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Abstract

We report measurements of the cross-plane thermal conductivity of periodic Co/Cu multilay-

ers using time-domain thermoreflectance. The cross-plane thermal conductivity increases from

∼ 18 W m−1 K−1 at remanence to ∼ 32 W m−1 K−1 at saturation fields. This giant magnetother-

mal resistance (GMTR) effect is consistent with predictions based on the Wiedemann-Franz law.

We discuss the role of a spin-dependent temperature, known as spin heat accumulation, in GMTR

experiments and develop a three-temperature model capable of predicting the time-evolution of

the temperatures of majority-spin electrons, minority-spin electrons, and phonons subsequent to

pulsed laser heating.

PACS numbers:
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I. INTRODUCTION

The electrical conductivity through periodic Co/Cu multilayers can show changes up to

50% upon application of a magnetic field1,2. This giant magnetoresistance (GMR) has a

thermal analog observed in the CIP geometry (heat-current-in-plane) that is known as giant

magnetothermal resistance (GMTR)3,4. More recently, nanoscale thermal transport from

a ferromagnetic metal into a nonmagnetic conductor has attracted interest in the field of

spin caloritronics5 due to the possibility of generating a spin-dependent temperature near

the interface6–9. The concept of different effective temperatures T↑ and T↓ for majority-

and minority-spin electrons is known as spin heat accumulation (SHA). SHA plays a key

role in the theory of GMTR in the CPP geometry (heat-current-perpendicular-to-plane),

similar to spin accumulation in the theory of CPP-GMR10,11. Therefore, the observation

of CPP-GMTR in spin valves composed of two ferrmagnetic metals separated by a normal

metal spacer has been interpreted as a proof of the existence of SHA7,9. Considerably larger

effects are expected in periodic magnetic multilayers composed of a large number of stacked

spin valves.

Here, we focus on thermal transport through periodic Co/Cu multilayers in the hitherto

unexplored geometry perpendicular to the sample plane. In Sec. II, we facilitate understand-

ing of CPP-GMTR and SHA by discussing spin-dependent thermal diffusion in steady-state.

We use a three-temperature model of majority-spin electrons, minority-spin electrons, and

phonons to derive spin heat relaxation lengths in Co and in Cu. Based on these results, we

apply the Wiedemann-Franz law to predict thermal conductivities and CPP-GMTR of our

samples. In Sec. III, we present experimental measurements of cross-plane thermal conduc-

tivity and CPP-GMTR of Co/Cu multilayers. In Sec. IV, we first discuss the ontological

status of SHA. Then, we use the three-temperature model to predict the time evolution

of SHA in a Co/Cu multilayer subsequent to pulsed laser heating as conjectured in the

experiments of Sec. III.
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II. THEORY

A. Spin heat accumulation in steady-state

In a ferromagnetic metal (F) like Co, heat transport is dominated by electrons. Based

on the Wiedemann-Franz (W-F) law, the thermal conductivity Λ of a ferromagnet is spin-

polarized. In Co, Λ↑ of majority-spin electrons is larger than Λ↓ of minority-spin electrons.

In a normal metal (N) like Cu, both thermal conductivities are equal. As a consequence

of the disparate thermal transport properties on both sides of a F/N interface, thermal

transport from F to N results in T↑ 6= T↓ near the interface.

Diffusion of SHA in steady-state has been described using the thermal equivalent of the

diffusion equation of spin accumulation7,11,12,

∂2(T↑ − T↓)
∂z2

=
T↑ − T↓
l2q

. (1)

The spin heat relaxation length lq is the thermal equivalent of the spin-diffusion length lsf
11.

According to Eq. 1, SHA at a F/N interface decays exponentionally with distance from the

interface. In Appendix A, we solve Eq. 1 for a F/N bilayer and for a periodic F/N multilayer

assuming uniform heat current perpendicular to the interface. For simplicity, we consider

only spin-dependent scattering in the bulk and assume transparent interfaces. The solutions

T↑(z) and T↓(z) across a F/N bilayer are plotted in Fig. 1 (a) together with the spin-averaged

temperature T that is discontinuous at the interface. As indicated in Fig. 1 (a), SHA at a

F/N interface rises with increasing spin heat relaxation lengths lqF and lqN, and increasing

spin-asymmetry coefficient β = (Λ↑ − Λ↓)/(Λ↑ + Λ↓). Adding a spin-dependent interface

thermal conductance with positive spin-asymmetry coefficient would contribute to SHA in

the normal metal. For thermal transport in the reversed direction, the sign of SHA changes.

