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Probing Majorana-like states in quantum dots and quantum rings

Benedikt Scharf and Igor Žutić
Department of Physics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA

Engineering chiral p-wave superconductivity in semiconductor structures offers fascinating ways to
obtain and study Majorana modes in a condensed matter context. Here, we theoretically investigate
chiral p-wave superconductivity in quantum dots and quantum rings. Using both analytical as well
as numerical methods, we calculate the quasiparticle excitation spectra in these structures and the
corresponding excitation amplitudes and charge densities. In the topological regime, we can observe
the chiral edge modes localized at the boundaries and possessing finite energy in quantum dots
and quantum rings. By applying a magnetic field which is expelled from the quantum ring, but
which creates a flux that is an odd integer multiple of Φ0/2 = π~/e, Majorana modes, that is,
(approximately) degenerate edge modes with zero energy and zero charge density, become possible
in the topological regime. Furthermore, we investigate finite-size effects that split these degenerate
edge modes as well as the effect of a magnetic field penetrating into the superconducting region
that can under certain circumstances still support edge modes with approximately zero energy and
charge.

PACS numbers: 74.78.Na,74.25.Ha,74.45.+c

Keywords: Majorana modes, quantum dots, quantum rings

I. INTRODUCTION

Originally proposed almost eight decades ago, Majo-
rana fermions are their own antiparticles, unlike, for
example, electrons and their positronic counterparts.1

While in high-energy physics the concept of Majorana
fermions remains important, albeit not experimentally
demonstrated yet,2 the search for Majorana fermions in
condensed-matter systems has developed into a topic of
immense research interest in recent years.3–8 The attrac-
tion of pursuing Majorana fermions in solid-state systems
is twofold: Firstly, setups exhibiting Majorana modes
could be more easily tailored in such systems. Secondly,
Majorana fermions in a solid-state context are governed
by non-Abelian statistics, which makes them potentially
useful for topological quantum computation.9,10

In contrast to high-energy physics, where Majorana
fermions are proposed to be fundamental particles, Ma-
jorana fermions in a solid-state context are emergent
quasiparticle excitations. Since Majorana modes need to
be their own antiparticles, superconductors offer a nat-
ural choice for systems in which to look for such excita-
tions. The reason for this is that, in the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity, quasiparti-
cle excitations are described by superpositions of both
electrons and holes. Thus, excitations which are their
own antiparticles, that is, excitations which are described
by operators that are their own Hermitian conjugate,
are possible at zero energy in certain types of super-
conductors. These superconductors, termed topologi-
cal superconductors, possess a bulk pairing gap and—
in their topologically nontrivial regime—gapless edge
or surface states which can then under certain circum-
stances support Majorana fermions as midgap states (see
Fig. 1).11–13

In order to realize Majorana fermions in condensed-
matter physics, it has long been proposed to uti-
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FIG. 1. (Color online) Excitation spectrum of a topological
superconductor in the (a) trivial and (b) nontrivial regimes.
By closing and subsequently reopening the pairing gap a tran-
sition between both regimes can be induced.

lize the midgap states of spinless chiral p-wave
superconductors.14–20 While some superconducting ma-
terials such as Sr2RuO4 have been argued to possess
a superconducting state with p-wave symmetry,2122 it
might be simpler to engineer p-wave pairing in more eas-
ily accessible systems. These proposals often, although
not always, involve combining superconductivity, Zee-
man splitting, and strong spin-orbit coupling,23–26 which
makes the field of spintronics27,28 also relevant in this
context. Typically, p-wave pairing is proximity-induced
in materials with strong spin-orbit coupling, such as
topological insulators29 or semiconductors with strong
Rashba coupling, by bringing them close to an s-wave
superconductor. The Zeeman term then controls tran-
sitions between the topologically trivial and nontrivial
regimes of the induced p-wave superconductor.

Proposals for such systems include the interface be-
tween a three-dimensional topological insulator and an
s-wave superconductor, where Majorana modes can be
bound to an Abrikosov vortex core,30 or wires, ei-
ther semiconductor wires with strong Rashba spin-orbit
coupling31–33 or topological insulator wires,34,35 subject
to a magnetic field and brought in close proximity to an s-
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wave superconductor. Besides, it has been suggested that
Majorana modes can appear in systems that are in prox-
imity to an s-wave superconductor, but do not require the
presence of spin-orbit coupling.36–39 Conversely, d-wave
superconductors40,41 have been proposed as an alterna-
tive source for proximity-induced chiral p-wave pairing
in Rashba or topological insulator structures with Zee-
man splitting.42–45 A setup consisting of two quantum
dots with applied noncollinear magnetic fields and con-
nected by an s-wave superconductor has been suggested
to support modes localized in the dots that exhibit most
properties of Majorana modes, but that are not topolog-
ically protected.46

Potential signatures of Majorana modes in the above
systems are usually centered on the fact that Ma-
jorana modes can also affect transport and ther-
modynamic properties of the (induced) topological
superconductors.47–62 Of all these proposals, the setup
based on hybrid superconductor-semiconductor wire
structures with Rashba spin-orbit coupling and Zeeman
splitting31,32 has been the most prevalent until now, with
experiments conducted in InSb63–65 and InAs66,67 semi-
conductor wires as well as ferromagnetic atomic chains.68

In these experiments, a zero-bias peak in the tunneling
conductance has been observed, which potentially points
to the presence of Majorana zero-energy modes.47–50

However, mechanisms which could also give rise to this
zero-bias conductance peak in the absence of Majorana
modes, such as Kondo physics,69 strong disorder,70–72

smooth end confinement,73 or boundary effects,74 have
been invoked. Moreover, experiments on semiconduc-
tor nanowire quantum dots strongly coupled to a con-
ventional superconductor suggest that a zero-bias con-
ductance anomaly with properties very similar to that
expected for Majorana fermions can arise even without
topological superconductivity.75

