidelities30 and threshold of some quantum codes44; we
believe that the state transfer with 0.99 efficiency may
already be interesting for practical purposes, while the
value of 0.999 would be the next natural milestone for
the experimental quantum state transfer. We find that
the transfer protocol is surprisingly robust to parame-
ter variations, with a typical decrease in the efficiency of
less than 1% for a 5% variation of the design parameters
(the scaling is typically quadratic, so half of the varia-
tion produces a quarter of the effect). We also study
the effect of Gaussian filtering of the signals and find
that it is practically negligible. The addition of noise to
the ideal waveforms produces only a minor decrease in
the transfer efficiency. Numerical analysis of multiple re-
flections also shows that the corresponding effect is not
significant and can increase the inefficiency by at most
a factor of two. The analysis of the effect of dissipative
losses is quite simple and, as expected, shows that a high-
efficiency state transfer requires a low-loss transmission
line and resonators with energy relaxation times much
longer than duration of the procedure.

A major concern, however, is the effect of frequency
mismatch between the two resonators, since the destruc-
tive interference is very sensitive to the frequency de-
tuning. We consider two models: a constant-in-time
detuning and a time-dependent detuning due to chang-
ing coupling. For the latter model we use the theory
of the coupler realized in Refs.20,22; the frequency varia-
tion due to the coupling modulation has been observed
experimentally20. Our results show that a high-efficiency
state transfer is impossible without an active compensa-
tion of the frequency change; the accuracy of this com-
pensation should be at least within the 90%-95% range.

Although we assume that the state transfer is per-
formed between two superconducting resonators, using
the tunable couplers of Refs.20,22, our analysis can also
be applied to other setups, for example, schemes based
on tunable couplers between the qubits and the trans-
mission line or based on the tunable couplers between
the qubits and the resonators19,21,40,41, which are then
strongly coupled with the transmission line. Note that
the frequency change compensation is done routinely in
the coupler of Refs.19,21, thus giving a natural way to
solve the problem of frequency mismatch. Similarly, the
phase is naturally tunable in the coupler of Refs.40,41.

The paper is organized in the following way. In Sec.
II we discuss the ideal state transfer protocol, its mathe-
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FIG. 1: (a) The state transfer setup. An initial microwave
field amplitude G(0) is transferred from the emitting res-
onator to the receiving resonator via a transmission line. This
is done using variable couplers for both resonators, character-
ized by (effective) transmission amplitudes te(t) and tr(t),
and corresponding leakage rates κe(t) and κr(t). Almost per-
fect transfer can be achieved when the back-reflection of the
propagating field A(t) is cancelled by arranging its destruc-
tive interference with the leaking part of the field B(t) in the
receiving resonator. (b) A variant of the setup that includes
a circulator, which prevents multiple reflections of the small
back-reflected field F (t).

matical model, and the relation between classical trans-
fer efficiency (which is mostly used in this paper) and
quantum state/process fidelity. In Sec. III we analyze
the decrease of the transfer efficiency due to deviations
from the design values of various parameters that define
the transmission amplitudes of the couplers. We also
study the effects of pulse-shape warping, Gaussian filter-
ing, noise, and dissipative losses. In Sec. IV we analyze
the effect of multiple reflections of the back-reflected field
on the transfer efficiency. The effect of frequency mis-
match between the two resonators is discussed in Sec. V.
Finally, we summarize the main results of the paper in
Sec. VI. Appendix A is devoted to the quantum theory
of a beam splitter, which is used to relate the efficiency
of a classical state transfer to the fidelity of a quantum
state transfer. In Appendix B we discuss the theory of
the tunable coupler of Refs.20,22 and find the frequency
detuning caused by the coupling variation.

II. MODEL AND TRANSFER PROTOCOL

A. Model

We consider the system illustrated in Fig. 1(a). A
quantum state is being transferred from the emitting
(left) resonator into the initially empty receiving (right)
resonator via the transmission line. This is done by us-
ing time-varying couplings (“tunable mirrors”) between
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FIG. 2: Time dependence (“pulse shapes”) of the absolute
values of transmission amplitudes te(t) for the emitting cou-
pler (red dashed curve) and tr(t) for the receiving coupler
(blue solid curve). The amplitude te(t) is kept constant at the
maximum level te,max after the mid-time tm, while tr(t) is kept
at the maximum tr,max during the first part of the procedure,
t ≤ tm. The propagating field A(t) first increases exponen-
tially and then decreases exponentially (black solid curve).
In simulations we typically use |te,max| = |tr,max| = 0.05 for
quarter-wavelength 6 GHz resonators (τe = τr = 33 ns); then
the transfer efficiency η = 0.999 requires the procedure dura-
tion of tf = 460 ns.

the resonators and the transmission line. The (effective)
transmission amplitudes te and tr for the emitting and
receiving resonator couplers, respectively, as a function
of time t are illustrated in Fig. 2. As discussed later,
the main idea is to almost cancel the back-reflection
into the transmission line from the receiving resonator
by using destructive interference. Then the field leak-
ing from the emitting resonator is almost fully absorbed
into the receiving resonator. Ideally, we want the two
resonators to have equal frequencies, ωe = ωr; how-
ever, in the formalism we will also consider slightly un-
equal resonator frequencies ωe(t) and ωr(t). We assume
large quality factors Q for both resonators by assuming
|te(t)| ≪ 1 and |tr(t)| ≪ 1 (the maximum value is crudely
|te(r),max| ∼ 0.05, leading to Qmin ∼ 103 – see later), so
that we can use the single-mode approximation. For sim-
plicity, we assume a dispersionless transmission line.

We will mostly analyze a classical field transfer be-
tween the two resonators, with a straightforward rela-
tion to the quantum case, discussed later. The nota-
tions G(t) and B(t) correspond to the field amplitudes
in the emitting and receiving resonators [see Fig. 1(a)],
while A(t) describes the propagating field in the trans-
mission line. However, in contrast to the notations of
Ref.14, here we use dimensionless G and B, normalizing
the field amplitudes45,46 in such a way that for classical
(coherent) fields, |G|2 and |B|2 are equal to the aver-
age number of photons in the resonators. Similarly, the
normalization of A is chosen so that |A|2 is the number
of propagating photons per second. Such normalizations
for resonators are more appropriate for the analysis of

quantum information. Also, with this normalization, the
amplitudes will not change with adiabatically-changing
resonator frequency, in contrast to the usual field ampli-
tudes.
In most of the analysis we assume (unless mentioned

otherwise) that the transmission line is either long or con-
tains a circulator [Fig. 1(b)], so that we can neglect the
multiple reflections of the small back-propagating field
F (t) (the effect of multiple reflections will be considered
in Sec. IV). We also assume that there is no classical noise
entering the emitting resonator from the circulator (only
vacuum noise).
With these assumptions and normalizations, the time

dynamics of the classical field amplitudes is described in
the rotating frame by the equations

Ġ = −i∆ωeG− 1

2

(

κe + T−1
1,e

)

G, (1)

Ḃ = −i∆ωrB − 1

2

(

κr + T−1
1,r

)

B +
tr

|tr|
√
κrA, (2)

A =
√
ηtl

te

|te|
√
κeG, (3)

where ∆ωe = ωe−ω0 and ∆ωr = ωr−ω0 are small detun-
ings (possibly changing slowly with time) from the (ar-
bitrary) rotating frame frequency ω0(t), the decay rates
κe and κr are due to leakage into the transmission line,
while additional losses are described by the energy relax-
ation times T1,e and T1,r in the resonators and imperfect
transfer efficiency ηtl of the transmission line. Note that
A has the dimension of 1/

√
s in contrast to the dimen-

sionless G and B, so that the factors
√
κe(r) restore the

proper dimension. The leakage rates are

κe(t) =
|t̃ine |2
τrt,e

Re

Rtl
=

|te|2
τrt,e

, κr(t) =
|t̃inr |2
τrt,r

Rr

Rtl
=

|tr|2
τrt,r

,

(4)
where t̃

in
e and t̃

in
r are the transmission amplitudes of

the couplers (for a wave incident from inside of the res-
onators), τrt,e and τrt,r are the round-trip times in the
resonators, Re, Rr, and Rtl are the wave impedances
of the resonators and the transmission line, while te =
t̃
in
e

√

Re/Rtl and tr = t̃
in
r

√

Rr/Rtl are the effective trans-
mission amplitudes. Note that the transmission ampli-
tudes t̃ depend on the wave direction (from inside or
outside of a resonator), while the effective transmission
amplitudes t do not. For convenience we will be working
with the effective transmission amplitudes te and tr, so
that we do not need to worry about possibly unequal
wave impedances. For quarter-wavelength resonators
τrt,e ≈ π/ωe ≈ π/ω0 and τrt,r ≈ π/ωr ≈ π/ω0, so the
quality factors are

Qe(r) =
ωe(r)

κe(r)
≈ π

|te(r)|2
. (5)

Note that the phase factors tr/|tr| and te/|te| in Eqs.
(2) and (3) may change in time because of changing
coupling14,20 (as discussed later in Sec. VB and Ap-
pendix B); this is why these somewhat unusual factors
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cannot be neglected. Strictly speaking, the last term
in Eq. (2) should also be multiplied by

√

ωe/ωr; this is
because of different normalizations, related to different
photon energies ~ωe and ~ωr in the resonators. However,
we neglect this correction, assuming a relatively small
detuning. Note that the effective propagation time along
the transmission line is zero in Eqs. (1)–(3) since we use
appropriately shifted clocks (here the assumption of a
dispersionless transmission line is necessary); however,
the physical propagation time will be important in the
analysis of multiple reflections in Sec. IV. Also note that
to keep Eqs. (1)–(3) reasonably simple, we defined the
phases of B and G to be somewhat different from the ac-
tual phases of the standing waves in the resonators (see
discussion in Sec. II C).
Even though in Eqs. (1)–(3) we use normalized fields

G, B, and A, which imply discussion in terms of the
photon number, below we will often use the energy ter-
minology and invoke the arguments of the energy con-
servation instead of the photon number conservation. At
least in the case without detuning the two pictures are
fully equivalent, but the energy language is more intu-
itive, and thus preferable. This is why in the following
we will use the energy and photon number terminology
interchangeably.

B. Efficiency and fidelity

We will characterize performance of the protocol via
the transfer efficiency η, which is defined as the ratio be-
tween the energy of the field (converted into the photon
number) in the receiving resonator at the end of the pro-
cedure, t = tf , and the energy (photon number) at the
initial time, t = 0, in the emitting resonator:

η =
|B(tf)|2
|G(0)|2 . (6)

We emphasize that in this definition we assume that only
the emitting resonator has initially a non-zero field.
As we discuss in this section, the classical efficiency η

is sufficient to characterize the quantum transfer as well,
so that the quantum state and process fidelities derived
below are directly related to η (this requires assumption
of vacuum everywhere except the initial state of the emit-
ting resonator). The idea of the conversion between the
classical and quantum transfers is based on the linearity
of the process, and thus can be analyzed in essentially
the same way as the quantum optical theory of beam
splitters, discussed in Appendix A.
Let us focus on the case with the circulator [Fig. 1(b)]

in the absence of dissipative losses (T−1
1,e = T−1

1,r = 0,

ηtl = 1). In general, there is a linear input-output
relation between the fields at t = 0 and the fields at
t = tf . This relation is the same for the classical fields
and the corresponding quantum operators in the Heisen-
berg picture (13,47), so for simplicity we discuss the clas-
sical fields. The relevant fields at t = 0 are G(0), B(0),

and the (infinite number of) temporal modes propagat-
ing towards the emitting resonator through the circu-
lator; these modes can be described as time-dependent
field V (t), where t corresponds to the time, at which the
field arrives to the emitting resonator. Note that B(0)
and V (t) are assumed to be zero in our protocol; how-
ever, we need to take them into account explicitly, be-
cause in the quantum language they would correspond
to operators, representing vacuum noise (with the stan-
dard commutation relations). The fields at the final time
t = tf are B(tf), G(tf), and the collection of the outgoing
back-reflected fields F (t) for 0 ≤ t ≤ tf [see Fig. 1(b)].
Note that normalization of the propagating fields V (t)
and F (t) is similar to the normalization of A(t).
The input-output relation {G(0), B(0), V (t)|0≤t≤tf } 7→

{G(tf), B(tf), F (t)|0≤t≤tf } is linear and unitary, physi-
cally because of the conservation of the number of pho-
tons (energy). In particular,

B(tf) =
√
η eiϕfG(0) +wBB(0) +

∫ tf

0

wV (t)V (t) dt, (7)

where η is obviously given by Eq. (6), ϕf is the phase
shift between B(tf) and G(0), while wB and wV (t) are
some weight factors in this general linear relation. These
weight factors can be calculated by augmenting Eqs. (1)–
(3) to include V (t) and F (t), but we do not really need
them to find the quantum transfer fidelity if B(0) and
V (t) correspond to vacuum. Note that the unitarity of
the input-output transformation requires the relation

η + |wB |2 +
∫ tf

0

|wV (t)|2 dt = 1 (8)

(sum of squared absolute values of elements in a row of a
unitary matrix equals one), where we neglected the slight
change in the normalization (discussed above) in the case
of time-varying detuning.
This picture of the input-output relations can in princi-

ple be extended to include non-zero T−1
1,e(r) and/or ηtl 6= 1;

for that we would need to introduce additional noise
sources, which create additional terms in Eqs. (7) and
(8) similar to the terms from the noise V . Also, if we
consider the case without the circulator, the structure of
these equations remains similar, but the role of V (t) is
played by the temporal modes of the initial field prop-
agating in the transmission line from the receiving to
the emitting resonator (since clocks are shifted along the
transmission line, there is formally no field “stored” in
the transmission line, which propagates from the emit-
ting to the receiving resonator).
Using the framework of the linear input-output rela-

tion, Eq. (7) derived for classical fields can also be used
to describe the quantum case. This can be done using
the standard quantum theory of beam splitters46 (see
Appendix A), by viewing Eq. (7) as the result of mixing
the fields G(0), B(0), and an infinite number of fields
(temporal modes) V (t) with beam splitters to produce
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the proper linear combination. Importantly, if B(0) cor-
responds to vacuum and V (t) also corresponds to vac-
uum, then we can assume only one beam splitter with
the proper transfer amplitude

√
η eiϕf for G(0) → B(tf);

this is because a linear combination of several vacua is
still the vacuum. Equivalently, the resulting quantum
state in the receiving resonator is equal to the initial
quantum state of the emitting resonator, subjected to
the phase shift ϕf and leakage (into vacuum) described
by the (classical) efficiency η. The same remains correct
in the presence of nonzero relaxation rates T−1

1,e and T−1
1,r

and imperfect ηtl if these processes occur at zero effective
temperature (involving only vacuum noise).
As shown in Appendix A, if the initial state in

the emitting resonator is |ψin〉 =
∑

n αn|n〉 in the
Fock space (

∑

n |αn|2 = 1), then the final state of
the receiving resonator is represented by the density
matrix, which can be obtained from the state |ψfin〉 =
∑

n,k αn+k

√

(n+ k)!/n!k! ηn/2(1 − η)k/2ei(n+k)ϕf |n〉|k〉a
by tracing over the ancillary state |k〉a (this an-
cilla corresponds to the second outgoing arm of the
beam splitter). This gives the density matrix ρfin =
∑

j,n,m αn+jα
∗
m+j

√

(n+ j)!(m+ j)!(j!
√
n!m!)−1η(n+m)/2

(1 − η)jei(n−m)ϕf )|n〉〈m|. The state fidelity (overlap
with the initial state) is then

Fst =
∑

j,n,m

√

(n+ j)!(m+ j)!

j!
√
n!m!