In a F/N multilayer, the heat flux successively traverses F/N and N/F interfaces. We are

interested in two magnetic configurations of the multilayer: the antiparallel (AP) configura-

tion (magnetization vectors of adjacent F layers are aligned antiparallel) and the parallel (P)

configuration (magnetization vectors are parallel). As discussed above, SHA near a F/N in-

terface changes sign when reversing the direction of the heat current. This means that in

the P configuration, superposition of SHA at successive interfaces reduces the amount of

SHA at each interface, provided that lqN is comparable to the N-layer thickness or larger.

The change of sign of SHA within the N layers can be removed by switching the magnetic
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configuration from P to AP. In the AP configuration, superposition of SHA increases the

amount of SHA in each N layer. The sign of SHA alternates between successive N layers.

Note that in AP configuration, the spin character (↑ or ↓) of the two electron heat channels

alternates through successive F layers. Therefore, we use ‘+’ and ‘−’ to distinguish the two

electron heat channels in the AP configuration.

The solutions T+(z) and T−(z) across a periodic F/N multilayer in AP and P configuration

are plotted in Fig. 1 (b) and (c), together with the spin-averaged temperature T that is

discontinuous at the interfaces. The model assumes lqF = 5h and lqN = 50h, where 2h is

the thickness of one layer. Since the temperature drop across a bilayer is proportional to

the thermal resistance of the bilayer, the difference in the temperature drop for the two

magnetic configurations reveals the CPP-GMTR effect. As indicated in Fig. 1 (b) in the

limit {lqF, lqN} � h, the amount of SHA and the size of CPP-GMTR are proportional to β.

In the limit, lqN � h, SHA at successive interfaces are decoupled and CPP-GMTR vanishes.

B. Time-dependent three-temperature model

The steady-state diffusion equation of SHA, Eq. (1), does not consider energy transfer

between electrons and phonons explicitly. As discussed in Sec. III, we use a pump-and-probe

experiment that measures the temperature decay of the sample surface subsequent to pulsed

laser heating. To describe the dynamic of the spin-dependent electron temperature, we use

a three-temperature thermal diffusion model that considers ↑ electrons, ↓ electrons, and

phonons as weakly coupled thermodynamic reservoirs. Weakly coupled means that ther-

malization occurs much faster within a reservoir than between the reservoirs, as implicated

by the phenomenon of GMTR. The electrons dominate heat conduction and the phonons

dominate the heat capacity. The three-temperature model reads

C↑
dT↑
dt

= g↑p(Tp − T↑) + g↑↓(T↓ − T↑) + Λ↑
d2T↑
dz2

, (2)

Cp
dTp
dt

= g↑p(T↑ − Tp) + g↓p(T↓ − Tp) + Λp
d2Tp
dz2

, (3)

C↓
dT↓
dt

= g↓p(Tp − T↓) + g↑↓(T↑ − T↓) + Λ↓
d2T↓
dz2

, (4)

where C denotes volumetric heat capacity, Λ denotes thermal conductivity, and g denotes

coupling parameter between the reservoirs; the subscript p refers to the thermodynamic
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reservoir of phonons. We use the three-temperature model to express the spin heat relax-

ation length in terms of coupling parameters and thermal conductivities, which allows for

estimation of spin heat relaxation lengths in Co and in Cu.

Due to the coupling between the electron channels and the phonons, the diffusion equation

of SHA, Eq. (1), cannot be derived in general from the three-temperature model. At room

temperature, electron-phonon scattering dominates the spin heat relaxation length7, i.e.,

gep � g↑↓. Neglecting direct coupling between ↑ and ↓ electrons, the steady-state three-

temperature model (dT/dt = 0) implies a double-exponential decay of SHA with the two

relaxation lengths,

lq1 =

√
Λ↑
g↑p

, lq2 =

√
Λ↓
g↓p

. (5)

However, in a normal metal, g↑p = g↓p and Λ↑ = Λ↓. Hence, the steady-state Eq. (1) can

be derived by subtracting Eq. (4) from Eq. (2). The resulting spin heat relaxation length in

the normal metal reads

lqN =

√
Λ↑

g↑p + 2g↑↓
≈

√
Λ↑
g↑p

, (6)

where the approximation is valid at room temperature (see discussion above).

We use Eqs. (5) and (6) to estimate the spin heat relaxation lengths of Co and of

Cu. We estimate the thermal conductivity of Co, ΛCo ≈ 58 W m−1 K−1, and of Cu,

ΛCu ≈ 170 W m−1 K−1, using electrical resistivities measured on 100-nm-thick films

and the W-F law. We assume a spin-asymmetry coefficient of β = 0.46, which equals

the spin-asymmetry coefficient of the electrical conductivity measured at liquid Helium

temperatures13. Since β is expected to decrease slightly with temperature, considering the

low-temperature value of β yields a lower limit for lq2. The electron-phonon coupling param-

eter of Cu, gep ≈ 7.5×1016 W m−3 K−1, has been determined experimentally in Ref. 14. We

estimate the electron-phonon coupling parameter of Co with gep ≈ 4.5 × 1017 W m−3 K−1

of Pt determined experimentally in Ref. 15. To estimate the spin-asymmetry of gep in Co,

we use the ratio of the dimensionless electron-phonon coupling constants, λ↑/λ↓ = 0.16, de-

termined in Ref. 16 using Ab initio calculations. We finally obtain lq1 ≈ 27 nm, lq2 ≈ 7 nm,

and lqN ≈ 34 nm.
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C. Wiedemann-Franz law