Thus, until now the experimental evidence for Ma-
jorana modes remains inconclusive,76,77 although there
are several proposals to supplement the tunneling con-
ductance measurements in wires to verify the presence
of Majorana-bound states or rule out some of the al-
ternative sources for the zero-bias peak.78–81 Moreover,
whereas disorder in chiral p-wave superconductor wires82

is detrimental to the topological order supporting Majo-
rana modes, disorder can even have a potentially stabi-
lizing effect in the hybrid superconductor-semiconductor
wire structures studied experimentally.83 Likewise, inter-
action effects in these hybrid structures are predicted to
result in a reduction of the induced pairing gap,84 but to
actually expand the parameter range of the topologically
nontrivial regime.85

In contrast to these wire structures, we investigate
the quasiparticle excitations, including possible Majo-
rana modes, in quantum dots (QDs) and quantum rings
(QRs) with (possibly induced) p-wave pairing. While
there are several works on the ring geometry for the chiral
p-wave superconductor and related models,17,59,60,86–89

our focus is on providing an in-depth analysis of the sys-
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FIG. 2. (Color online) (a) QD and (b) QR considered in
Sec. IIIA. The shaded areas are areas with p-wave supercon-
ductivity.

tem and of the effects of finite size or magnetic fields
penetrating into the superconducting region.

The manuscript is organized as follows: Section II in-
troduces the effective model used to describe the QDs and
QRs. The results obtained from this model are then pre-
sented in Sec. III, for QDs and QRs without any magnetic
field (Sec. III A), QRs which enclose a magnetic flux, but
which are not penetrated by a magnetic field (Sec. III B),
and finally QRs into which a magnetic field can penetrate
(Sec. III C). Section IV is devoted to the discussion of
possible experimental realizations of the QDs and QRs as
well as potential methods to distinguish Majorana modes
from other phenomena. A brief summary in Sec. V con-
cludes the manuscript.

II. MODEL AND METHODS

In this manuscript, we consider QDs of radius Ro and
QRs of inner radius Ri and outer radius Ro confined to
the xy plane and with chiral p-wave superconductivity
(see Fig. 2). Apart from certain superconducting materi-
als such as Sr2RuO4, which has been argued to possess a
state with p-wave symmetry, there are several proposals
to engineer p-wave pairing in more easily accessible ma-
terials such as semiconductors with strong Rashba spin-
orbit coupling by placing them close to an s-wave su-
perconductor and exploiting proximity effects.90 Since in
the latter setup a magnetic field can also penetrate into
the QDs or QRs without being expelled, we allow for the
presence of a constant magnetic field B = Bez inside the
QDs or QRs.

As a model for the interior of the QD and QR we
consider a two-dimensional spinless p-wave superconduc-
tor, which can be described by the Bogoliubov-de Gennes
(BdG) Hamiltonian91

Ĥ =

(

H0(r) ∆(r)
∆†(r) −H∗

0 (r)

)

(1)
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in particle-hole space, where

H0(r) =
[p̂+ eA(r)]

2

2m∗
− EF + V (r) (2)

is the single-particle Hamiltonian and

∆(r) = αe−inΦθ {p̂x − eAx(r) − i [p̂y − eAy(r)]} (3)

describes the pairing amplitude of the superconductor.
Here, r denotes the position in the xy plane, p̂ the mo-
mentum operator in the xy plane, A(r) the magnetic vec-
tor potential in the xy plane, m∗ the electronic effective
mass, EF the Fermi energy, V (r) a radially symmetric
confinement potential in the xy plane, α = |α|eiϕα the
p-wave pairing parameter, and e = |e| the elementary
charge. If a magnetic field is present, the p-wave pairing
parameter acquires an additional phase of −nΦθ, where
θ is the polar angular coordinate and nΦ an integer re-
lated to the magnetic flux (see below). In the absence
of a magnetic field, the sign of EF determines whether
the system described by Eq. (1) is in the topologically
trivial regime (EF < 0), where no edge modes appear,
or in the topologically nontrivial regime (EF > 0), where
chiral edge modes can arise.
To model the confinement in the xy plane, we use polar

coordinates (r, θ) and infinite hard-wall potentials

V (r) =

{

0 for r < Ro

∞ elsewhere
(4)

and

V (r) =

{

0 for Ri < r < Ro

∞ elsewhere
(5)

for QDs and QRs, respectively.
Moreover, we consider three different setups for the

magnetic field: (i) no magnetic field, (ii) no magnetic

field inside a superconductor QR, but with a magnetic
flux Φ = πR2

i B enclosed by the QR, where the flux
quantization of a superconductor requires 2Φ/Φ0 ∈ Z

with the magnetic flux quantum Φ0 = 2π~/e, and (iii)
a constant magnetic field B = Bez spread over the en-
tire xy plane and penetrating into the QR. For setups
(i) and (ii), nΦ = 2Φ/Φ0 ∈ Z and we choose the gauge
A(r) = (Φ/2πr)eθ, where eθ is the unit vector associated
with the angular coordinate θ and Φ the flux enclosed
by Ri [that is, Φ = 0 in setup (i) and Φ = BR2

i π in
setup (ii)]. On the other hand, for setup (iii) we choose
A(r) = (Br/2)eθ and nΦ = [2Φ/Φ0] denotes the integer
closest to 2Φ/Φ0, where Φ = πR2

i B is the magnetic flux
enclosed by r < Ri in a QR, while in the case of a QD
nΦ = 0.

First, we note that for setups (i)-(iii) and a ra-
dially symmetric confinement V (r) the commutator
[

Ĥ, L̂eff

]

= 0, where

L̂eff = L̂z +
~(1 + nΦ)

2
τz (6)

is an effective angular momentum operator, L̂z the an-
gular momentum operator in z direction, and τz the re-
spective Pauli matrix in particle-hole space. Thus, the
eigenstates of the BdG Hamiltonian (1) can be written
as

Ψ(r) =

(

u(r)
v(r)

)

=
1√
2π

(

eimθ eiϕα/2 f(r)
ei(m+1+nΦ)θ e−iϕα/2 g(r)

)

,

(7)
where ϕα is the phase of α = |α|eiϕα and m is the angular
momentum of the electronic component, which we use as
a quantum number to label the eigenstates.