α∗
nαmαn+jα

∗
m+j

× η(n+m)/2(1− η)jei(n−m)ϕf . (9)

Note that the phase shift ϕf can easily be corrected in
an experiment (this correction is needed anyway for res-
onators, which are significantly separated in space), and
then the factor ei(n−m)ϕf in Eq. (9) can be removed.
The discussed quantum theory (at zero temperature,

i.e., with only vacuum noise) becomes very simple if we
transfer a qubit state |ψin〉 = α|0〉 + β|1〉. Then the
resulting state is

|ψfin〉 = α|0〉|0〉a + βeiϕf (
√
η |1〉|0〉a +

√

1− η |0〉|1〉a),
(10)

where the ancillary states |1〉a and |0〉a indicate whether a
photon was lost to the environment or not. After tracing
|ψfin〉〈ψfin| over the ancilla we obtain density matrix

ρfin =

(

η|β|2 √
η eiϕfα∗β√

η e−iϕfαβ∗ |α|2 + |β|2(1 − η)

)

. (11)

Note that since a qubit state contains at most one ex-
citation, the essential dynamics occurs only in the single-
photon subspace. Therefore, it is fully equivalent to
the dynamics of classical fields (with field amplitudes re-
placed by probability amplitudes). Thus, Eq. (10) can be
written directly, without using the quantum beam split-
ter approach, which is necessary only for multi-photon
states.
In quantum computing the qubit state transfer (quan-

tum channel) is usually characterized by the quantum

process fidelity Fχ or by the average state fidelity F st,

which are related as48,49 1 − Fχ = (1 − F st) × 3/2.
In order to calculate Fχ, we calculate state fidelity Fst

(overlap with initial state) and then average it over the
Bloch sphere. Neglecting the phase ϕf , which can be
easily corrected in an experiment, from Eq. (11) we find
Fst = |α|4 + η|β|4 + |αβ|2(1 − η + 2

√
η), which also fol-

lows from Eq. (9). To average this fidelity over the Bloch
sphere of initial states, it is sufficient48 (see also50) to

average it over only six states: |0〉, |1〉, (|0〉 ± |1〉)/
√
2,

and (|0〉 ± i|1〉)/
√
2. This gives F st = (3 + η + 2

√
η)/6,

which can be converted into the process fidelity

Fχ =
1

4
(1 +

√
η)2. (12)

This equation gives the relation between the classical en-
ergy transfer efficiency η which we use in this paper and
the process fidelity Fχ used in quantum computing. Note
the relation 1 − Fχ ≈ (1 − η)/2 when η ≈ 1. Also note
that a non-vacuum noise contribution (due to finite tem-
perature) always decreases Fχ (see Appendix A). If the
phase shift ϕf is included in the definition of fidelity (as-
suming that ϕf is not corrected), then Eq. (12) becomes
Fχ = (1 + η + 2

√
η cosϕf)/4.

Thus, in this section we have shown that the state and
the process fidelities of the quantum state transfer are
determined by the classical efficiency η and experimen-
tally correctable phase shift ϕf . This is why in the rest
of the paper we analyze the efficiency η of essentially a
classical state transfer.

C. Transfer procedure

Now let us describe the transfer protocol, following
Ref.14 (this will be the second protocol out of two slightly
different procedures considered in Ref.14). Recall that
we consider normalized classical field amplitudes. The
main idea of achieving nearly perfect transfer is to use
time-dependent transmission amplitudes te and tr to ar-
range destructive interference between the field A re-
flected from the receiving resonator and the part of field
B leaking through the coupler (see Fig. 1). Thus, we
want the total back-reflected field F (t) to nearly vanish:
F (t) ≈ 0, where

F =
r
out
r

|rr|
A+

tr

|tr|
√
κr

|rr|
rinr

B, (13)

r
out
r and r

in
r are the coupler reflection amplitudes from

the outside and inside of the receiving resonator, and
|rr| = |rinr | = |routr |. Note that the (effective) scattering

matrix of the receiving resonator coupler is

(

r
out
r tr

tr r
in
r

)

,

when looking from the transmission line. The formula
(13) looks somewhat unusual for two reasons. First, in
the single-mode formalism of Eqs. (1)–(3), the reflection
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amplitude in Eq. (13) must be treated as having the ab-
solute value of 1; this is why we have the pure phase
factor routr /|rr|. This is rather counterintuitive and phys-
ically stems from the single-mode approximation, which
neglects the time delay due to the round-trip propaga-
tion in a resonator. It is easy to show that if the actual
amplitude r

out
r were used for the reflection A→ F , then

solution of Eqs. (2) and (13) would lead to the energy
non-conservation on the order of |t|2. Second, in our def-
inition the phase of the field B corresponds to the stand-
ing wave component (near the coupler) propagating away
from the coupler [see Eq. (2)], so the wave incident to the
coupler is B |rr|/rinr , thus explaining the phase factor in
the last term of Eq. (13). Actually, a better way would
be to define B using the phase of the standing wave in
the resonator; this would replace the last term in Eq. (2)

with (tr/|tr|)
√
κrA

√

|rr|/rinr and replace the last term in

Eq. (13) with (tr/|tr|)
√
κr
√

|rr|/rinr B. However, we do
not use this better definition to keep a simpler form of
Eq. (2).
Using the fact that t

2
r/r

in
r r

out
r is necessarily real and

negative [since r
out
r = −(rinr )∗tr/t

∗
r from unitarity], we

can rewrite Eq. (13) as

F =
r
out
r

|rr|

(

A− t
∗
r

|tr|
√
κrB

)

. (14)

This form shows that if the phases of tr and A do
not change in time and there is no detuning, then the
two terms in Eq. (14) have the same phase [because
arg(B) = arg(trA) from Eq. (2)]. Therefore, for the de-
sired cancellation of the terms we need only the cancel-
lation of absolute values, i.e., a one-parameter condition.
For a non-zero field B, the exact back-reflection can-

cellation can be achieved by varying in time the emit-
ting coupling te

13, which determines A in Eq. (13) or
by varying the receiving coupling tr or by varying both
of them with an appropriate ratio14. At the very begin-
ning of the procedure the exact cancellation is impossible
because B(0) = 0, so there are two ways to arrange an al-
most perfect state transfer. First, we can allow for some
loss during a start-up time ts intended to create a suffi-
cient field B, and then maintain the exact cancellation
of the back-reflection at t > ts. Second, we can have a
slightly imperfect cancellation during the whole proce-
dure. Both methods were considered in Ref.14; in this
paper we discuss only the second method, which can be
easily understood via an elegant “pretend” construction
explained later.
Motivated by a simpler experimental realization, we

divide our protocol into two parts14 (see Fig. 2). During
the first part of the procedure, we keep the receiving
coupler fixed at its maximum value tr,max, while varying
the emitting coupler to produce a specific form of A(t)
for an almost perfect cancellation. During the second
part, we do the opposite: we fix the emitting coupler at
its maximum value te,max and vary the receiving coupler.
The durations of the two parts are approximately equal.

The maximum available couplings between the res-
onators and transmission line determine the timescales
τe and τr of the transfer procedure, which we define as
the inverse of the maximum leakage rates,

τe(r) =
1

κe(r),max
, κe(r),max =

|te(r),max|2
τrt,e(r)

. (15)

The time τr affects the buildup of the field in the receiving
resonator, while τe determines the fastest depopulation
of the emitting resonator; we will call both τe and τr the
buildup/leakage times.
Now let us discuss a particular construction14 of the

procedure for nearly-perfect state transfer, assuming that
the complex phases of te and tr are constant in time,
there is no detuning, ωe = ωr = ω0, and there is no
dissipative loss, T−1

1,e = T−1
1,r = 0, ηtl = 1. (For the exper-

imental coupler discussed in Appendix B, te and tr are
mostly imaginary, but also have a significant real com-
ponent.) As mentioned above, during the first part of
the procedure, the receiving resonator is maximally cou-
pled, tr(t) = tr,max, with this value being determined
by experimental limitations. Then a complete cancel-
lation of the back-reflection, F = 0, would be possible
if A(t) = A0 exp(t/2τr) and B(t) = B0 exp(t/2τr) with
B0 =

√
τr A0tr,max/|tr,max|. This is simple to see from

Eqs. (2) and (14), and even simpler to see using the time
reversal symmetry: the absence of the back-reflection
will then correspond to a leaking resonator without an
incident field. This is why in the reversed-time picture
B ∝ exp(−t/2τr), and therefore in the forward-time pic-
ture B ∝ exp(t/2τr); the same argument applies to A.
Thus, we wish to generate an exponentially increasing

transmitted field

A(t) = A0 exp(t/2τr), 0 ≤ t ≤ tm, (16)

during the first half of the procedure (until the mid-time
tm) by increasing the emitting coupling te(t). This would
provide the perfect cancellation of reflection if B(0) = B0

(as in the above example), while in the actual case when
B(0) = 0 we can still use the waveform (16), just “pre-
tending” that B(0) = B0. It is easy to see that this
provides an almost perfect cancellation. Let us view
the initially empty resonator as a linear combination:
B(0) = B0 − B0. Then due to linearity of the evolu-
tion, the part B0 will lead to perfect cancellation as in
the above example, while the part −B0 will leak through
the coupler and will be lost. If −B0 is fully lost during a
sufficiently long procedure, then the corresponding con-
tribution to the inefficiency (mostly from the initial part
of the procedure) is 1−ηr = |B0/G(0)|2. In particular, for
a symmetric procedure (τe = τr = τ , tm = tf/2) approx-
imately one half of the energy will be transmitted dur-
ing the first half of the procedure, |B(tm)|2 ≈ |G(0)|2/2;
then |B0|2 ≈ exp(−tm/τ) |G(0)|2/2, and therefore the
inefficiency contribution is 1 − ηr ≈ exp(−tm/τ)/2. As
we see, the inefficiency decreases exponentially with the
procedure duration.
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At time tm the increasing emitting coupling te reaches
its maximum value te,max (determined by experimental
limitations), and after that we can continue cancellation
of the back-reflection (14) by decreasing the receiving
coupling tr(t), while keeping emitting coupling at te,max.
Then the transmitted field A(t) will become exponen-
tially decreasing,

A(t) = A0 exp(tm/2τr) exp[−(t− tm)/2τe], tm ≤ t ≤ tf ,
(17)

and tr should be varied correspondingly, so that κr(t) =
|A(t)|2/|B(t)|2. As mentioned above, the phase condi-
tions for the destructive interference are satisfied auto-
matically in the absence of detuning and for fixed com-
plex phases of te(t) and tr(t). The procedure is stopped
at time tf , after which tr(t) = 0, so that the receiv-
ing resonator field B(tf) no longer changes. When the
procedure is stopped at time tf , there is still some field
G(tf) remaining in the emitting resonator. This leads
to the inefficiency contribution 1 − ηe = |G(tf)/G(0)|2.
Again assuming a symmetric procedure (τe = τr = τ ,
tf = 2tm), we can use |B(tm)|2 ≈ |B(0)|2/2; then
|B(tf)|2 ≈ exp(−tm/τ)|B(0)|2/2 and therefore 1 − ηe =
exp(−tm/τ)/2. Combining the two (equal) contributions
to the inefficiency, we obtain14

1− η ≈ exp(−tf/2τ). (18)

The numerical accuracy of this formula is very high when
tf & 10τ .
Now let us derive the time dependence of the couplings

te(t) and tr(t) needed for this almost perfect state trans-
fer (we assume that τe and τr can in general be different).
Again, the idea of the construction is to arrange exact

cancelation of the back-reflection if there were an initial

field B0 in the receiving resonator (with proper phase).
In this hypothetical “pretend” scenario the evolution of
the receiving resonator field B̃(t) is slightly different from

B(t) in the actual case [B(0) = 0, B̃(0) = B0], while
the fields G(t) and A(t) do not change. Thus, we con-

sider the easy-to-analyze ideal “pretend” scenario B̃(t)
and then relate it to the actual evolution B(t). Note
that the transmitted field A(t) is given by Eqs. (16) and
(17): it is exponentially increasing until tm and exponen-
tially decreasing after tm. Also note that our procedure
does not involve optimization: the only parameter, which
can be varied, is the duration of the procedure, which is
determined by the desired efficiency (the only formal op-
timization will be a symmetric choice of tm).
In the first part of the procedure, t ≤ tm, the receiving

coupling is at its maximum, tr(t) = tr,max, and the emit-
ting coupling can be found as te(t) = te,max

√
τe |A/G|

(recall that phase conditions are fixed). Here A(t) is
given by Eq. (16) and |G(t)| can be found from en-
ergy conservation in the “pretend” scenario: |G(t)|2 +
|B0 exp(t/2τr)|2 = |G(0)|2 + |B0|2. Using the relation
|B0/A0| =

√
τr, we find

te(t) = te,max

√

τe
τr

exp(t/2τr)
√

|G(0)/B0|2 + 1− exp(t/τr)
. (19)

Here |B0| is an arbitrary parameter (related to an arbi-
trary |A0|), which affects the efficiency and duration of
the procedure. The corresponding G(t) and B(t) evolu-
tions are

G(t) = G(0)
√

1− |B0/G(0)|2[exp(t/τr)− 1], (20)

B(t) = B0[exp(t/2τr)− exp(−t/2τr)]. (21)

Note that in the “pretend” scenario B̃(t) =

B0 exp(t/2τr), while actually B(t) = B̃(t) −
B0 exp(−t/2τr), where the second term describes the
decay of the compensating initial field −B0. The phase
of B0 is determined by the phases of the transmission
amplitudes, arg(B0) = arg[te,maxtr,maxG(0)].
Since |B0| is related to the mid-time tm via the condi-

tion te(tm) = te,max, it is convenient to rewrite Eq. (19)
in terms of tm. Thus, the resonator couplings during the
first part of the procedure should be14

te(t) =
te,max

√

τe/τr
√

(1 + τe/τr) exp[(tm − t)/τr]− 1
, (22)

tr(t) = tr,max, 0 ≤ t ≤ tm. (23)

Note that the increase of te(t) is slightly faster than ex-
ponential.
To derive the required tr(t) during the second part of

the procedure, t ≥ tm, we can use the time reversal of the
“pretend” scenario. It will then describe a perfect field
absorption by the emitting resonator; therefore, tr(t) in
the reversed (and shifted) time should obey the same Eq.
(19), but with exchanged indices (e↔r) and |G(0)/B0| re-
placed with |B̃(tf)/G(tf)|. Then by using the condition
tr(tm) = tr,max we immediately derive the formula simi-
lar to Eq. (22),

tr(t) =
tr,max

√

τr/τe
√

(1 + τr/τe) exp[(t− tm)/τe]− 1
, (24)

te(t) = te,max, tm ≤ t ≤ tf . (25)

It is also easy to derive Eq. (24) as tr(t) =

tr,max
√
τr |A/B̃|, with A(t) given by Eq. (17) and

|B̃(t)|2 = |G(0)|2 + |B0|2 − |G(t)|2 given by the energy
conservation, where |G(t)| = √

τe |A(t)|.
The contribution to the inefficiency due to imperfect

reflection (mostly during the initial part of the proce-
dure) is 1 − ηr ≈ |B0/G(0)|2 since the reflected field is
the leaking initial field −B0 and it is almost fully leaked
during the procedure. Comparing Eqs. (19) and (22),
we find |B0/G(0)|2 ≈ exp(−tm/τr) τr/(τe + τr) assuming
exp(−tm/τr) ≪ 1. The contribution to the inefficiency
due to the untransmitted field left in the emitting res-
onator at the end of procedure is 1−ηe = |G(tf)/G(0)|2 =
(τe/τr) |B0/G(0)|2 exp(tm/τr) exp[−(tf − tm)/τe], where
we used relation |G(tf)|2 = τe|A(tf)|2. Using the above
formula for |B0/G(0)|2 we obtain 1 − ηe ≈ exp[−(tf −
tm)/τe] τe/(τe+τr). Combining both contributions to the
inefficiency we find14

1− η ≈ τr exp(−tm/τr) + τe exp[−(tf − tm)/τr]

τe + τr
. (26)
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Minimization of this inefficiency over tm for a fixed total
duration tf gives the condition

tm/τr = (tf − tm)/τe (27)

and the final result for the inefficiency14,

1− η ≈ exp

(

− tf
τe + τr

)

, (28)

which generalizes Eq. (18).
The required ON/OFF ratios for the couplers can be

found from Eqs. (22) and (24),

te,max

te(0)
≈

√

τe + τr
τe

exp

(

tm
τr

)

, (29)

tr,max

tr(tf)
≈

√

τe + τr
τr

exp

(

tf − tm
τr

)

, (30)

which in the optimized case corresponding to Eq. (28)
become

te,max

te(0)
≈

√

1 + τr/τe
1− η

,
tr,max

tr(tf)
≈

√

1 + τe/τr
1− η

. (31)

Note that using two tunable couplers is crucial for our
protocol. If only one tunable coupler is used as in Ref.13,
then the procedure becomes much longer and requires a
much larger ON/OFF ratio. Assuming a fixed receiving
coupling, we can still use Eqs. (19)–(21) for the analy-
sis and obtain the following result. If the coupling of
the emitting resonator is limited by a maximum value
κmax of the leakage rate, then the shortest duration of
the procedure with efficiency η is tf = LN/[κmax(1− η)],

where LN ≈ ln e ln[(e/(1−η)]
1−η . For typical values of η we

get LN ≈ 3 + ln[1/(1 − η)], and therefore the short-
est duration for a procedure with one tunable coupler
is tf ≈ (1 − η)−1κ−1

max {3 + ln[1/(1 − η)]}. This is
more than a factor (1− η)−1/2 longer than the duration
tf = 2 κ−1

max ln[1/(1 − η)] of our procedure with two tun-
able couplers [see Eq. (18)]. The optimum (fixed) receiv-
ing coupling is κr = (1−η)κmax/(1+1/LN), which makes
clear why the procedure is so long. The corresponding
ON/OFF ratio for the emitting coupler is te,max/te(0) =
√

κmax/κmin = (1 − η)−1
√

LN/(1− 2/LN) ≈ (1 −
η)−1

√

3 + ln[1/(1− η)]. This is more than a factor

(1− η)−1/2 larger than what is needed for our procedure
[see Eq. (31)].
Note that we use the exponentially increasing and then

exponentially decreasing transmitted field A(t) [Eqs. (16)
and (17)] because we wish to vary only one coupling in
each half of the procedure and to minimize the duration
of the procedure. In general, any “reasonable” shape
A(t) can be used in our procedure. Assuming for simplic-
ity a real positive A(t), we see that a “reasonable” A(t)
should satisfy the inequality A2(t) ≤ κe,max[|G(0)|2 −
∫ t

0
A2(t′) dt′], so that it can be produced by using κe(t) =

A2(t)/[|G(0)|2−
∫ t

0 A
2(t′) dt′] without exceeding the max-

imum emitting coupling κe,max. We also assume that a
“reasonable” A(t) does not increase too fast, dA(t)/dt ≤
(κr,max/2)A(t), or at least satisfies a weaker inequal-

ity A(t) ≤ √
κr,max

√

κ−1
r,maxA2(0) +

∫ t

0 A
2(t′) dt′. In this

case we can apply the “pretend” method, which gives

κr(t) = A2(t)/[κ−1
r,maxA

2(0)+
∫ t

0 A
2(t′) dt′], not exceeding

the maximum receiving coupling κr,max. This leads to the

inefficiency contribution 1−ηe = 1−
∫ tf
0
A2(t′) dt′/|G(0)|2

due to the untransmitted field and inefficiency contri-
bution 1 − ηr = κ−1

r,maxA
2(0)/|G(0)|2 due to the back-

reflection. We see that for high efficiency we need a small
A(t) at the beginning and at the end of the procedure.
Even though we do not have a rigorous proof, it is in-
tuitively obvious that our procedure considered in this
section is optimal (or nearly optimal) for minimizing the
duration of the protocol for a fixed efficiency and fixed
maximum couplings (see also the proof of optimality for
a similar, but single-sided procedure in Ref.13). We think
that it is most natural to design an experiment exactly
as described in this section [using Eqs. (16) and (17) and
varying only one coupling at a time]; however, a minor
or moderate time-dependent tuning of the other coupling
(which is assumed to be fixed in our protocol) can be use-
ful in experimental optimization of the procedure.
In this section, we considered the ideal transfer proto-

col, assuming that the transmission amplitudes are given
exactly by Eqs. (22)–(25), and also assuming equal res-
onator frequencies, fixed phases of the transmission am-
plitudes, and absence of extra loss (T−1

1,e = T−1
1,r = 0,

ηtl = 1). In the following sections we will discuss the
effect of various imperfections on the efficiency of the
transfer protocol.

III. IMPERFECT PULSE SHAPES

The high efficiency of the state transfer analyzed in
the previous section relies on precise calibration and con-
trol of experimental parameters, so that the needed pulse
shapes (22)–(25) for the transmission amplitudes te(t)
and tr(t) are accurately implemented. However, in a
real experiment there will always be some imperfections
in the pulse shapes. In this section we analyze the ro-
bustness of the transfer efficiency to the pulse shape im-
perfections, still assuming fixed phases and the absence
of detuning and dissipative loss. In particular, we will
vary several parameters used in the pulse shapes (22)–
(25): the maximum transmission amplitudes |te(r),max|,
the buildup/leakage times τe(r), and the mid-time tm. By
varying these parameters we imitate imperfect experi-
mental calibrations, so that the actual parameters of the
pulse shapes are different from the designed ones. We
also consider distortion (“warping”) of the pulse shapes
imitating a nonlinear transfer function between the con-
trol pulses and amplitudes te(r). Imperfections due to
Gaussian filtering of the pulse shapes, additional noise,
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and dissipative losses will also be discussed.
We analyze the effect of imperfections using numer-

ical integration of the evolution equations (1)–(3). As
the ideally designed procedure we choose Eqs. (22)–(25)
with |te,max| = |tr,max| = 0.05, assuming the quarter-
wavelength resonators with frequency ωe/2π = ωr/2π =
6 GHz, so that the round-trip time is τrt,e = τrt,r =
π/ωe(r) = 1/12 ns and the buildup/leakage time is τe =
τr = τ = 33.3 ns. The duration of the procedure tf is
chosen from Eq. (28), using two design values of the ef-
ficiency: ηd = 0.99 and ηd = 0.999; the corresponding
durations are tf = 307.0 ns and 460.5 ns. The time tm is
in the middle of the procedure: tm = tf/2. In the sim-
ulations we use G(0) = 1, B(0) = 0, and calculate the
efficiency as η = |B(tf)/G(0)|2. Note that the values of
|te(r),max| and ωe(r) affect the duration of the procedure,
but do not affect the results for the efficiency presented
in this section (except for the filtering effect).

A. Variation of maximum transmission amplitudes
te,max and tr,max

Let us assume that the transmission amplitudes are
still described by the pulse shapes (22)–(25), but with
slightly different parameters,

t
a
e(t) =

t
a
e,max

√

τae /τ
a
r

√

(1 + τae /τ
a
r ) exp[(t

a,e
m − t)/τar ]− 1

, t ≤ ta,em ,

(32)

t
a
r (t) =

t
a
r,max

√

τar /τ
a
e

√

(1 + τar /τ
a
e ) exp[(t− ta,rm )/τae ]− 1

, t ≥ ta,rm ,

(33)

so that the “actual” parameters t
a
e,max, t

a
r,max, τ

a
e , τ

a
r ,

ta,em , and ta,rm are somewhat different from their design
values te,max, tr,max, τe, τr, and tm. The transmission
amplitudes are kept at their maxima t

a
e,max and t

a
r,max

after/before the possibly different mid-times ta,em and ta,rm .
We will analyze the effect of inaccurate parameters one
by one.
First, we assume that only the maximum amplitudes

are inaccurate, tae,max = te,max + δte,max and t
a
r,max =

tr,max + δtr,max, while other parameters are equal to
their design values. (We change only the absolute val-
ues of te,max and tr,max, because their phases affect only
the correctable final phase ϕf but do not affect the ef-
ficiency η.) In Fig. 3 we show the numerically calcu-
lated inefficiency 1 − η of the state transfer as a func-
tion of the variation in maximum transmission amplitude
δtmax/tmax, with the solid lines corresponding to vari-
ation of only one maximum amplitude, δte,max/te,max

or δtr,max/tr,max (the results are the same), and the
dashed lines corresponding to variation of both of them,
δte,max/te,max = δtr,max/tr,max. The blue (upper) lines
are for the case of design efficiency ηd = 0.99 and the red
(lower) lines are for ηd = 0.999.

Varying te, max
a or tr, max

a

Varying both te, max
a and tr, max

a

-0.10 -0.05 0.00 0.05 0.10
0.00

0.01

0.02

0.03

0.04

0.05

∆tmax�tmax

In
ef

fi
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Η
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Ηd=0.999

FIG. 3: Inefficiency 1 − η of the state transfer procedure as
a function of relative variation of the maximum transmission
amplitudes δtmax/tmax = (tae(r),max − te(r),max)/te(r),max for
design efficiencies ηd = 0.99 (blue curves) and 0.999 (red
curves). The maximum transmission amplitudes te,max and
tr,max are either varied simultaneously (dashed curves) or one
of them is kept at the design value (solid curves). The su-
perscript “a” indicates an “actual” value, different from the
design value.

We see that deviations of the actual maximum ampli-
tudes t

a
e,max and t

a
r,max from their design values te,max

and tr,max increase the inefficiency of the state transfer
[essentially because of the inconsistency between t

a
e(r),max

and τae(r)]. However, the effect is not very significant, with

the additional inefficiency of less than 0.006 when one of
the parameters deviates by ±5% and less than 0.02 when
both of them deviate by ±5%. The curves in Fig. 3 are
approximately parabolic, with a growing asymmetry for
larger 1− ηd.
For the case ηd ≈ 1 the numerical results for the ad-

ditional inefficiency −δη = ηd − η can be approximately
fitted by the formula

−δη ≈
(

δte,max

te,max

)2

+

(

δtr,max

tr,max

)2

+ 1.25
δte,max

te,max

δtr,max

tr,max
,

(34)

which we obtained by changing the maximum ampli-
tudes symmetrically, antisymmetrically, and separately.
Note that in the ideal procedure we assumed |te,max| =
|tr,max|.
The main result here is that the state transfer is quite

robust against the small variation of the transmission am-
plitudes. We expect that experimentally these parame-
ters can be calibrated with accuracy of a few per cent or
better; the related inefficiency of the transfer protocol is
very small.