Inserting this ansatz into the BdG equation leads to
the radial equation





− ~
2

2m∗

{

∂2
r + 1

r∂r −
[m+n(r)]2

r2

}

− EF −i~|α|
[

∂r +
m+1+nΦ−n(r)

r

]

−i~|α|
[

∂r − m+n(r)
r

]

~
2

2m∗

{

∂2
r + 1

r∂r −
[m+1+nΦ−n(r)]2

r2

}

+ EF





(

f(r)
g(r)

)

= E

(

f(r)
g(r)

)

(8)

for f(r) and g(r) inside the QD (r < Ro) or QR (Ri <
r < Ro). In Eq. (8), n(r) denotes the magnetic flux (per
flux quantum) enclosed inside a disk of radius r, that is,
n(r) = nΦ/2 for setups (i) and (ii) and n(r) = Br2π/Φ0

for setup (iii). If energies and lengths are measured in
terms of the Fermi energy EF and the Fermi wavelength
λF = 2π~/

√

2m∗|EF|, the solutions depend only on Ro,
Ri, B, and the effective pairing parameter

p =
~kF|α|
EF

, (9)

where the Fermi wavevector is given by kF = 2π/λF.

In all three setups, the BdG Hamiltonian (1) exhibits
particle-hole symmetry, that is, for each mode with en-
ergy E there is another mode with energy -E. Conse-
quently, for a given magnetic field or flux Φ the excita-
tion energy denoted by the quantum number m, Em(Φ),
satisfies the relation Em(Φ) = −E−(m+1+nΦ)(Φ).

To solve Eq. (8) and obtain the excitation spectrum
and eigenstates, we employ a finite difference scheme.
However, as detailed in the Appendix A, we can also
obtain the solutions for the setups (i) and (ii) analytically.
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FIG. 3. (Color online) (a) Calculated excitation spectrum
as well as (b) probability and (c) charge densities, ρ(r) =
|f(r)|2 + |g(r)|2 and ρc(r) = |f(r)|2 − |g(r)|2, respectively, for
selected excitations in a QD with radius Ro = 2λF and pairing
parameter p = 2. Here, the states shown in panels (b) and (c)
are marked in the energy spectrum, panel (a). The charge
densities of modes PC and PD are not displayed in panel (c)
because their charge densities are two orders of magnitude
larger than those of PA and PB.
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FIG. 4. (Color online) (a) Calculated excitation spectrum
as well as (b) probability and (c) charge densities, ρ(r) =
|f(r)|2 + |g(r)|2 and ρc(r) = |f(r)|2 − |g(r)|2, respectively, for
selected excitations in a QR with outer radius Ro = 2λF, inner
radius Ri = 0.2λF, and pairing parameter p = 2. Here, the
states shown in panels (b) and (c) are marked in the energy
spectrum, panel (a).

III. SPECTRAL AND CHARGE PROPERTIES

OF QUANTUM DOTS AND QUANTUM RINGS

A. No magnetic flux

First, we investigate the situations of QDs and QRs
where no magnetic field is present (see Fig. 2), that is,
case (i) where nΦ = 0 and n(r) = 0 in Eq. (8). Fig-
ures 3 and 4 show the excitation spectra as well as the
amplitudes and charge densities of selected excitations
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FIG. 5. (Color online) (a) Calculated excitation spectra for
excitations in a QD and QRs with outer radius Ro = 10λF,
different inner radii Ri, and pairing parameter p = 2.

for a QD and a QR in the topological regime (EF > 0)
with the pairing parameter p = 2. The radius of the
QD is chosen to be Ro = 2λF, while the inner and outer
radii of the QR are chosen as Ri = 0.2λF and Ro = 2λF,
respectively.

In Fig. 3 (a), one can see that there is a gap in the
excitation spectrum of the QD with the amplitudes of
selected excitations (PC , PD) outside the gap shown in
Fig. 3 (b). As expected in the topological regime, how-
ever, there are also modes inside the gap (PA, PB), which
correspond to charged modes localized at the edge of the
QD [see Figs. 3 (b) and (c)]. A QR as illustrated in Fig. 4
possesses similar characteristics, that is, edge modes in-
side the superconducting gap (PA, PB), but now with ad-
ditional charged modes (such as the modes PC and PD in
Fig.4) localized at the inner edge—at least as long as the
spatial extent of the edge modes (essentially controlled by
the parameter p for small energies E, see also Sec. III B
below as well as the Appendix A) is small enough to pre-
vent significant overlap between states localized at oppo-
site edges.

However, in neither case, QD or QR, is there a mode
with exactly zero energy (see below). Moreover, the en-
ergy spectrum in Fig. 4 (a) illustrates that the slope of
the inner edge modes is steeper than the slope of the
outer edge modes. This can be qualitatively understood
as a consequence of the conservation of the operator L̂eff ,
which in turn requires eigenstates associated with a fixed
electronic angular momentum quantum number m to
possess a higher group velocity if they are localized at
the inner edge (r ≈ Ri) than if they are localized at the
outer edge (r ≈ Ro).

Figure 5 shows how the energy spectrum of a QR with
p = 2 and an outer radius of Ro = 10λF depends on the
inner radius Ri. For comparison, we also show the energy
spectrum of a QD with the same parameters as the QR.
As Ri increases, there are two features that can be seen
in Fig. 5: Firstly, the absolute value of the slope of the
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inner edge modes decreases with increasing Ri, which can
again be explained as originating from the conservation of
the operator L̂eff and the resulting requirement that the
group velocity should decrease as the radius increases.
Secondly, the width Ro − Ri of the QR decreases with
increasing Ri and eventually the edge modes from the
inner and outer edge modes overlap, which leads to the
opening up of a hybridization gap as illustrated by the
case of Ri = 9λF in Fig. 5.