B. Variation of buildup/leakage times τe and τr

Now let us assume that in Eqs. (32) and (33) only the
buildup/leakage time parameters are slightly inaccurate,
τae = τ + δτe and τar = τ + δτr (we assume that in the
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Varying Τe
a or Τr

a

Varying Τe
a = Τr

a

-0.10 -0.05 0.00 0.05 0.10
0.000

0.005

0.010

0.015

0.020

∆Τ�Τ

1-
Η Ηd=0.99

Ηd=0.999

FIG. 4: Dependence of the inefficiency 1− η on relative vari-
ation of the buildup/leakage time δτe(r)/τ = (τ ae(r) − τ )/τ
for design efficiencies ηd = 0.99 (blue curves) and 0.999 (red
curves), assuming τe = τr = τ . The buildup/leakage times
τ ae and τ ar are varied either simultaneously (dashed curves) or
one of them is kept at the design value (solid curves).

ideal procedure τe = τr = τ), while other parameters are
equal to their design values. The transfer inefficiency as
a function of the relative deviations δτe(r)/τ is shown in
Fig. 4 for the design efficiencies ηd = 0.99 (blue lines)
and 0.999 (red lines). For the solid lines only one of
the buildup/leakage times is varied (the results coincide),
while for the dashed lines both parameters are varied
together, δτe = δτr. As we see, ±5% variation of one
of the buidup/leakage times increases the inefficiency by
less than 0.001, and by less than 0.0025 if the both times
are varied by ±5%.
The approximately parabolic dependences shown in

Fig. 4 can be numerically fitted by the formula for the
additional inefficiency −δη,

−δη ≈ 0.34

[

(

δτe
τ

)2

+

(

δτr
τ

)2
]

+ 0.12
δτe
τ

δτr
τ
, (35)

which was again obtained by varying δτe and δτr sym-
metrically, antisymmetrically, and separately. Most im-
portantly, we see that the transfer procedure is robust
against small deviations of the buildup/leakage times.
(In an experiment we expect not more than a few per
cent inaccuracy for these parameters.)

C. Variation of mid-times ta,em and ta,rm

Ideally, the pulse shapes te(t) and tr(t) should switch
from increasing/decreasing parts to constants at the
same time tm, exactly in the middle of the procedure.
However, due to imperfectly calibrated delays in the lines
delivering the signals to the couplers, this change may oc-
cur at slightly different actual times ta,em and ta,rm , which
are also not necessarily exactly in the middle of the pro-
cedure. Let us assume that te(t) and tr(t) are given by
Eqs. (32) and (33) with slightly inaccurate times ta,em and

Varying only tm
a,r

Varying tm
a,e
= tm

a,r

-0.10 -0.05 0.00 0.05 0.10
0.000

0.005
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0.015

0.020

∆tm
r �Τ

1-
Η Ηd=0.99

Ηd=0.999

FIG. 5: Inefficiency 1− η as a function of the mid-time shift
δtrm = ta,rm − tm normalized by the buildup/leakage time τ .
The mid-time ta,em is either varied equally (dashed curves) or
kept constant (solid curves). The results for varying only
ta,em are the same as the solid curves up to the sign change,
δtrm ↔ −δtem.

ta,rm , while other parameters are equal to their design val-
ues.

Solid lines in Fig. 5 show the dependence of the trans-
fer inefficiency 1 − η on the shift of the mid-time δtrm =
ta,rm − tm, which is normalized by the buildup/leakage
time τ . Blue and red lines are for the design efficien-
cies ηd = 0.99 and 0.999, respectively. The case when
only ta,em is changed is similar to what is shown by the
solid lines up to the mirror symmetry, δtrm ↔ −δtem.
The dashed lines show the case when both mid-times
are shifted simultaneously, ta,em = ta,rm .

We see that when ta,em and ta,rm coincide, there is prac-
tically no effect of the shift. This is because in this case
the change is only due to slightly unequal durations tam
and tf − tam. A non-zero time mismatch ta,em − ta,rm has
a much more serious effect because the reflection cancel-
lation (13) becomes significantly degraded in the middle
of the procedure, where the propagating field is at its
maximum.

The numerical fit to a quadratic dependence gives

−δη ≈ 0.25

(

δta,em − δta,rm

τ

)2

. (36)

For τ = 33.3 ns this means that ∼3 ns time mismatch
leads to only 2 × 10−3 increase in inefficiency. Such ro-
bustness to the time mismatch is rather surprising. It can
be qualitatively explained in the following way. The rela-
tive imperfection of the back-reflection cancellation (13)
is approximately (δta,em − δta,rm )/τ in the middle of the
procedure; however, the lost energy of the back-reflected
field scales quadratically. Therefore, we can explain Eq.
(36) up to a numerical factor. In an experiment we ex-
pect that the time mismatch can be made smaller than
1 ns; the corresponding inefficiency is almost negligible.
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FIG. 6: Dependence of the inefficiency 1 − η on the warping
parameters αe and αr, introduced in Eq. (37) to describe the
pulse shape distortion, for design efficiencies ηd = 0.99 (blue
curves) and 0.999 (red curves). The solid curves show the
case when only one warping parameter is non-zero (the results
coincide); the dashed curves are for the case αe = αr.

D. Pulse-shape warping

As another possible imperfection of the ideal time-
dependences te(t) and tr(t), we consider a nonlinear de-
formation (“warping”) with the form

t
a
j(t) = tj(t)

[

1 + αj
tj(t)− tj,max

tj,max

]

, j = e, r, (37)

where αe and αr are the warping parameters, which de-
termine the strength of the deformations. Note that this
deformation does not affect maximum values te(r),max

and the values close to zero; it affects only intermediate
values. The deformation imitates nonlinear (imperfectly
compensated) conversion from experimental control sig-
nals into transmission amplitudes.
The inefficiency increase due to the warping of the

transmission amplitude pulse shapes is illustrated in
Fig. 6. Solid lines show the case when only αe or αr

is non-zero (the results coincide), while the dashed lines
show the case αe = αr. We see that for αe = αr = 0.05
the inefficiency increases by ∼ 10−3 for both design ef-
ficiencies ηd = 0.99 and 0.999. Similar to the variation
of other parameters, the inefficiency due to the warping
effect has a quadratic dependence on the warping param-
eters αe and αr. The numerical fitting for small |αe(r)|
and η ≈ 1 gives

−δη ≈ 0.22(α2
e + α2

r ) + 0.12αeαr. (38)

Again, this result shows that the state transfer is ro-
bust to distortion of the couplers’ transmission ampli-
tude pulse shapes. We do not expect that uncompen-
sated experimental nonlinearities will follow Eq. (37) ex-
actly, since this equation only imitates a nonlinear con-
version. However, very crudely, we would expect that
|αe(r)| < 0.05 is a realistic experimental estimate.

Ηd = 0.999

Ηd = 0.99

Ηd = 0.9
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FIG. 7: Inefficiency 1 − η as a function of the width of a
Gaussian filter σ (in ns) for design efficiencies ηd = 0.9 (green
dashed curve), 0.99 (blue dot-dashed curve), and 0.999 (red
solid curve). We use τ = 33.3 ns, as in Fig. 2. The upper
horizontal axis shows the normalized value σ/τ .

E. Smoothing by a Gaussian filter

In an actual experiment the designed pulse shapes for
the transmission amplitudes of the tunable couplers given
by Eqs. (22)–(25) will pass through a filter. Here we
convolve the transmission amplitudes with a Gaussian
function to simulate the experimental filtering, so the
actual transmission amplitudes are

t
a
j(t) =

1√
2π σ

∫ ∞

−∞

e−(t−t′)2/2σ2

tj(t
′) dt′, j = e, r,

(39)
where σ is the time-width of the Gaussian filter. The
filtering smooths out the kinks at the middle of the pro-
cedure and slightly lowers the initial and final values of te
and tr. The change in transmission amplitudes translates
into a decrease in the state transfer efficiency. Note that
the smoothing reduces the energy loss at the beginning
and end of the procedure, but causes an increased energy
loss at the middle of the procedure, thus increasing the
procedure inefficiency overall.

The procedure inefficiency with the effect of the Gaus-
sian filtering of transmission amplitudes is shown in Fig.
7 for the design efficiencies ηd = 0.9, 0.99, and 0.999.
Rather surprisingly, the effect is very small, so that fil-
tering with σ = 10 ns does not produce a noticeable
increase of the inefficiency, and even with σ = 30 ns
(which is close to the buildup/leakage time) the effect is
still small. Such robustness to the filtering can be qual-
itatively understood in the same way as the robustness
to the mismatch between the mid-times te(t) and tr(t)
discussed above. Note that experimentally51 σ is on the
order of 1 ns, so the effect of the filter on the efficiency
should be negligible.
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F. Noisy transmission amplitudes

In experiment the pulse shapes te(t) and tr(t) may con-
tain noise. We model this noise by replacing the designed
pulse shapes te(t) and tr(t) with “actual” shapes as

t
a
j(t) = tj(t)[1 + a ξj(t)], j = e, r, (40)

where a corresponds to the dimensionless noise ampli-
tude and ξe(t) and ξr(t) are mutually uncorrelated ran-
dom processes. We generate each ξ(t) numerically in the
following way. First, we choose a time step dt and gener-
ate ξ(t) at discrete time moments t = n dt (with integer
n) as Gaussian-distributed random numbers with zero
mean and unit standard deviation. After that we create
a smooth function ξ(t) passing through these points by
polynomial interpolation. Since the noise contribution in
Eq. (40) scales with the transmission amplitude tj , we
call it a multiplicative noise. Besides that, we also use a
model of an additive noise defined as

t
a
j(t) = tj(t) + a tj,max ξj(t), j = e, r, (41)

where the relative amplitude a is now compared with the
maximum value tj,max, while each ξ(t) is generated in the
same way. Note that for sufficiently small dt the noise
ξ(t) is practically white at low frequency; its variance ξ2

does not depend on dt, and therefore the low frequency
spectral density is proportional to dt (the effective cutoff

frequency scales as dt−1). Also note that the variance ξ2

somewhat depends on the method of interpolation used
to generate ξ(t). For the default interpolation method in
Mathematica, which we used (polynomial interpolation

of order three), ξ2 ≈ 0.78.
The numerical results for the transfer inefficiency 1−η

in the presence of noise are shown in Fig. 8 as a func-
tion of the dimensionless amplitude a. We used the time
step dt = 1 ns and design efficiencies ηd = 0.99 and
ηd = 0.999. The results are averaged over 100 random
realizations; we show the average values by the solid lines
and also show the standard deviations at some values of
a. Red lines correspond to the multiplicative noise, while
blue lines correspond to the additive noise. As expected,
the additive noise leads to larger inefficiency than the
multiplicative noise with the same amplitude, because of
larger noise at the non-constant part of the pulse shape.
It is somewhat surprising that, as we checked numer-

ically, the average results shown in Fig. 8 by the solid
lines practically do not depend on the choice of the time
step dt, as long as dt ≪ τe(r) (even though in our sim-
ulations dt affects the noise spectral density). The er-

ror bars, however, scale with dt as
√
dt. This behavior

can be understood in the following way. In the evolu-
tion equations (1)–(3), the noise in te(t) and tr(t) af-
fects the leakage rates κe ∝ |te|2 and κr ∝ |tr|2 of
the two resonators, and also affects the transfer term√
κeκrA ∝ |tetr|. On average the transfer term does

not change (because the noises of te(t) and tr(t) are un-
correlated); however, the average values of |te|2 and |tr|2

FIG. 8: Solid lines: inefficiency 1− η averaged over 100 ran-
dom noise realizations, as a function of the dimensionless noise
amplitude a, for the multiplicative noise (red lines, bottom),
Eq. (40), and the additive noise (blue lines, top), Eq. (41);

both with ξ2 = 0.78. The error bars show the standard devi-
ation for some values of a. The results are shown for ηd = 0.99
and 0.999. In the simulation we used the time step dt = 1ns
and parameters of the procedure in Fig. 2 (τ = 33.3 ns). Black
dotted lines (practically coinciding with the solid lines) are
calculated by replacing the noise with the effective increase of
the leakage rates κe(r) (see text).

change as 〈|tae(r)|2〉 = |te(r)|2(1 + a2 ξ2) for the model of

Eq. (40) and as 〈|tae(r)|2〉 = |te(r)|2 + a2 |te(r),max|2 ξ2 for

the model of Eq. (41). Therefore, on average we expect

dependence on a2 ξ2 (a second-order effect), but no de-
pendence on dt, as long as it is sufficiently small. In con-
trast, the error bars in Fig. 8 should depend on dt because
the transfer term

√
κeκrA fluctuates linearly in ξ. Since

the low-frequency spectral density of ξ(t) scales as dt,

the typical fluctuation should scale as
√
dt, thus explain-

ing such dependence for the error bars in Fig. 8. Simply
speaking, for a wide-bandwith noise the average value of
1−η depends on the overall r.m.s. value of the noise, while
the fluctuations of 1− η (from run to run) depend on the
spectral density of the noise at relatively low frequencies
(. τ−1). Note that the noise can increase or decrease
the inefficiency compared to its average value; however,
it always increases the inefficiency in comparison with
the case without noise (as we see from Fig. 8, even if we
increase dt from 1 ns to about the buildup/leakage time

of 33.3 ns, the error bars, increased by the factor
√
33.3,

are still significantly less than the increase of inefficiency
compared with the design value).

We have checked this explanation of the noise ef-
fect on the average inefficiency by replacing the fluc-
tuating evolution equations (1)–(3) with non-fluctuating
equations, in which the transfer term

√
κeκrA does not

change, while the leakage rates κe and κr are multi-
plied either by 1 + a2 ξ2 (for multiplicative noise) or by

1 + a2 ξ2(te(r),max/te(r))
2 for the additive noise. The re-

sults are shown in Fig. 8 by the dotted lines; we see that
they almost coincide with the solid lines, thus confirming
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our explanation. We have also used several interpolation
methods, which give somewhat different ξ2, and checked
that the direct simulation with fluctuations and use of
the non-fluctuating equations still give the same results.
As can be seen from Fig. 8, the average inefficiency

depends approximately quadratically on the noise ampli-
tude a for both additive and multiplicative noise. The
additional inefficiency −δη can be fitted numerically as

−δη ≈ cna
2 ξ2, (42)

where cn ≈ 2 for the multiplicative noise and cn ≈
2 ln 1

1−ηd

for the additive noise. Note that for the addi-

tive noise cn increases with decreasing design inefficiency
1−ηd, so the blue lines in Fig. 8 intersect. This is because
a smaller 1− ηd requires a longer procedure duration tf ,
causing more loss due to additional leakage of the res-
onators caused by fluctuating te(r).
The value of cn for the additive noise can be derived

analytically in the following way. As discussed above,
the noise essentially increases the resonator leakages,
κae(r)(t) = κe(r)(t)+a

2 ξ2/τ , without increasing the trans-

ferred field; therefore, it is equivalent to the effect of en-
ergy relaxation with T1 = τ/(a2 ξ2). Consequently (see
below), the efficiency decreases as η = ηd exp(−tf/T1) =
ηd exp(−2a2 ξ2 ln 1

1−ηd

) [see Eq. (18) for tf ], and the lin-

ear expansion of the exponent in this formula reproduces
Eq. (42) with cn = 2 ln 1

1−ηd

.

The value of cn for the multiplicative noise can be de-
rived in a somewhat similar way. Now κae(t) = κe(t)(1 +

a2 ξ2), so the additional leakage of the emitting res-

onator consumes the fraction a2 ξ2 of the transmitted
energy. Using the time-reversal picture, we see that
an analogous increase of the receiving resonator leak-
age, κar (t) = κr(t)(1 + a2 ξ2), emits (back-reflects) into

the transmission line the fraction a2 ξ2 of the final en-
ergy |B(tf)|2. Combining these two losses, we obtain

η = ηd(1 − 2a2 ξ2), which for ηd ≈ 1 reproduces Eq.
(42) with cn = 2.
Overall, the efficiency decrease due to the multiplica-

tive noise is not strong; for example, to keep −δη < 0.01
we need the relative r.m.s. fluctuations of te(r) to be less
than 7%. The (additive) fixed-amplitude fluctuations of
te(r) can be more problematic, because the inability to
keep te(r) near zero at the initial or final stage of the pro-
cedure leads to loss during most of the (relatively long)
procedure. For example, for ηd = 0.99 and −δη < 0.01,
we need the r.m.s. fluctuations of te(r) to be less than 3%
of te(r),max.

G. Effect of dissipation

For completeness let us discuss here the effect of dissi-
pation by assuming imperfect transfer through the trans-
mission line, ηtl 6= 1, and finite energy relaxation times
T1,e and T1,r in the evolution equations (1)–(3), while the
pulse shapes te(t) and tr(t) are assumed to be ideal.

The effect of imperfect ηtl is easy to analyze, since
the transmitted (classical) field is simply multiplied by√
ηtl. Therefore, the transfer procedure efficiency is sim-

ply multiplied by ηtl, so that η = ηtlηd. (Recall that we
neglect multiple reflections.)
The effect of energy relaxation in the resonators is

also very simple if T1,r = T1,e = T1. Then the (classi-
cal) field decays equally everywhere, and therefore, af-
ter the procedure duration tf , the energy acquires the
factor exp(−tf/T1), so that η = ηd exp(−tf/T1). The
analysis of the case when T1,r 6= T1,e is not so obvious.
We have analyzed this case numerically and found that
the two resonators bring the factors exp(−tf/2T1,e) and
exp(−tf/2T1,r), respectively.
Combining the effects of dissipation in the resonators

and transmission line, we obtain

η = ηdηtl exp(−tf/2T1,e) exp(−tf/2T1,r), (43)

assuming that everything else is ideal.

IV. MULTIPLE REFLECTIONS

So far we have not considered multiple reflections of
the field that is back-reflected from the receiving end, by
assuming either a very long transmission line or the pres-
ence of a circulator [see Fig. 1(b)]. If there is no circula-
tor and the transmission line is not very long (as for the
state transfer between two on-chip superconducting res-
onators), then the back-reflected field bounces back and
forth between the couplers and thus affects the efficiency
of the state transfer. To describe these multiple reflec-
tions, we modify the field equations (1)–(3) by includ-
ing the back-propagating field F (t) into the dynamics,
for simplicity assuming in this section ∆ωr = ∆ωe = 0,
ηtl = 1, and T−1

1,e(r) = 0:

Ġ(t) = −κe
2
G(t) +

te

|te|
|re|
rine

√
κe e

iϕF (t− td), (44)

Ḃ(t) = −κr
2
B(t) +

tr

|tr|
√
κrA(t), (45)

A(t) =
te

|te|
√
κeG(t) +

r
out
e

|re|
eiϕF (t− td). (46)

Here td is the round-trip delay time (td = 2ltl/v, where
ltl is the transmission line length and v is the effective
speed of light), ϕ = ωe(r)td is the corresponding phase
acquired in the round trip, F (t) is given by Eq. (14),
r
out
e is the reflection amplitude of the emitting resonator
coupler from the transmission line side, and r

in
e is the

same from the resonator side. Note that we use shifted
clocks, so the propagation is formally infinitely fast in
the forward direction and has velocity v/2 in the reverse
direction; then the round-trip delay td and phase shift ϕ
are accumulated in the back-propagation only; the field
F (t) is defined at the receiving resonator, and it comes
to the emitting resonator as eiϕF (t− td). Also note that
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FIG. 9: Illustration of the back-reflected field |F (t−td)| reach-
ing the emitting resonator at time t, for the round-trip de-
lay time td = tf/2 (blue dashed curve) and td = tf/5 (red
solid curve), assuming the round-trip phase shift ϕ = π/8.
The kinks represent multiple reflections of the field emitted
at t = 0. We assumed parameters of Fig. 2 (ηd = 0.999,
τ = 33.3 ns, tf = 460 ns).

even though ϕ is proportional to td, it is better to treat
ϕ as an independent parameter, because the time-delay
effects are determined by the ratio td/τ , which has a very
different scale from ϕ = (td/τ)ωe(r)τ , since ωe(r)τ ∼ 103.

There is some asymmetry between Eqs. (44) and (45)
and also between Eqs. (46) and (13), which involves fac-
tors r

in
e(r). This is because in order to keep a simple

form of the evolution equations (1)–(3), we essentially
defined G as the field propagating towards the transmis-
sion line, while B propagates away from the transmission
line. In this section we still assume that the phases of the

transmission and reflection amplitudes (te(r) and r
in(out)
e(r) )

do not change with time. For the tunable couplers of
Refs.20,22 (see Appendix B) the transmission amplitudes
te(r) are mostly imaginary, the reflection amplitudes rine(r)
are close to −1, and r

out
e(r) are somewhat close to −1 (recall

that t2e/r
in
e r

out
e and t

2
r/r

in
r r

out
r must be real and negative

from unitarity). In simulations it is easier to redefine the
phases of the fields in the resonators and transmission
line, so that te and tr are treated as real and positive
numbers, rine and r

in
r are also real and positive (close to

1), while route and r
out
r are real and negative (close to −1).

In this case Eqs. (14) and (46) become F =
√
κrB − A

and A(t) =
√
κeG(t) − e−iϕF (t− td).

As an example of the dynamics with multiple reflec-
tions, in Fig. 9 we show the absolute value of the re-
flected field F (t− td) (at the emitting resonator) for the
procedure shown in Fig. 2 (ηd = 0.999, tf = 460 ns) for
the round-trip delays td = tf/2 (blue dashed curve) and
td = tf/5 (red solid curve), assuming ϕ = π/8. The kinks
represent the successive reflections of the field emitted at
t = 0. Note that depending on the phase shift ϕ, the
resulting contribution of the reflected field into B(tf) can
either increase or decrease |B(tf)|2, thus either decreas-
ing or increasing the transfer efficiency η (recall that the
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FIG. 10: (a) Dependence of the inefficiency 1− η on the nor-
malized delay td/τ due to the round trip along the trans-
mission line, for the design efficiency ηd = 0.999 and several
values of the phase shift ϕ accumulated in this round trip.
The kinks at td/τ = 13.8/n correspond to the integer num-
ber n of the round trips within the procedure time tf . (b)
The same as in (a) for a smaller range of td/τ (the results for
td/τ < 0.1 were not calculated). Notice that the inefficiency
accounting for multiple reflections does not exceed twice the
design inefficiency, 1− η ≤ 2(1− ηd).

efficiency η is defined disregarding the resulting phase ϕf ,
because it can be easily corrected in an experiment). The
effect of multiple reflections should vanish if td ≥ tf , i.e.
when the transmission line is sufficiently long.

Figure 10 shows the numerically calculated inefficiency
1 − η of the state transfer as a function of the round-
trip delay time td, normalized by the buildup/leakage
time τe = τr = τ . Different curves represent different
values of the phase ϕ. The design efficiency is ηd = 0.999.
(In the simulations we also used ω0/2π = 6 GHz, and
te,max = tr,max = 0.05; however, the presented results
do not depend on these parameters). We see that the
inefficiency shows an oscillatory behavior as a function of
the delay time, but it is always within the range 0 ≤ 1−
η ≤ 2(1− ηd). This important fact was proved in Ref.14

in the following way. In the case with the circulator, the
losses are 1− ηd = lcircG + lcircF , where lcircG = |Gcirc(tf)|2 is
due to the untransmitted field [we assume here G(0) = 1]
and lcircF is the dimensionless energy carried away by the
reflected field F circ(t). In the case without circulator,
we can simply add the multiple reflections of the field
F circ(t) to the evolution with the circulator. At the final
time tf the field F circ(t) will linearly contribute to B(tf),
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G(tf), and the field within the transmission line [F (t)
for tf − td ≤ t ≤ tf ]. In the worst-case scenario the
whole energy lcircF is added in-phase to the untransmitted

field Gcirc(tf), resulting in 1 − η = (
√

lcircG +
√

lcircF )2.

Since (
√

lcircG +
√

lcircF )2 ≤ 2(lcircG + lcircF ) always, we obtain
the upper bound for the inefficiency, 1 − η ≤ 2(1 − ηd).
The lower bound 1 − η ≥ 0 is obvious. Figure 10 shows
that both bounds can be reached (at least approximately)
with multiple reflections at certain values of td/τ and ϕ
(this fact is not obvious and is even somewhat surprising).
The dependence η(td) shown in Fig. 10 is quite compli-

cated and depends on the phase ϕ. We show only phases
0 ≤ ϕ ≤ π, while for π ≤ ϕ ≤ 2π the results can be
obtained from the symmetry η(td, ϕ) = η(td, 2π−ϕ). As
we see from Fig. 10, the oscillations of η(td) generally
decrease in amplitude when td/τ → 0, so that we expect
a saturation of the dependence at td/τ → 0. The excep-
tion is the case ϕ = 0, when the oscillation amplitude
does not significantly decrease at small td/τ (numerical
simulations become increasingly more difficult at smaller
td/τ). This can be understood as due to the fact that
for ϕ = 0 the transmission line is a resonator, which is
resonant with the frequency ωe = ωr of the resonators.
Note that for an experiment with on-chip state trans-

fer between superconducting resonators, the round-trip
delay time td is comparable to ω−1

e(r) and therefore much

smaller than τ , td/τ ∼ 10−2. This regime is outside
of the range accessible to our direct simulation method,
which works well only when td/τ & 10−1. Nevertheless,
we expect that the results presented in Fig. 10(b) can be
approximately used in this case as well, because of the
apparent saturation of η(td) at td → 0, except when the
phase ϕ is close to zero.
The most important result of this section is that mul-

tiple reflections cannot increase the inefficiency 1− η by
more than twice compared with the design inefficiency
1 − ηd (as obtained analytically and confirmed numeri-
cally).

V. MISMATCH OF THE RESONATOR
FREQUENCIES

The main idea of the state transfer protocol analyzed
in this paper is to use destructive interference to suppress
the back-reflection into the transmission line, thus pro-
viding a high-efficiency transfer. This is why it is crucial
that the emitting and receiving resonators have almost
the same frequency. Therefore, a mismatch between the
two resonator frequencies should strongly decrease the
transfer efficiency. In this section we analyze the effect
of the frequency mismatch using two models. First, we
assume a constant-in-time mismatch. Second, we con-
sider the time-dependent detuning of the resonator fre-
quencies due to the changing transmission amplitudes of
the couplers, which lead to a changing complex phase of
the reflection amplitudes (see Appendix B) and thus to
the resonator frequency change.
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FIG. 11: Inefficiency 1− η as a function of normalized detun-
ing ∆ω τ (lower horizontal axis) for three design efficiencies,
ηd = 0.9, 0.99, and 0.999. The upper horizontal axis shows
the unnormalized detuning ∆ω/2π in MHz, using the values
ω/2π = 6 GHz and |te,max| = |tr,max| = 0.05, so that τ = 33.3
ns.

A. Constant in time frequency mismatch

We first consider the case when the two resonator fre-
quencies are slightly different, ∆ω ≡ ωe − ωr 6= 0, and
they do not change in time. Everything else is assumed
to be ideal. It is easy to understand the effect of detun-
ing by using the evolution equations (1)–(3) and choosing
ω0 = ωr, so that ∆ωe = ∆ω and ∆ωr = 0. Then, com-
pared with the case ∆ω = 0, the emitting resonator field
G(t) acquires the phase factor e−i∆ωt; the same phase
factor is acquired by the transmitted field A(t) in Eq.
(2), and this changing phase destroys the perfect phase
synchronization between A(t) and B(t) that is needed to
cancel the back-reflection.
The numerically calculated inefficiency 1−η is shown in

Fig. 11 as a function of the detuning ∆ω, normalized by
the inverse buildup/leakage time τ−1 (we assumed τe =
τr = τ). We show the lines for the design inefficiencies
ηd = 0.9, 0.99, and 0.999. The results do not depend on
ωr and |te(r),max|. However, to express ∆ω/2π in MHz on
the upper horizontal axis, we use a particular example of
ωr/2π = 6 GHz and |te(r),max| = 0.05, for which τ = 33.3
ns (as in Fig. 2).
For small |∆ω τ | and ηd ≈ 1, the additional inefficiency

due to frequency mismatch can be fitted as

−δη ≈ cfm (∆ω τ)2, cfm ≈ 2. (47)

For smaller ηd the coefficient cfm decreases, so that cfm ≈
1.94 for ηd = 0.999, cfm ≈ 1.68 for ηd = 0.99, and cfm ≈
0.81 for ηd = 0.9.
It is interesting that the value cfm = 2 for ηd ≈ 1 ex-

actly coincides with the estimate derived in Ref.14, which
we rederive here. Comparing the case ∆ω 6= 0 with the
ideal case ∆ω = 0, we can think that A(t) acquires the
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extra phase factor e−i∆ω(t−tm), where tm is the mid-time
of the procedure (see Fig. 2); the overall factor ei∆ωtm is
not important, affecting only the final phase ϕf . Then
we can think that at t = tm we still have an almost
perfect cancellation of the back-reflection, F (tm) ≈ 0;
however, at t 6= tm the extra phase causes the back-
reflected wave |F (t)| ≈ |A(t)(e−i∆ω(t−tm) − 1)|. Now us-
ing |A(t)| = |A(tm)|e−|t−tm|/2τ and assuming |∆ω|τ ≪ 1
(so that we can expand the exponent in the relevant time
range), we find |F (t)| ≈ |A(tm)| e−|t−tm|/2τ |∆ω(t − tm)|.
Finally integrating the loss,

∫

|F (t)|2dt, and normalizing

it by the transferred “energy”
∫

|A(tm)|2e−|t−tm|/τdt, we
obtain the added inefficiency −δη ≈ 2 (∆ω τ)2.