Next, we investigate the dependence of the lowest en-
ergy of the edge modes on the pairing parameter p,
Eq. (9), for QDs as well as for QRs. As illustrated
by Fig. 6, for large values of p the lowest energy of
the modes localized at the outer edge can be fitted to
E/EF ≈ 8.5 × 10−3p for both a QD and a QR. This
agrees reasonably well to

E

EF
=

p

4π(Ro/i/λF)
, (10)

as also found in Ref. 4 and which yields E/EF ≈ 8.0 ×
10−3p for Ro = 10λF. Likewise, the lowest energy of
the modes localized at the inner edge of a QR can be
fitted to E/EF ≈ 7.0 × 10−2p, while Eq. (10) yields
E/EF ≈ 8.0 × 10−2p for Ri = λF. The deviations from
the behavior described by the approximation (10) can be
ascribed to the fact that in deriving this approximation
curvature terms, that is, the kinetic terms in the diagonal
elements of Eq. (8), have been neglected. For small val-
ues of p, curvature terms become even more important
and the decrease of the lowest energy of the outer edge
modes with decreasing p is more pronounced. However,
the energy is never exactly zero even for very small val-
ues of p. This situation, on the other hand, can change
if a magnetic flux is induced in the QR, which will be
discussed in the following section.

FIG. 7. (Color online) QRs as considered in Secs. III B
and IIIC: (a) with an enclosed magnetic flux and no mag-
netic field penetrating into the QR and (b) a constant mag-
netic field. The shaded areas are areas with p-wave supercon-
ductivity.

B. Magnetic flux with no field penetration into the

superconducting region

In this and the following section, we study cases (ii)
and (iii), that is, the effects of a perpendicular mag-
netic field on a QR as shown in Fig. 7. First, we look
at situation (ii), where the magnetic field is completely
expelled from the QR and just induces a magnetic flux
enclosed by Ri as shown in Fig. 7 (a). As mentioned
above, flux quantization in this case requires the flux to
be Φ = nΦΦ0/2, where nΦ is an integer. If nΦ is even, the
results for QRs from the previous section are recovered,
but with the magnetic flux shifting states and energies
denoted by the electronic angular momentum quantum
number m at zero flux to states denoted by m − nΦ/2,
that is, Em(Φ) = Em+nΦ/2(0) [see also Eq. (A1) in the
Appendix A].

While an even integer multiple of Φ0/2 thus essentially
reduces the problem to the situation of zero magnetic
flux, the situation is different for an odd integer multi-
ple of Φ0/2. Without loss of generality we can choose
Φ = Φ0/2 in that case because every other odd integer
multiple of Φ0/2 can be mapped to this flux, similar to
how an even integer flux can be mapped to the situation
of zero flux.

Figure 8 displays the situation for a QR in the topolog-
ical regime (EF > 0) if a magnetic flux of Φ0/2 is enclosed
inside the QR and no magnetic field penetrates into the
superconducting region. Here, we use the radii Ri = λF

and Ro = 10λF and the parameter p = 2. Similar to the
situation of zero flux, there are modes with energies inside
the superconducting gap and localized at the boundaries
of the QR (such as PC , PD). In contrast to the situation
of zero flux, however, there are now also two degenerate
edge modes (labeled as PA, PB) at zero energy [see the
inset Fig. 8 (d) and also Refs. 4 and 87] which are also
chargeless and thus Majorana modes. This degeneracy at
zero energy is a consequence of particle-hole symmetry,
which for each mode with energy E requires the existence
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of another mode with energy -E.
It is important to note, however, that if there is a finite

overlap between the wave functions localized at the inner
and outer radii, these degenerate Majorana modes are
split similar to Fig. 5 in Sec. III A. This overlap is affected
in two ways, namely by the width Ro−Ri of the ring and
by the spatial extent of the edge states.
The effect of a narrow width Ro − Ri is illustrated in
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FIG. 10. (Color online) (a) Calculated probability and (b)-
(d) charge densities, ρ(r) = |f(r)|2 + |g(r)|2 and ρc(r) =
|f(r)|2 − |g(r)|2, respectively, for the excitations at or close
to zero energy in a QR with outer radius Ro = 10λF, inner
radius Ri = λF, and different pairing parameters p if a mag-
netic flux of Φ0/2 is enclosed by Ri with no magnetic field
penetrating into the QR. Panels (b)-(d) demonstrate that for
p = 2 and p = 1 the charge density is zero or extremely small,
while other values of p can lead to significantly higher charge
densities.

Fig. 9, where we use a QR with the pairing parameter
p = 2, the flux Φ = Φ0/2, and the inner and outer radii
of Ri = 9λF and Ro = 10λF, respectively. Here, the finite
overlap between the two particle-hole symmetric modes
PA and PB leads to a noticeable splitting between them of
EA/B ≈ ±0.05EF. This is due to a large overlap between
the edge modes at the inner and the outer boundaries,
which also results in a finite charge density of PA and
PB, similar to the situation in a wire geometry.76–78,81

In addition to the amplitudes and charge densities of PA

and PB, two excitations above the superconducting gap
(PC , PD) are also displayed.

A second parameter that affects the overlap between
edge modes near zero energy is their spatial extent,
which is essentially controlled by the pairing parameter
p, Eq. (9), where edge modes are most localized for values
in the vicinity of p = 2, while they become more extended
if p is decreased or increased [see Fig. 10 (a)]. Likewise,
Fig. 10 (d) illustrates that close to p = 2, where the
charge density even vanishes and the excitation energy is
zero, the charge density is very small as, for example, in
the case of p = 1. In Figs. 10 (c) and (d), on the other
hand, the charge density increases by several orders of
magnitude for values of p farther away from p = 2.92

Moreover, Fig. 10 shows that for p < 2 the probabil-
ity and charge densities exhibit oscillations, while there
is no oscillatory behavior for p ≥ 2. This behavior can
be understood by looking at the form of the wave func-
tions given by Eqs. (A3) and (A4) in the Appendix A:
The wave functions (A3) consist only of Bessel and Neu-
mann functions, whose arguments are purely imaginary
for p ≥ 2 and energies close to zero and thus result in
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FIG. 11. (Color online) (a) Calculated excitation spectrum
as well as (b) probability and (c) charge densities, ρ(r) =
|f(r)|2 + |g(r)|2 and ρc(r) = |f(r)|2 − |g(r)|2, respectively, for
selected excitations in a QR with outer radius Ro = 10λF,
inner radius Ri = λF, and pairing parameter p = 0.5 if a
magnetic flux of Φ0/2 is enclosed by Ri with no magnetic field
penetrating into the QR. Here, the states shown in panels (b)
and (c) are marked in the energy spectrum, panel (a). The
charge densities of modes PC and PD are not displayed in
panel (c) because their charge densities are four orders of
magnitude larger than those of PA and PB. Panel (d) displays
the excitation energies close to zero.

non-oscillatory wave functions. For p < 2, on the other
hand, the arguments of the Bessel and Neumann func-
tions are not purely imaginary for energies close to zero,
which leads to oscillating wave functions.
To corroborate this statement, Fig. 11 shows the exci-

tation spectrum, several amplitudes, and several charge
densities of the same QR as in Fig. 8, but with p = 0.5.
While in Fig. 8 we obtain two Majorana-bound states PA

and PB as degenerate chargeless modes at exactly zero
energy within the numerical accuracy of our calculation,
there is a finite overlap between the two corresponding
states PA and PB in Fig. 11, which leads to a small, but
finite splitting with EA/B ≈ ±10−8EF. Likewise, the
charge carried by the particle-hole symmetric modes PA

and PB in Fig. 11 (c) is very small, but finite and spread
over the entire ring [see also Figs. 10 (b)-(d)], similar to
the situation found in Ref. 81 for one-dimensional topo-
logical superconductor wires.93

In this sense, one can thus speak of the modes PA

and PB in Fig. 11 as being Majorana-bound states only
approximately. The difference between these modes and
the remaining ordinary chiral edge modes away from zero
energy can be revealed by their charge densities: While
the charge density of those approximate Majorana-bound
states is spread over the entire QR and very small as dis-
played in Figs. 10 (b)-(d) and 11 (c), the charge density of
chiral edge modes away from zero energy, such as PC and
PD in Fig. 8 (c), is localized at the edges and typically
several orders of magnitude larger.
The dependence of the lowest energy of the edge modes

on the pairing parameter p is displayed in Fig. 12 (a) for
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FIG. 12. (Color online) (a) Dependence of the lowest energies
of the (outer) edge modes in a QR with radii Ro = 10λF

and Ri = λF as a function of the pairing parameter p if no
magnetic flux or a magnetic flux of Φ0/2 is enclosed by Ri

with no magnetic field penetrating into the QR. The inset (b)
shows the dependence of the energy spectrum at m = −1 on
the Fermi energy for a QR which is threaded by a magnetic
flux of Φ0/2. In the inset (b), energies are measured in units
of Eα = m∗|α|2 and lengths in units of λα = 2π~/m∗|α|.

a QR with radii Ro = 10λF and Ri = λF and a magnetic
flux of Φ0/2. For comparison, the p dependence in the
case of zero flux is also included. While in the absence of
any magnetic flux the energy increases monotonously as
discussed in Fig. 6 in Sec. III A, the situation is different
in the presence of a half-integer flux. Here, there is a
region where the energy is very small and extremely close
to zero, such as the situations depicted in Figs. 8 and 11.
As the value of p is increased or decreased, for example,
by changing the p-wave pairing α accordingly, the edge
modes become more extended leading to a finite overlap
and an increase in the splitting between the two particle-
hole symmetric modes close to zero energy.

Figure 12 (b) shows the dependence of the energy spec-
trum at m = −1 on the Fermi energy of a QR threaded
by a magnetic flux of Φ0/2 for a fixed α. One can clearly
see the transition between the topologically trivial regime
for EF < 0, where no edge modes with energies inside
the bulk gap are present, and the topological regime,
where such states arise. Moreover, those low-energy edge
modes exhibit oscillations where the zeros are associated
with jumps in the parity of the superconducting ground
state.77,78,81 At these points, exact Majorana modes with
zero energy and charge as in Fig. 8 can be found, while
energies away from zero correspond to approximate Ma-
jorana modes like in Fig. 11. With increasing distance
Ro − Ri, the amplitude of these oscillations decreases
as the overlap between edge modes situated at opposite
edges decreases.

Finally, using a very simple model, we can compare
the effects of impurities on the edge and bulk modes. We
consider a concentric ring of an array of nonmagnetic
impurities characterized by the impurity potential Vimp.
Figure 13 (a) shows the excitation spectrum for a QR
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FIG. 13. (Color online) Calculated excitation spectra in a
QR with outer radius Ro = 10λF, inner radius Ri = λF,
and pairing parameter p = 2 if a magnetic flux of Φ0/2 is
enclosed by Ri with no magnetic field penetrating into the QR
and a concentric ring of an array of nonmagnetic impurities,
characterized by the impurity potential Vimp. The impurities
are situated at r = (Ro − Ri)/2 in panel (a) and at r =
0.9775Ro in panel (b).

with radii Ro = 10λF and Ri = λF, a magnetic flux of
Φ0/2, and different strengths of Vimp for impurities sit-
uated at r = (Ro − Ri)/2. Since the impurities are far
away from the edges, the edge modes are not affected
by the impurity potential, whereas the modifications of
the bulk modes are clearly visible. On the other hand, if
the impurities are situated at an edge, as is the case in
Fig. 13 (b), both the bulk and edge modes are not signifi-
cantly changed. Thus, in contrast to bulk modes the edge
modes are not substantially affected by nonmagnetic im-
purities, regardless of the position of the impurities. This
striking difference between the role of perturbations on
the edge and bulk states in Fig. 13 is consistent with the
robustness that we can associate with the Majorana-like
states.

C. Magnetic field penetrating into the

superconducting region

In the preceding discussions it has always been as-
sumed that the magnetic field cannot penetrate into the
superconducting region. Finally, we now also investigate
the situation shown in Fig. 7 (b), where the perpendic-
ular magnetic field can penetrate into the QR, that is,
case (iii).