Using this derivation, it is easy to understand why the
coefficient cfm in Eq. (47) decreases with decreasing ηd.
This occurs because the integration of |F (t)|2 is limited
by the range 0 < t < tf = −2τ ln(1− ηd), which becomes
shorter for smaller ηd. Thus we can estimate cfm as cfm ≈
∫ − ln(1−ηd)

0 x2e−xdx = 2−(1−ηd)[2−2 ln(1−ηd)+ln2(1−
ηd)], which fits the numerical results very well.

As expected, even small detuning significantly de-
creases the transfer efficiency. For example, to keep the
added inefficiency under 1%, −δη < 0.01, we need the
detuning to be less than 0.4 MHz in the above example
(τ = 33.3 ns), which is not very easy to achieve in an
experiment.

B. Time-dependent detuning due to changing
coupling

In an actual experimental coupler, the parameters are
interrelated, and a change of the coupling strength by
varying |t| may lead to a change of other parameters.
In particular, for the coupler realized experimentally
in Refs.20,22, the change of |t| causes a small change
of the complex phases of the transmission and reflec-
tion amplitudes t and r

in(out). The phase change of
r
in (from the resonator side) causes a change of the res-
onator frequency. Thus, changing the coupling causes the
frequency detuning, as was observed experimentally20.
Since the frequency mismatch between the two resonators
strongly decreases the efficiency of the state transfer, this
is a serious problem for the protocol discussed in our pa-
per. Here we analyze this effect quantitatively and dis-
cuss with which accuracy the detuning should be com-
pensated (e.g. by another tunable element) to preserve
the high-efficiency transfer.

Physically, the resonator frequency changes because
the varying coupling changes the boundary condition at
the end of the coplanar waveguide resonator (see Fig. 16
in Appendix B). Note that a somewhat similar frequency
change due to changing coupling with a transmission line
was studied in Ref.52.

As discussed in Appendix B, if we use the tunable cou-
plers of Ref.20,22, then the transmission and refection am-

plitudes tj and r
in(out)
j for the two resonators (j = e, r)

are given by the formulas

tj = −i2ωjMj

1 + bj

√

Rj

Rtl

(

1

Rj
+

−ibj
ωjLe,j

)

1

1− iωjL2,j/Rtl
,

(48)

r
in
j = −1− bj

1 + bj
, r

out
j = −(rinj )∗

tj

t
∗
j

, (49)

where

bj =
iωL1,j/Rj

L1,j

Le,j
+

[

1−
iωjM

2
j

RtlL1,j(1 + iωjL2,j/Rtl)

]−1 , (50)

Mj is the effective mutual inductance in jth coupler (the
main tunable parameter controlled by magnetic flux in
the SQUID loop), Rj and Rtl are the wave impedances
of the resonators and the transmission line, ωj are the res-
onator frequencies, and L1,j, L2,j, and Le,j are the effec-
tive inductances used to describe the coupler (see details
in Appendix B). Note that Eqs. (48) and (50) are slightly
different from the equations in the Supplementary Infor-
mation of Ref.20 and the derivation in Appendix B: the
difference is that the imaginary unit i is replaced with
−i to conform with the chosen rotating frame definition
e−iωt in Eqs. (1) and (2).
For the typical experimental parameters, |bj | ≪ 1, so

that r
in
j ≈ −1, while tj is mostly imaginary. Note that

ωe ≈ ωr ≈ ω0, so in Eqs. (48) and (50) we can replace
ωj with ω0. Also note that there is no coupling, tj = 0,
when Mj = 0, and the coupling changes sign when Mj

crosses zero.
Tuning Mj , we control |tj |. However, the complex

phase of tj slightly changes with changing Mj because
bj in Eq. (48) depends on Mj and also L1,j and L2,j

depend on Mj – see Appendix B. Changing the phase
of tj leads to the phase mismatch in the state transfer
protocol, degrading its efficiency. However, this is a rel-
atively minor effect, while a much more serious effect is
the dependence of the complex phase of rinj on Mj via its
dependence on bj in Eq. (49), leading to the resonator
frequency change.
For the rotating frame e−iωt and quarter-wavelength

resonator (which we assume here) the change δ(arg rinj )

of the phase of rinj changes the resonator frequency by

δωj ≈ −(ω0/π) δ(arg r
in
j ), (51)

where we used ωj ≈ ω0. Assuming for simplicity that the
resonators are exactly on resonance (ωe = ωr = ω0) when
there is no coupling (Me = Mr = 0), we can write the
variable detunings to be used in the evolution equations
(1) and (2) as

∆ωj = ωj − ω0 = −ω0

π

[

arg rinj (Mj)− arg rinj (0)
]

, (52)

where r
in
j (Mj) describes dependence on Mj . Since |tj |

also depends on Mj (linearly to first approximation), we
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FIG. 12: Red solid line: the resonator frequency detuning
−∆ωe(r)/2π caused by changing |te(r)| for a particular set of
parameters of the coupler (see text). Blue dashed line: the
corresponding value of the coupler mutual inductance Me(r).
The arrows indicate the corresponding vertical axes.
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FIG. 13: Solid line: the phase of the transmission amplitude,
arg(te(r)), as a function of its absolute value |te(r)| for a par-
ticular set of coupler parameters (see text). Dashed line: the
normalized detuning −∆ωe(r)/κe(r) = −π∆ωe(r)/ωe(r)|te(r)|2.

have an implicit dependence ∆ωj(|tj |), which is linear
for small |tj | [see Eq. (B17) in Appendix B] and becomes
nonlinear for larger |tj | .
This dependence ∆ωe(r)(|te(r)|) is shown in Fig. 12 by

the solid line for the parameters of the coupler similar
(though not equal) to the parameters of the experimental
coupler20: Re(r) = 80Ω, Rtl = 50Ω, ω0/2π = 6GHz,
L1,j −Mj = L2,j −Mj = 620 pH, and Le,j = 180 pH (see
Appendix B). In particular, Fig. 12 shows that |te(r)| =
0.05 corresponds to the frequency change by −18.6 MHz,
which is a very big change compared to what is tolerable
for a high-efficiency state transfer (see Fig. 11). The same
detuning normalized by κe(r) = |te(r)|2ωe(r)/π is shown in
Fig. 13 by the dashed line.
The value of Me(r) needed to produce a given |te(r)|

is shown in Fig. 12 by the dashed line. It is interesting
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FIG. 14: Inefficiency 1− η as a function of |te,max| = |tr,max|
for the couplers with parameters described in the text. The
solid lines are for the design efficiency ηd = 0.999, while the
dashed lines are for ηd = 0.99. The red lines show the results
without compensation of the frequency detuning ∆ωe(r)(t)
caused by changing |te(r)(t)| and correspondingly changing

arg(rine(t)). The blue lines assume 90% compensation of this
detuning, 95% compensation for the green lines, 99% com-
pensation for the magenta lines, and full 100% compensation
for the black lines. For the black lines the extra inefficiency is
caused only by changing phases of te(r). The upper horizontal
axis shows the product ∆ωmax τ , corresponding to |tmax|.

that the dependence M(|t|) is significantly more non-
linear than the dependence ∆ω(|t|), indicating that the
nonlinearities of |t(M)| and ∆ω(M) in Eqs. (48) and (52)
partially cancel each other (see Appendix B).
The solid line in Fig. 13 shows dependence of the phase

arg[te(r)] on the absolute value |te(r)|. Even though the
phase change looks significant, it produces a relatively
minor decrease in the protocol inefficiency (as we will
see later) because the loss is quadratic in the phase mis-
match.
We numerically simulate the state transfer protocol,

accounting for the frequency change of the resonators
and phase change of te(r) in the following way. First, we
use the ideal pulse shapes |te(t)| and |tr(t)| from Eqs.
(22)–(25), assuming a symmetric setup (τe = τr). Then
we calculate the corresponding dependences Me(t) and
Mr(t) using Eq. (48) and find te(t) and tr(t) (now with
time-dependent phases) using the same Eq. (48), and also
find the detunings ∆ωe(t) and ∆ωr(t) using Eq. (52). Af-
ter that we solve the evolution equations (1)–(3), neglect-
ing multiple reflections. Note that we convert |tj(t)| into
Mj(t) by first numerically calculating |tj(Mj)| from Eq.
(48), then fitting the inverse dependence Mj(|tj |) with a
polynomial of 40th order, and then using this polynomial
for the conversion.

Figure 14 shows the numerically calculated inefficiency
1 − η of the transfer protocol as a function of the max-
imum transmission amplitude |te,max| = |tr,max| for the
above example of the coupler parameters and design effi-
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ciencies ηd = 0.99 and 0.999. Besides showing the results
for the usual protocol (red lines), we also show the results
for the cases when the frequency detuning [Eq. (52)] is
reduced by a factor of 10 (90% compensation, blue lines),
20 (95% compensation, green lines), 100 (99% compen-
sation, magenta lines) and fully eliminated (100% com-
pensation, black lines). Such compensation can be done
experimentally by using another circuit element, affect-
ing the resonator frequency, e.g., tuning the phase of the
reflection amplitude at the other end of the resonator by
a SQUID-controlled inductance.

We see that without compensation of the frequency de-
tuning the state transfer protocol cannot provide a high
efficiency: η = 0.33 for |tmax| = 0.05 and η = 0.58 for
|tmax| = 0.1. However, with the detuning compensation
the high efficiency may be restored. As we see from Fig.
14, the state transfer efficiency above 99% requires the
detuning compensation at least within 90%–95% range
(depending on |tmax|). Note that even with 100% com-
pensation, the efficiency is less than in the ideal case.
This is because of the changing phases of te(t) and tr(t).
However, this effect is minor in comparison with the ef-
fect of detuning.

It is interesting that the curves in Fig. 14 decrease
with increasing |tmax| when |tmax| is not too large. This
may seem counterintuitive, since larger |t| leads to larger
detuning, and so we would naively expect larger ineffi-
ciency at larger |tmax|. The numerical result is opposite
because the duration of the procedure decreases, scal-
ing as τ ∝ |tmax|−2. Therefore if the largest detuning
scales linearly, |∆ωmax| ∝ |tmax|, then the figure of merit
|∆ωmaxτ | scales as |tmax|−1, thus explaining the decreas-
ing part of the curves in Fig. 14. The upper horizontal
axis in Fig. 14 shows |∆ωmaxτ |, which indeed decreases
with increasing |tmax| (see also the dashed line in Fig.
13).

More quantitatively, let us assume a linear detun-
ing, ∆ωe(r) = k |te(r)|, where the coefficient k is given
by Eq. (B17) multiplied by the uncompensated frac-
tion of the detuning. Assuming a small deviation from
the ideal protocol, the transmitted wave is |A(t)| =
|A(tm)| e−|∆t|/2τ , where ∆t = t − tm. At the mid-time
tm the resonator frequencies coincide, but at t > tm
the receiving resonator frequency changes so that ∆ω =
ωe − ωr = k(|tr(tm)| − |tr(t)|). Using Eq. (24) we find
∆ω = k |tmax| [1 − (2e∆t/τ − 1)−1/2]. The accumulated

phase mismatch is then φ(t) =
∫ t

tm
∆ω(t′) dt′, which pro-

duces the reflected wave |F | ≈ |Aφ|, assuming small φ.
The inefficiency due to the reflected wave loss is then
1 − η ≈

∫∞

tm
|F (t)|2 dt/

∫∞

tm
|A(t)|2 dt (note that due to

symmetry the same relative loss is before and after tm).
Therefore 1 − η ≈ τ−1k2|tmax|2

∫∞

0 {
∫ x

0 [1 − (2e∆t/τ −
1)−1/2] d∆t}2e−x/τdx, and calculating the integral nu-
merically we obtain 1 − η = 0.63 k2τ2|tmax|2 [the nu-
merical value of the integral is somewhat smaller than
0.63 if we limit the outer integration by −τ ln(1 − ηd)].
Finally using τ = π/ω0|tmax|2, we obtain 1 − η ≈

0.6 (kπ/ω0|tmax|)2.
Numerical results in Fig. 14 reproduce the scaling

1− η ∝ (k/|tmax|)2 for the significant part of the curves
for ηd = 0.999 (when plotted in log-log scale); how-
ever, the prefactor in the numerical fitting is some-
what different from what we obtained above: 1 − η ≈
0.4 (kπ/ω0|tmax|)2. Note that at sufficiently large |tmax|
the green and red curves in Fig. 14 reach a minimum
and then start to increase. This occurs because the in-
efficiency due to changing phase of te(r) increases with
increasing |tmax|, in contrast to the effect of frequency
detuning.

Actually, our analysis of the transfer process in the
case of complete compensation of detuning is not fully
accurate. The reason is that in the evolution equations
(1)–(3) we took into account the frequency change due to
changing r

in
e(r), but we did not take into account another

(very small) effect due to changing r
in
e(r). It is easy to

understand the origin of this effect in the following way.
There is a phase difference arg(rinr ) between the field B
propagating away from the transmission line and the sim-
ilar field propagating towards the transmission line [see
Eq. (13) and discussion below it]. Changing arg(rinr ) al-
ters this phase difference, thus affecting both fields and
correspondingly leading to an extra term, neglected in
Eq. (2). Similarly, changing arg(rine ) leads to an extra
term in Eq. (1) for G. However, as can be seen from
Fig. 12 and Eq. (51), the change of arg(rine(r)) is less than

0.02 for |te(r)| varying between 0 and 0.1, which is much
less than the change of arg(te(r)) in Fig. 13. Therefore,
the neglected effect is much less than the effect due to
changing arg(te(r)), which by itself is almost negligible,
as seen in Fig. 14. Note that the compensation for chang-
ing phases can be done experimentally in the same way
as the compensation for the detuning, so that in princi-
ple the efficiency decrease analyzed in this section can be
fully avoided.

Overall, we see that the detuning of the resonator fre-
quencies due to a changing coupling is a serious problem
for the state transfer protocol. A high-efficiency state
transfer is possible only with additional experimental ef-
fort to compensate for this detuning. The required com-
pensation accuracy is crudely within 90%–95% range.
The use of a shorter protocol (by using a stronger cou-
pling) helps to increase the efficiency. Note that the
frequency compensation is done routinely for the tun-
able coupler of Refs.19,21; similarly, the phase compensa-
tion can be naturally realized in the tunable coupler of
Refs.40,41.

VI. CONCLUSION

In this paper we have analyzed the robustness of the
quantum state transfer protocol of Ref.14 for the transfer
between two superconducting resonators via a transmis-
sion line. The protocol is based on destructive interfer-
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ence, which cancels the back-reflection of the field into
the transmission line at the receiving end (we believe
this explanation is more natural than the terminology of
time reversal, introduced in Ref.3). This is achieved by
using tunable couplers for both resonators and properly
designed time-dependences (pulse shapes) of the trans-
mission amplitudes te(t) and tr(t) for these couplers.
Nearly-perfect transfer efficiency η can be achieved in
the ideal case. We have focused on analyzing additional
inefficiency due to deviations from the ideal case.

The ideal pulse shapes of the transmission amplitudes
[Eqs. (22)–(25)] depend on several parameters; we have
studied additional inefficiency due to deviations of these
parameters from their design values. Below, we sum-
marize our results by presenting the tolerable deviations
for a fixed additional inefficiency of −δη = 0.01 (be-
cause of quadratic scaling, the tolerable inaccuracies for
−δη = 0.001 are about 3.2 times smaller). For the rela-
tive deviations of the maximum transmission amplitudes
|te,max| and |tr,max|, the tolerable ranges are ±10% if
only one of them is changing and ±5% if both of them
are changing simultaneously [see Fig. 3 and Eq. (34)].
For the relative deviations of the time scale parameters
τe and τr describing the exponential increase/decrease of
the transmitted field, the tolerable ranges are ±17% if
only one of them is changing and ±11% if both of them
are changing simultaneously [see Fig. 4 and Eq. (35)]. For
the mismatch between the mid-times tm of the procedure
in the two couplers, the tolerable range is ±0.2τ ≃ ±6 ns
[see Fig. 5 and Eq. (36)]. For a nonlinear distortion de-
scribed by warping parameters αe and αr [see Eq. (37)],
the tolerable parameter range is ±0.2 if the distortion
affects only one coupler and ±0.13 if the distortion af-
fects both couplers. Our results show that smoothing
of the pulse shapes by a Gaussian filter practically does
not affect the inefficiency; even filtering with the width
σ ≃ τ ≃ 30 ns is still tolerable. When the pulse shapes
are distorted by an additional (relatively high-frequency)
noise, the tolerable range for the standard deviation of
|te(r)| is 7% of the instantaneous value and 3% of the
maximum value [see Fig. 8 and Eq. (42)]. Overall, we see
that the state transfer procedure is surprisingly robust
to various distortions of the pulse shapes.

We have also analyzed the effect of multiple reflections
and found that it can both increase or decrease the trans-
fer efficiency. However, even in the worst case, this effect
cannot increase the inefficiency 1 − η by more than a
factor of 2 (see Fig. 10). The energy dissipation in the
transmission line or in the resonators can be a serious
problem for the state transfer protocol. The description
of the effect is simple [see Eq. (43)]; for a high-efficiency
transfer we can tolerate only a weak dissipation 1 − ηtl
in the transmission line, and we also need the procedure
duration tf to be much shorter than the energy relaxation
time T1. In particular, for −δη = 0.01 we need ηtl > 0.99
and T1 > 100 tf .

The major problem in realizing the state transfer pro-
tocol is the frequency mismatch between the two res-

onators, since the destructive interference is very sen-
sitive to the frequency mismatch. For a fixed detun-
ing, the tolerable frequency mismatch (ωe − ωr)/2π for
−δη = 0.01 is only ±0.01/τ ≃ ±0.4 MHz [see Fig. 11 and

Eq. (47)]; the tolerable range is a factor of
√
10 smaller

for −δη = 0.001. An even more serious problem is the
change of the resonator frequencies caused by changing
couplings, which for the coupler of Ref.20 is on the order
of 20 MHz [see Fig. 12 and Eq. (B17) in Appendix B].
Without active compensation for this frequency change,
a high-efficiency state transfer is impossible. Our numer-
ical results show (see Fig. 14) that to realize efficiency
η = 0.99, the accuracy of the compensation should be at
least 90% (i.e., the frequency change should be decreased
by an order of magnitude). It is somewhat counterintu-
itive that a better efficiency can be obtained by using a
higher maximum coupling, which increases the frequency
mismatch but decreases duration of the procedure (see
Fig. 14). Another effect that decreases the efficiency is
the change of the phase of the transmission amplitude
with changing coupling. However, this effect produces a
relatively minor decrease of the efficiency (see Fig. 14).

In most of the paper we have considered a classical
state transfer, characterized by the (energy) efficiency η.
However, all the results have direct relation to the trans-
fer of a quantum state (see Appendix A). In particular,
for a qubit state transfer, the quantum process fidelity
Fχ is Fχ ≈ 1− (1− η)/2 for η ≈ 1 [see Eq. (12)].

The quantum state transfer protocol analyzed in this
paper has already been partially realized experimentally.
In particular, the realization of the proper (exponen-
tially increasing) waveform for the quantum signal emit-
ted from a qubit has been demonstrated in Ref.21 (a
reliable frequency compensation has also been demon-
strated in that paper). The capture of such a waveform
with 99.4% efficiency has been demonstrated in Ref.22.
We hope that the full protocol that combines these two
parts will be realized in the near future.
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FIG. 15: A beam splitter with input classical fields A and B
transformed into the output fields Ã and B̃, with the main
transformation A → Ã characterized by the amplitude

√
η

and phase shift ϕf . In the quantum formulation the input
state |Ψin〉 is transformed into the output state |Ψout〉. In
particular, in Sec. A 1 we consider the input state |Ψin〉 =
|ψin〉|0〉, calculate |Ψout〉, and then reduce it to the density
matrix ρfin of the main output arm, by tracing over the other
output arm.

Appendix A: Quantum state transfer using the
beam splitter theory

In this Appendix we discuss the quantum theory of
state transfer using the optical language of beam split-
ters. The starting point is Eq. (7), in which the result-
ing classical field B(tf) has the contribution

√
η eiϕfG(0)

from the transferred field G(0) and also contributions
from other fields. This equation describes a unitary
transformation, which can be modeled as a result of
adding the (infinite number of) fields [B(0) and time-
binned V (t)] by using a system of (infinite number of)
beam splitters. Then using linearity of the evolution,
we can simply replace the classical fields with the corre-
sponding annihilation operators for quantum fields, thus
developing the quantum theory of the state transfer.
In the case when all other fields in Eq. (7) except G(0)

correspond to vacuum, it is sufficient to consider one
beam splitter because a linear combination of vacua is
still vacuum. This is why in this Appendix we mainly
discuss one beam splitter (characterized by the ampli-
tude

√
η and phase ϕf in the main path), with the initial

state to be transferred at one arm and vacuum state at
the other arm. Note that notations in this Appendix are
different from the notations in the main text.
Let us start with revisiting the quantum theory of a

beam splitter46 (Fig. 15). The quantum theory follows
the classical description of the beam splitter, which is
characterized by the following relations between the in-
put classical fields A and B, and the output classical
fields Ã and B̃:

Ã =
√
η eiϕ1A+

√

1− η eiϕ2B, (A1)

B̃ =
√
η eiϕ3B −

√

1− η ei(ϕ1−ϕ2+ϕ3)A, (A2)

where ϕ1 = ϕf and other phases are introduced to de-
scribe a general unitary transformation (these phases can
include phase shifts in all four arms). Exactly the same

relations also apply in the quantum case for the annihi-
lation operators ã and b̃ of the fields at the output arms
and the annihilation operators a and b of the fields at the
input arms.
In general, we want to find an output quantum state

|Ψout〉 for a given input state |Ψin〉, which in principle
can be an entangled state of the two input modes. This
can be done46 by applying the following steps:

1. Express the input state |Ψin〉 in terms of the input
creation operators a† and b†, and vacuum.

2. Using Eqs. (A1) and (A2), express A and B via Ã

and B̃. These are the equations expressing a and b
in terms of ã and b̃. Conjugate these equations to
express a† and b† in terms of ã† and b̃†.

3. Substitute the operators a† and b† used in the step
1 by their expressions in terms of ã† and b̃† obtained
in step 2. This substitution gives |Ψout〉.

Now let us apply this substitution method to find the
resulting state in the receiving resonator when an ar-
bitrary quantum state is transferred from the emitting
resonator.

1. Transfer of an arbitrary quantum state

Let us assume that the initial state |ψin〉 in the emitting
resonator is

|ψin〉 =
∑

n

αn|n〉 =
∑

n

αn(a
†)n√
n!

|0〉,
∑

n

|αn|2 = 1,

(A3)
while all other fields involved in the transfer procedure
are vacua (in particular, this assumes zero temperature).
Then the two-arm input state |Ψin〉 for the beam splitter
is the same, except the vacuum |0〉 in Eq. (A3) is now
understood as the vacuum |0〉 for all possible modes.
The transfer procedure is characterized only by the ef-

ficiency η and the phase ϕf = ϕ1, while other phases ϕ2

and ϕ3 in Eqs. (A1) and (A2) are undefined. However,
even though the resulting state |Ψout〉 will depend on ϕ2

and ϕ3, the resulting density matrix ρfin, obtained from
|Ψout〉 by tracing over the other output arm, will not de-
pend on ϕ2 and ϕ3. This is because arbitrary ϕ2 and ϕ3

can be produced by placing phase shifters in the ancil-
lary input and output arms (B-arm and B̃-arm in Fig.
15); shifting the phase of vacuum in the B-arm does not

produce any effect, while shifting the phase in the B̃-arm
cannot affect ρfin by causality. We have also checked in-
dependence of ρfin on ϕ2 and ϕ3 by explicit calculations.
Therefore, we can choose any values of ϕ2 and ϕ3. For
convenience, let us choose ϕ2 = π and ϕ3 = 0. Then
using step 2 of the substitution method we obtain

a† =
√
η eiϕf ã† +

√

1− η eiϕf b̃†, (A4)

b† =
√
η b̃† −

√

1− η ã†, (A5)
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while step 1 was Eq. (A3). Now substituting a† in Eq.
(A3) with the expression in Eq. (A4) (step 3), we obtain

|Ψout〉 =
∑

n,k

αn+k

√

(n+ k)!/(n!k!) ηn/2(1 − η)k/2

× ei(n+k)ϕf |n〉|k〉, (A6)

where in the notation |n〉|k〉 = [(ã†)n(b̃†)k/
√
n!k! ] |0〉 the

second state corresponds to the ancillary second arm (up-
per arm in Fig. 15).
The final state at the receiving resonator can be calcu-

lated by tracing |Ψout〉〈Ψout| over the ancillary state |k〉,
thus obtaining the density matrix

ρfin =
∑

j,n,m

αn+jα
∗
m+j

√

(n+ j)!(m+ j)!/(j!
√
n!m!)

× η(n+m)/2(1− η)jei(n−m)ϕf ) |n〉〈m|, (A7)

where the sums over j, n, and m are all from 0 to ∞.
Note that this result has been derived for a pure initial
state (A3) in the emitting resonator. However, it is easy
to generalize Eq. (A7) to an arbitrary initial state ρin by
replacing αn+jα

∗
m+j with (ρin)n+j,m+j .

To find the fidelity of the quantum state transfer for the
initial state (A3), we calculate the overlap 〈ψin|ρfin|ψin〉,
thus obtaining

Fst =
∑

j,n,m

√

(n+ j)!(m+ j)!

j!
√
n!m!

α∗
nαmαn+jα

∗
m+j

× η(n+m)/2(1− η)jei(n−m)ϕf , (A8)

which is Eq. (9) in the main text. For a mixed input
state ρin we can find the resulting state ρfin as discussed
above and then use the Uhlmann fidelity definition53

Fst = [Tr
√√

ρin ρfin
√
ρin]

2.
If instead of an arbitrary state (A3) we transfer a qubit

state |ψin〉 = α0|0〉 + α1|1〉, then in Eq. (A6) there are
only three terms because αn+k = 0 if n + k > 1. This
reduces Eq. (A6) to Eq. (10) in the main text. Similarly,
Eq. (A7) reduces to Eq. (11) and Eq. (A8) reduces to

Fst = |α0|4+η|α1|2+|α0|2|α1|2(1−η+2
√
η cosϕf). (A9)

To average this fidelity over the Bloch sphere of the initial
state, we can either average it over 6 points at the ends
of the three axes (±X, ±Y, ±Z) or use the averaging

formulas |α0|4 = |α1|4 = 1/3, |α0|2|α1|2 = 1/6, thus
obtaining average state fidelity

F st =
3 + η + 2

√
η cosϕf

6
, (A10)

which can be converted into the process fidelity Fχ using

the standard rule, Fχ = 1− (3/2)(1− F st).

2. Decrease of the average state fidelity due to
photons in the environment

So far we have assumed the initial state of the receiving
resonator and all environmental modes in Eq. (7) to be

vacuum. A natural question is what happens when there
are some photons in the environment (including the ini-
tial state of the receiving resonator). In particular, it
is interesting to determine whether the average fidelity
F st of the qubit state transfer can increase, or always de-
creases. Below we show that the average fidelity always
decreases due to a non-vacuum state of the environment.
We consider a simplified model, in which the main in-

put of the beam splitter in Fig. 15 is in a qubit state
|ψin〉 = α0|0〉 + α1|1〉, while the second input (model-
ing the environment) is in an arbitrary state, so that the
total state is

|Ψin〉 = (α0|0〉+ α1|1〉)
∑

n

βn|n〉, (A11)

where |α0|2+ |α1|2 = 1 and
∑

n |βn|2 = 1. Neglecting for
simplicity the transfer phase, ϕf = 0, choosing the other
phases as ϕ2 = π and ϕ3 = 0, and using the substitution
method described above, we find the output state

|Ψout〉 =
∑

k,m

√

(k +m)!√
k!m!