Our motivation for investigating this model is two-
fold: As already mentioned, if the chiral p-wave BdG
Hamiltonian in Eq. (1) is regarded as a simplified toy
model for other, more complex hybrid structures with
only proximity-induced pairing, a magnetic field can ex-
ist in these systems without being expelled like in a usual
superconductor. On the other hand, if the system inves-
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FIG. 14. (Color online) (a) Calculated excitation spectrum
as well as (b) probability and (c) charge densities, ρ(r) =
|f(r)|2 + |g(r)|2 and ρc(r) = |f(r)|2 − |g(r)|2, respectively, for
selected excitations in a QR with outer radius Ro = 10λF,
inner radius Ri = λF, and pairing parameter p = 2 if a con-
stant magnetic field penetrates into the QR with Ro enclos-
ing a magnetic flux of Φ0/2. Here, the states shown in pan-
els (b) and (c) are marked in the energy spectrum, panel (a).
Panel (d) displays the excitation energies close to zero.

tigated is an extended three-dimensional superconduc-
tor, a magnetic field cannot penetrate far into this su-
perconducting material and decays within the London
penetration depth.94,95 However, if the sample is a thin
film, that is, a film with a thickness smaller than the
London penetration depth and a large extent of the base
area, an applied in-plane magnetic field can be very accu-
rately described as a constant field inside the film.96 Here,
we make the simplifying assumption that such a behav-
ior could also be applicable for an out-of-plane magnetic
field.

Figure 14 depicts a situation where a constant mag-
netic field B spread over the entire xy plane and corre-
sponding to a magnetic flux πR2

oB = 0.5Φ0 enclosed by
the outer radius Ro is applied and thus induces no addi-
tional phase dependence of the p-wave pairing amplitude
in Eq. (1), nΦ = 0. The remaining parameters are chosen
as p = 2, Ro = 10λF, and Ri = λF. Analyzing this setup,
we can see that the behavior is very similar to the situ-
ation with zero flux, that is, there are edge modes with
finite energies, but none with zero energy.

Next, we increase the strength of the magnetic field
to a value corresponding to the magnetic flux πR2

oB =
25.1Φ0, while keeping the remaining parameters p, Ri,
and Ro the same. For this strength of the magnetic field,
an additional phase −nΦθ with nΦ = 1 is induced in
the p-wave pairing amplitude, just like in case (ii) with a
half-integer flux enclosed by Ri, in which case Majorana
modes—or more strictly speaking at least Majorana-like
modes very close to zero energy and with tiny charge
densities—were possible. Figure 15 illustrates that this
is also the case here: The two particle-hole symmetric
modes PA and PB display a finite splitting of EA/B ≈
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FIG. 15. (Color online) (a) Calculated excitation spectrum
as well as (b) probability and (c) charge densities, ρ(r) =
|f(r)|2 + |g(r)|2 and ρc(r) = |f(r)|2 − |g(r)|2, respectively, for
selected excitations in a QR with outer radius Ro = 10λF,
inner radius Ri = λF, and pairing parameter p = 2 if a con-
stant magnetic field penetrates into the QR with Ro enclosing
a magnetic flux of 25.1Φ0 . Here, the states shown in panels (b)
and (c) are marked in the energy spectrum, panel (a). The
amplitude of PD in panel (b) is nearly completely overlap-
ping with the two modes PA and PB . The charge densities
of modes PC and PD are not displayed in panel (c) because
their charge densities are fourteen orders of magnitude larger
than those of PA and PB . Panel (d) displays the excitation
energies close to zero.

±7 × 10−13EF with extremely small, but finite charge
densities, although in this case the charge densities are
not spread over the QR, but localized at the edges [see
Fig. 15 (c)].
In this sense, Majorana-like modes (which originate

from inducing a phase −θ in the p-wave pairing) persist
even if magnetic fields penetrate into the superconduct-
ing region. For comparison, edge modes away from zero
energy (PC , PD) are also shown in Fig. 15. While the
amplitude of the outer edge mode PD in Fig. 15 (b) is
nearly completely overlapping with the two Majorana-
like modes PA and PB , its charge density is fourteen or-
ders of magnitudes larger. Moreover, the energy spec-
trum outside the superconducting gap in Fig. 15 (a) re-
flects the increasing importance of orbital effects as the
strength of the magnetic field inside the superconducting
ring increases.

IV. EXPERIMENTS

First, we briefly discuss possible systems in which
the phenomena described above can be observed and
which might be more readily available than intrin-
sic p-wave superconductor materials. Following sev-
eral proposals,23–26 a possible implementation of effec-
tive p-wave pairing can be in a semiconductor ring with
strong Rashba spin-orbit coupling27,28 that is brought
into close proximity to an s-wave superconductor ring,

which induces superconductivity into the semiconductor
and which can be threaded by a magnetic flux nΦΦ0/2.
Flux quantization in a superconductor ring requires nΦ

to be an integer. Additionally, a Zeeman term is needed
to break time-reversal symmetry and drive the induced
p-wave superconductor into the topologically nontrivial
phase.97 To engineer this, a ferromagnet is placed in
the vicinity of the semiconductor ring. The ferromag-
net then induces a Zeeman term EZ into the semicon-
ductor ring via the ferromagnetic proximity effect, while
orbital terms induced by the ferromagnet can be omit-
ted. Thus, the semiconductor ring is sandwiched between
two rings, one superconducting the other ferromagnetic,
which induce superconductivity and ferromagnetism, re-
spectively, in the semiconductor ring.
Then, analogous to Eq. (1), the BdG Hamiltonian

for the semiconductor ring (situated in the xy-plane) in
particle-hole space is given by

Ĥ =

(

H0(r) ∆(r)
∆†(r) −ŝyH

∗
0 (r)ŝy

)

, (11)

where

H0(r) =
[p̂+ eA(r)]2

2m∗
− EF + V (r)

+ αSOC {ŝ× [p̂+ eA(r)]} · ez + EZ n · ŝ
(12)

and

∆(r) = ∆e−inΦθ1̂ (13)

are now matrices in spin-1/2 space. As before, r, p̂, A(r),
m∗, EF, and V (r) denote the position in the xy plane,
the two-dimensional momentum operator, the magnetic
vector potential, the electronic effective mass, the Fermi
energy, and the confinement, while αSOC is the (Rashba)
spin-orbit coupling strength, ∆ the proximity-induced s-
wave pairing amplitude,98 EZ the proximity-induced Zee-
man term, ŝ a vector containing the three Pauli matrices
in spin-1/2 space (ŝx, ŝy, and ŝz) and n the direction of
the proximity induced magnetization.
The system described by Eqs. (11)-(13) exhibits the

same features as the model of a spinless p-wave super-
conductor discussed in Secs. II and III, but with the con-
dition |EZ| −

√

E2
F + |∆|2 ≶ 0 separating the topological

trivial (<) and nontrivial (>) regimes. Likewise, the con-
served quantity is now given by the operator

Ĵeff = L̂z +
~

2
sz +

~nΦ

2
τz (14)

instead of L̂eff , that is, the orbital angular momentum L̂z

is replaced by the total angular momentum L̂z+(~/2)sz,
while nΦ + 1 is replaced by nΦ. Then, the eigenstates of
read as

Ψ(r) =
1√
2π









eimθ eiϕ∆/2 a(r)
ei(m+1)θ eiϕ∆/2 b(r)

ei(m+nΦ)θ e−iϕ∆/2 c(r)
ei(m+1+nΦ)θ e−iϕ∆/2 d(r)









, (15)
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FIG. 16. (Color online) (a) Calculated excitation spectrum as
well as (b) probability and (c) charge densities, ρ(r) and ρc(r),
respectively, of the approximate Majorana-bound states in
an InSb ring with induced pairing and ferromagnetism, outer
radius Ro = 5 µm, and inner radius Ri = 1 µm. Excitation
energies close to zero, including the approximate Majorana-
bound states (labeled PA and PB) are shown in panel (d).

where ∆ = |∆|eiϕ∆ . However, the basic conclusions from
Secs. II and III are valid also for this system.

As an illustration of this, Fig. 16 shows the excitation
spectrum calculated from Eqs. (11)-(13) and correspond-
ing to an InSb63 (m∗ = 0.015m0, ~αSOC = 0.2 eVÅ)
ring with an inner radius of Ri = 1 µm and an outer
radius of Ro = 5 µm with an induced s-wave pairing am-
plitude of ∆ = 250 µeV, an induced Zeeman splitting
of EZ = 1 meV in z-direction (n = ez), and a Fermi
energy of EF = 250 µeV. Moreover, a magnetic flux of
Φ = Φ0/2 is enclosed by the rings without a magnetic
field penetrating into the semiconductor, that is, we are
looking at case (ii) from Secs. II and III with nΦ = 1 and
A(r) = (Φ/2πr)eθ = (Φ0/4πr)eθ.

For convenience and for the sake of easy comparison
to the previous sections, we use the angular momentum
m of the electronic spin up component, that is, the first
component in Eq. (15) to label the modes. Exactly as
in the case of Fig. 11, there are edge modes localized
at the inner and outer radii as expected in the topologi-
cal regime and two approximate Majorana-bound states
PA and PB close to zero energy (with a splitting of
EA/B ≈ ±7.3× 10−7 eV≈ ±2.9× 10−3EF) and with am-
plitudes and charge densities similar to those in Fig. 11,
as expected for a magnetic flux of Φ = Φ0/2.

99

Following the proposal in Ref. 81 for a wire, where the
situation is very similar, one possible way to experimen-
tally detect the presence of Majorana modes in a QR
could be by charge sensing: As shown in Secs. III B, the
two Majorana bound-states are split into two particle-
hole symmetric modes with very small, but finite ener-
gies if their wave functions localized at the inner and
outer boundaries of the ring have a finite overlap. Like-
wise, those excitations possess a small, but finite charge
density which is spread over the entire (radial extent

of the) ring. This behavior is different from the other
Andreev-bound states/chiral edge modes away from zero
energy whose charge distribution is localized at a given
edge. The charge distribution of a given mode at different
points in the QR can then be probed by single-electron
transistors acting as charge detectors.81 In Appendix B,
we directly show the similarity of Majorana-like states in
a one-dimensional finite wire and a QR with cylindrical
geometry.
Most proposals to detect Majorana modes in a con-

densed matter context usually involve conductance or—
in the case of rings—interference measurements.59,60,63,91

The signature of Majorana modes in these measure-
ments is typically a zero-bias conductance peak or con-
ductance peaks close to zero. However, these zero-bias
conductance peaks can also originate from phenomena
other than Majorana modes (such as the Kondo effect69),
which in turn makes it difficult to identify Majorana
modes conclusively. Combining these conductance mea-
surements with charge measurements as mentioned above
could, on the other hand, then be used to identify the
(approximate) Majorana modes.81 This is because the
charge distribution of split Majorana modes is spread
over the entire ring, whereas phenomena such as the
Kondo effect are restricted to the boundaries and possi-
ble changes in the charge density could only be detected
there.

V. CONCLUSIONS

We have theoretically studied chiral p-wave supercon-
ductivity in QDs and QRs and calculated the quasipar-
ticle excitation spectra in these structures as well as the
corresponding excitation amplitudes and charge densi-
ties. In the topological regime, we can observe the chiral
edge modes localized at the boundaries and possessing
finite energy in QDs and QRs, whereas no edge modes
appear in the topologically trivial regime. However, none
of the edge modes in the topological regime possess zero
energy, that is, none of them is a Majorana mode. Only
by applying a magnetic field which is expelled from the
QR, but which creates a flux that is an odd integer multi-
ple of Φ0/2 = π~/e, Majorana modes, that is, degenerate
edge modes with zero energy and zero charge density, be-
come possible in a QR in the topological regime, whereas
none can be found in a QDs. Finite-size effects result in
a splitting of these degenerate edge modes, leading to ap-
proximate Majorana modes in the sense that they have
only approximately zero energy and zero charge density
and are only approximately degenerate. This small, but
finite charge distribution is then spread over the entire
QR which allows for charge sensing measurements—in
conjunction with other measurements at the edges—to
probe the presence of Majorana modes. In the case of a
magnetic field penetrating into the superconducting re-
gion, edge modes with approximately zero energy and
charge can still be supported, although in this case the
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charge distribution is not necessarily spread over the en-
tire QR.
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Appendix A: Analytical solution

For setups (i) and (ii), Eq. (8) reduces to





− ~
2

2m∗

[

∂2
r + 1

r∂r −
(m+nΦ/2)2

r2

]

− EF −i~|α|
(

∂r +
m+1+nΦ/2

r

)

−i~|α|
(

∂r − m+nΦ/2
r

)