βk+m(−
√

1− η)m(
√
η)k

×
[

α0|m〉|k〉+ α1
√
η
√
m+ 1 |m+ 1〉|k〉

+ α1

√

1− η
√
k + 1 |m〉|k + 1〉

]

. (A12)

We then trace over the ancillary arm state to find the
resulting density matrix ρfin, which can now contain non-
zero elements (ρfin)mn for arbitrary m and n. How-
ever, the state fidelity for the qubit transfer depends
only on the elements within the qubit subspace, Fst =
|α0|2(ρfin)00 + |α1|2(ρfin)11 + 2Re[α∗

0α1(ρfin)01]. Averag-
ing Fst over the initial qubit state48–50, we obtain after
some algebra

F st =
1

6
(3 + η + 2

√
η)−

∞
∑

n=1

Cn(η) |βn|2, (A13)

Cn(η) =
1

6

{

(3 + η + 2
√
η)(1 − ηn)

+n(1− η)ηn−1[2η + 2
√
η − (1 − η)(2n+ 1)]

}

. .(A14)

The first term in Eq. (A13) is the average fidelity when
there are no photons in the environment [see Eq. (A10)
with ϕf = 0], while the second term is due to the envi-
ronmental photons (|βn|2 is the probability of having n
photons). We numerically checked that the coefficients
Cn(η) are always positive for n ≥ 1 and η ∈ [0, 1]. There-
fore, the presence of photons in the environment always
decreases the average fidelity of a qubit transfer. Note
that Eq. (A13) does not depend on the choice of ϕ2 and
ϕ3, since these phases can be produced by phase shifters
in the ancillary B-arm and B̃-arm in Fig. 15. The phase
shifter in the B̃-arm cannot affect ρfin, while the phase
shifter in the B-arm changes only the phase of the ancil-
lary input state and therefore does not change |βn|2 in
Eq. (A13).
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In the case when η ≈ 1, we can approximate Eq. (A14)
as Cn(η) ≈ (5/3)(1− η)n. The average fidelity is then

F st ≈ 1− 1− η

3
− 5

3
(1− η)ne, (A15)

where ne =
∑

n n|βn|2 is the average number of pho-
tons in the environmental mode. Note that the effect
of non-zero ne is suppressed at 1 − η ≪ 1. Equation
(A15) can be used for an estimate of the effect of finite
temperature. However, we emphasize that modeling of
the environmental noise with a single beam splitter is an
oversimplification, so Eq. (A15) gives a qualitative de-
scription, but is not intended to accurately describe the
effect of environmental noise on the quantum state trans-
fer protocol.

Appendix B: Tunable coupler theory

In this Appendix we consider the tunable coupler re-
alized experimentally in Refs.20,22, and derive formulas
for the transmission and refection amplitudes t and r

in

used in Sec. VB. We also discuss the change of the res-
onator frequency due to the changing complex phase of
r
in. Since the theory is the same for both resonators, we
omit the resonator index, assuming, e.g., the receiving
resonator. The discussion in this Appendix follows the
discussion in Sec. III of the Supplementary Information
of Ref.20.
There will be a difference in the choice of rotating

frame between the main text and this Appendix. In the
main text we use the rotating frame e−iωt, which is stan-
dard in optics. However, in this Appendix we will need a
language of impedances, which traditionally assumes the
rotating frame eiωt. Therefore, we will have to derive for-
mulas for t and r in the rotating frame eiωt, and then we
will need to conjugate the final results to convert them
into for t and r for the rotating frame e−iωt.
The schematic of the tunable coupler is shown in

Fig. 16. A quarter-wavelength (λ/4) microwave resonator
is divided into two unequal parts, and the voltage signal
for the coupler is taken at the distance d (d≪ λ/4) from
the end, which is shorted to the ground, while the other
end is terminated with a break so that the total length is
l + d ≈ λ/4. The coupler consists of a transformer with
geometrical inductances L1g and L2g and negative mu-
tual inductance −Mg, which is in series with a dc SQUID,
providing a positive Josephson inductance LJ . This
inductance is controlled by an external magnetic flux
Φext, LJ = Φ0/[2π

√

I2c1 + I2c2 + 2Ic1Ic2 cos(2πΦext/Φ0)],
where Φ0 = h/2e is the magnetic flux quantum and Ic1,
Ic2 are the critical currents of two Josephson junctions,
forming the SQUID. Thus the external flux controls the
total mutual inductance M = −Mg + LJ , which deter-
mines the coupling between the resonator and transmis-
sion line; in particular, there is no coupling whenM = 0.
Note that the wave impedance Rr of the resonator may
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FIG. 16: Schematic of the tunable coupler of Refs.20,22 be-
tween the λ/4 microwave resonator (at the left) and the trans-
mission line (at the right). A voltage taken at the distance
d from the resonator end is applied to a transformer with
a negative mutual inductance −Mg and a SQUID provid-
ing positive Josephson inductance LJ . External flux Φext

controls LJ , thus controlling the effective mutual inductance
M = −Mg + LJ . The wave impedances of the lines are Rr

and Rtl.

 

  

  

 

 

  

 

  

FIG. 17: The simplified schematic of Fig. 16, with the d-
long piece of the resonator replaced by inductance Le, and
the transformer in series with SQUID replaced by an effective
transformer with mutual inductance M . An incident wave
with voltage amplitude B creates voltages V and x across
the inductors L1 and L2. The wave is reflected as rinB and
transmitted as t̃inB (the superscript “in” indicates the wave
coming from inside the resonator and the tilde sign indicates
the actual transmission amplitude, as opposed to the effective
amplitude t). In our case rin ≈ −1 and |t̃in| ≪ 1.

be different from the impedance Rtl of the transmission
line.
For the analysis let us first reduce the schematic of

Fig. 16 to the schematic of Fig. 17 by replacing the d-
long part of the resonator with an effective inductance
Le and also replacing the transformer and SQUID with
an effective transformer with inductances L1, L2, and
mutual inductance M ,

L1 = L1g+LJ , L2 = L2g+LJ , M = −Mg+LJ . (B1)

We emphasize thatM can be both positive and negative,
so the coupling changes sign when M crosses zero (the
coupler is OFF when M = 0). Note that by varying M
we also slightly change L1 and L2,

L1 = L1g +Mg +M, L2 = L2g +Mg +M. (B2)
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It is easy to calculate the effective inductance Le.
If there is no coupler (L1 = ∞) and a voltage wave
Beiωt comes from the resonator side (from the left in
Fig. 16), then it is reflected as −Beiωt, and the volt-
age at a distance d is then V = Beiωt[exp(iωd/v) −
exp(−iωd/v)] = 2iBeiωt sin(ωd/v), where v is the speed
of light in the resonator. The current (to the right) at this
point is I = (B/Rr)e

iωt[exp(iωd/v) + exp(−iωd/v)] =
2(B/Rr) cos(ωd/v). Therefore, the wave impedance is
Z = V/I = iRr tan(ωd/v), which is the same, Z = iωLe,
as for an inductance

Le =
Rr

ω
tan

ωd

v
=
Rr

ω
tan

2πd

λ
. (B3)

Next, let us calculate the transmission and reflection
amplitudes t̃

in and r
in for the effective circuit shown in

Fig. 17. (Here the superscript “in” reminds us that the
wave is incident from inside of the resonator, and the tilde
sign in t̃

in means that we consider the actual transmission
amplitude, which is different from the effective amplitude
t). Assume that a voltage wave with amplitude B is
incident onto the coupler from the resonator (we omit
the exponential factor eiωt). The wave is reflected as rinB
and transmitted as t̃inB. For a weak coupling, which we
consider in this paper, r

in ≈ −1 and |t̃in| ≪ 1. The
voltage across L1 is V = (1 + r

in)B, while the voltage
across L2 is denoted by x. The current flowing into L1 is
I1 = (1− r

in)B/Rr−V/(iωLe), while the current flowing
(down) into L2 is I2 = −x/Rtl. Using the currents I1 and
I2, we write transformer equations for voltages x and V
as

x = iωM

[

(1− r
in)B

Rr
− (1 + r)inB

iωLe

]

− iωL2
x

Rtl
, (B4)

(1 + r
in)B = iωL1

[

(1 − r
in)B

Rr
− (1 + r

in)B
iωLe

]

−iωM x

Rtl
. (B5)

From these two equations we can find the reflection am-
plitude r

in and the transmission amplitude t̃
in = x/B

(note that |t̃in|2Rr/Rtl + |rin|2 = 1):

r
in = −1− b

1 + b
, (B6)

t̃
in = i

2ωM

1 + b

(

1

Rr
+

ib

ωLe

)

1

1 + iωL2/Rtl
, (B7)

where

b =

iωL1

Rr
+

ω2M2

RrRtl(1 + iωL2/Rtl)

1 +
L1

Le
− iωM2

RtlLe(1 + iωL2/Rtl)

(B8)

=
iωL1/Rr

L1

Le
+

[

1− iωM2

RtlL1(1 + iωL2/Rtl)

]−1 . (B9)

Note that the transmission and reflection amplitudes for
the wave incident from outside of the resonator are

t̃
out =

Rr

Rtl
t̃
in, r

out = − t̃
in

(t̃in)∗
r
in. (B10)

Since the transmission amplitude depends on the direc-
tion, it is convenient to introduce the effective amplitude
t, which does not depend on the direction,

t =

√

Rr

Rtl
t̃
in =

√

Rtl

Rr
t̃
out, |t|2 + |rin(out)|2 = 1. (B11)

Equations (B6)–(B9) and (B11) give us t and r in the
rotating frame eiωt. For the rotating frame e−iωt we need
to conjugate t and r (and b), thus obtaining Eqs. (48)–
(50) in the main text.
For an estimate let us use the following parameters

(similar to the parameters of Ref.20): Rr = 80Ω, Rtl =
50Ω, L1g = L2g = 480 pH, Mg = 140 pH, ω/2π = 6
GHz, and Le = 180 pH (corresponding to d/λ = 0.013).
Then Eqs. (B6)–(B9) and (B11) for small M give b ≈
0.066i, rin ≈ −e−0.13i, and t ≈ 0.034ie−0.5iM/Mg. The
resonator leakage time is then τ ≈ (Mg/M)2 × 72 ns.
Note that in the case when ωM ≪ Rtl, we can replace

the denominator of Eq. (B9) with L1/Le + 1. Then

b ≈ i
ωLe/Rr

1 + Le/L1
, (B12)

and if ωLe ≪ Rr (which means d ≪ λ/4), then |b| ≪
1. In this case the reflection and effective transmission
amplitudes (B6) and (B11) can be approximated (for the
rotating frame eiωt) as

r
in ≈ − exp

[

− 2ωLeL1

Rr(L1 + Le)
i

]

(B13)

t ≈ i
2ωLeM√

RrRtl (L1 + Le)

1

1 + iωL2/Rtl
. (B14)

The latter equation shows that in the first approxima-
tion the phase of t does not change with M , and for the
case ωL2 ≪ Rtl the value of t is close to being purely
imaginary. Note that Eq. (B14) uses the approximation
1 + b ≈ 1 in the denominator of the first factor in Eq.
(B7). Without this approximation (still using the above
formula for b), the factor L1 + Le in the denominator of
Eq. (B14) should be replaced with a more accurate term
L1 + Le + iωL1Le/Rr. As we checked numerically, this
gives a much better approximation for small M (mostly
for the phase of t), but there is no significant improve-
ment of accuracy for intermediate values of M , corre-
sponding to |t| ≃ 0.05.
The resonator frequency ωr slightly changes when the

mutual inductance M is varied, because this slightly
changes the phase of the reflection amplitude r

in. The
frequency change can be calculated as

δωr ≈ 2ω0
δ(arg rin)

2π
, (B15)
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where the factor of 2 comes from the assumption of a λ/4
resonator, and as ω0 we choose the resonator frequency
at M = 0. [Note the sign difference compared with Eq.
(51) because of the different rotating frame.]
To estimate the frequency change ∆ωr = ωr(M)−ωr(0)

to first order, we can expand Eq. (B9) to linear order in
M [which comes from changing L1 in Eq. (B12) – see Eq.
(B2)] and then use δ(arg rin) = −[2/(1+ |b|2)] δ|b|, which
follows from Eq. (B6) for a positive-imaginary b. Thus
we obtain

∆ωr ≈ −ω0

π

2

1 + |b|2
ω0L

2
e

Rr(L1 + Le)2
M, (B16)

where b is given by Eq. (B12), and L1 should be evaluated
at M = 0. Since t is also proportional to M in the first
order [see Eq. (B7)], the ratio ∆ωr/|t| is approximately
constant,

∆ωr

|t| ≈ −ω0

π

√

1 + (ω0L2/Rtl)2
√

1 + |b|2

√

Rtl

Rr

Le

L1 + Le
, (B17)

where L1 and L2 should be evaluated at M = 0, and
for typical experimental parameters |b|2 can be neglected
[we keep the very small terms with |b|2 in Eqs. (B16) and
(B17) to have exact formulas at M → 0]. This formula

describes the numerical dependence ∆ωr(|t|) shown in
Fig. 12 very well, giving an exact result at |t| → 0 and
a relative deviation of 3.2% at |t| = 0.1. It is interesting
that the dependences of |t| and ∆ωr on M are both sig-
nificantly nonlinear (see, e.g., the dashed line in Fig. 12);
however, these nonlinearities partially compensate each
other to produce a smaller nonlinearity in ∆ωr(|t|).
While Eq. (B16) gives only the linear component of

the dependence ∆ωr(M), a better approximation can be
based on using Eq. (B12) to find b(M) − b(0) and then
convert it into ∆ωr via Eq. (B15). In this way we obtain

∆ωr ≈ − 2ω2
0L

2
e/(1 + |b|2)

πRr(L1g +Mg + Le)(L1g +Mg + Le +M)
M,

(B18)
in which the term |b|2 can be neglected. This formula
gives a nonlinear dependence ∆ωr(M) due to the pres-
ence of M in the denominator. We checked that this
formula correctly describes about 80% of the numerical
nonlinearity of the ∆ωr(M) dependence for the param-
eters of Fig. 12. There is a similar dependence on M
in the denominator of Eq. (B14) for t(M) dependence,
thus explaining why the two nonlinearities partially can-
cel each other to produce a much more linear dependence
∆ωr(|t|) in Fig. 12.
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