~
2

2m∗

[

∂2
r + 1

r∂r −
(m+1+nΦ/2)2

r2

]

+ EF





(

f(r)
g(r)

)

= E

(

f(r)
g(r)

)

, (A1)

where m + nΦ/2 is either an integer or a half-integer.
We note that in the presence of a magnetic flux which
is an integer multiple of Φ0, that is, in the case of nΦ

being an even integer, the energies E and functions f(r)
and g(r) for a fixed electronic angular momentum quan-
tum number m in Eq. (A1) are determined by the same
equation as the energies and functions for zero magnetic
flux, but with an angular momentum quantum number
m + nΦ/2. Thus, if nΦ is an even integer, the energies
and states with the angular momentum quantum num-
ber m are the same as the energies and states with the
angular momentum quantum number m+ nΦ/2 at zero
flux, that is, Em(Φ) = Em+nΦ/2(0).
After those remarks on the special case in which nΦ

is an even integer we now turn our attention to solving
Eq. (A1) for any integer nΦ. As mentioned in Sec. II, the
excitation energies Em(Φ) satisfy the relation Em(Φ) =
−E−(m+1+nΦ)(Φ) due to particle-hole symmetry.
A solution to Eq. (A1) can be obtained analytically

because the diagonal components of the matrix corre-
spond to Bessel’s equation, while the off-diagonal ele-
ments correspond to raising and lowering operators for
Bessel functions.100 A general solution to Eq. (A1) at
energy E thus reads

(

f(r)
g(r)

)

= aη+(r) + bη−(r) + cχ+(r) + dχ−(r) (A2)

with the four fundamental solutions

η±(r) =

(

u±Jl(κ±r)
v±Jl+1(κ±r)

)

, χ±(r) =

(

u±Yl(κ±r)
v±Yl+1(κ±r)

)

,

(A3)
where Jl(x) and Yl(x) are the Bessel and Neumann func-
tions, l = m+ nΦ/2 an integer or half-integer,

κ± = κ±(E) =

√
2m∗

~

[

EF −m∗|α|2

±
√

(EF −m∗|α|2)2 − E2
F + E2

]1/2

,

(A4)

and, if α 6= 0,

u± =
i~|α|κ±

√

~2|α|2κ2
±
+
(

~2κ2
±

2m∗ − EF − E
)2

v± =

~
2κ2

±

2m∗ − EF − E
√

~2|α|2κ2
±
+
(

~2κ2
±

2m∗ − EF − E
)2

.

(A5)

We note that the components u± and v± as well as κ±

(if measured in units of kF) depend only on the effec-
tive pairing parameter p given by Eq. (9) and the ratio
E/EF. Thus, in the topological regime the spatial extent
(with respect to λF) of the edge modes at low energies
is primarily determined by the parameter p. Finally, the
energy E and the complex coefficients a, b, c, and d have
to be determined from the boundary conditions for QDs
and QRs.
(i) Quantum dots.
In the case of QDs, the boundary conditions require

that f(r) and g(r) do not diverge at r = 0 and that
f(Ro) = g(Ro) = 0. The condition at r = 0 can only
be satisfied if c = d = 0 in Eq. (A2), while the condition
at r = Ro yields a system of two linear equations for the
coefficients a and b. This system has a nontrivial solution
if

u+v−Jl(κ+Ro)Jl+1(κ−Ro) = u−v+Jl(κ−Ro)Jl+1(κ+Ro),
(A6)

which in turn represents a transcendental equation to
obtain the excitation energies E for QDs.
(ii) Quantum rings.
For QRs, the boundary conditions f(Ro) = g(Ro) =

f(Ri) = g(Ri) = 0 have to be satisfied. Inserting these
conditions into Eq. (A2) yields a linear system of four
equations for the coefficients a, b, c, and d, which pos-
sesses a nontrivial solution if

det





η+(Ro) η−(Ro) χ+(Ro) χ−(Ro)

η+(Ri) η−(Ri) χ+(Ri) χ−(Ri)



 = 0. (A7)
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FIG. 17. (Color online) Comparison between the (a) calcu-
lated excitation spectra as well as the effective dimensionless
(b) probability and (c) charge densities, ρeff(x) and ρc,eff(x),
respectively, for selected excitations in a QR threaded by a
magnetic flux of Φ0/2 and a one-dimensional wire with the
same parameters. While the energy levels in the QR can be
described by the quantum number m, the quantum wire has
discrete energy levels. Here, the states shown in panels (b)
and (c) are marked in the energy spectrum, panel (a).

The excitation energies E for QRs can then be obtained
from the transcendental Eq. (A7).

Appendix B: Comparison between a quantum ring

and a wire

Figure 17 compares the excitation spectrum, probabil-
ity and charge densities for selected excitations in a QR
with outer radius Ro = 10λF, inner radius Ri = 9λF,
and pairing parameter p = 2 if a magnetic flux of Φ0/2
is enclosed by Ri with no magnetic field penetrating into
the QR and a one-dimensional wire of length L = λF,
pairing parameter p = 2, and no magnetic field. The
coordinate x in Figs. 17 (b) and (c) is to be read as the
shifted radial coordinate r − Ri in a QR and the one-
dimensional coordinate l of a wire, while the effective
dimensionless probability and charge densities are to be
read as ρeff(x) = ρ(r)λ2

F and ρc,eff(x) = ρc(r)λ
2
F for the

QR and as ρeff(x) = ρ(l)λF and ρc,eff(x) = ρc(l)λF for
the wire.
As can be seen in Fig. 17, the eigenenergies of the QR

at m = −1 correspond very well to the eigenenergies of a
wire with the same parameters. Likewise, the probability
and charge densities of the two geometries are very sim-
ilar with a slight difference in their probability maxima
in Fig. 17 (b), which are different for the QR due to the
inequivalent inner and outer edge modes, unlike for the
wire geometry. The similarity is even more pronounced
if instead of the densities ρ(r)λ2

F and ρc(r)λ
2
F the radial

densities ρ(r)rλF and ρc(r)rλF are chosen. Then, both
maxima in the probability density of the QR have the
same height similar to the wire.
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