While lsf is limited by spin-flip scattering, lq is limited by spin-flip scattering and electron-

phonon scattering6. At high temperatures, relaxation of SHA via electron-phonon scattering

dominates, i.e., lq < lsf . Since spin-conserving electron-phonon scattering does not affect

spin accumulation, CPP-GMTR could be smaller than CPP-GMR, e.g., if lqN < h < lsf ,

resulting in a magnetic-field dependent Lorenz number6.

In typical Co/Cu multilayers, the thickness of the individual layers is of the order of

1 nm. In Sec. III, we present experimental results on Co(3nm)/Cu(1nm) multilayers. Since

the Co and Cu layer thicknesses are well below the spin heat relaxation lengths estimated in

Sec. II B, we can use the W-F law to predict the thermal conductivity of a Co(3nm)/Cu(1nm)

multilayer in AP and P configuration.

The cross-plane electrical resistivity of Co/Cu multilayers has been measured at liquid

helium temperatures, where the dominating resistance of contact leads can be circumvented

by using superconducting strips13. Using a two-current series resistor (2CSR) model valid for

layer thicknesses well below the spin-diffusion lengths11, Bass et al.13 determined the spin-

asymmetry coefficients β = (σ↑−σ↓)/(σ↑+σ↓) = 0.46± 0.05 and γ = (AR↓−AR↑)/(AR↑+

AR ↓) = 0.77 ± 0.04 of the electrical conductance σ of Co and the resistance area product

AR of a Co/Cu interface. They further determined a renormalized resistance area product

of a Co/Cu interface of AR∗ = AR/(1 − γ2) = 0.5 fΩm2. We measured the electrical

resistivity ρCo = 15.2 µΩ cm and ρCu = 4.25 µΩ cm at room temperature on 100-nm-thick

sputtered Co and Cu films. The resistivity of similarily sputtered films of the same material

typically varies within approximately 10%. Assuming that spin-asymmetry coefficients and

interface resistance do not change significantly with temperature, the 2CSR model of a

Co(3nm)/Cu(1nm) multilayer predicts electrical resistivities of

ρAP =
hCoρ

∗
Co + hCuρCu + AR∗

hCo + hCu

= (41± 2) µΩcm, (7)

ρP = ρAP −
(hCoβρ

∗
Co + γAR∗)2

(hCo + hCu)2ρAP

= (24± 2) µΩcm, (8)

where 2hCo and 2hCu are the thicknesses of the Co and Cu layers, and ρ∗ = ρ/(1 − β2)

is a renormalized resistivity. Hence, using the W-F law, we expect to measure thermal

conductivities of ΛAP ≈ (18±1) W m−1 K−1 and ΛP ≈ (30±2) W m−1 K−1 corresponding

to a CPP-GMTR ratio of (ΛP − ΛAP)/ΛP ≈ (41± 5)%.
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III. EXPERIMENT

A. Time-domain thermoreflectance setup

TDTR is an optical pump and probe technique: the sample surface is heated using sub-ps

laser pulses and temperature changes of the sample are detected via changes in the intensity

of reflected sub-ps probe laser pulses17–19. TDTR measurements can be used to determine

thermal properties of materials and to study nanoscale thermal transport20. A sketch of our

TDTR setup is depicted in Fig. 2. We use a Ti:sapphire laser oscillator that produces a train

of sub-ps optical pulses at a repetition rate of 80 MHz. The laser oscillator is adjusted to

output a center wavelength of 783 nm and a full width at half maximum (FWHM) bandwidth

of 12 nm. The laser beam is split into a pump beam and a probe beam. To suppress pump

laser light from leaking into the detector, we combine two approaches: (i) separation of the

polarization of pump and probe light using polarizing beam splitters; (ii) separation of the

spectrum of pump and probe light by approximately 8 nm using ultasteep edge filters. The

optical path of the pump beam includes an electro-optic modulator chopping the pump beam

at 10 MHz, followed by an optical delay line. The optical path of the probe beam includes

a mechanical chopper modulating the probe beam at 200 Hz to facilitate the removal of

coherent pick-up by the RF Lock-in Amplifier. Pump and probe light is focused on the

sample by a single microscope objective. The 1/e2 intensity radius of correlated pump and

probe pulses at the sample is 6.1 µm; the FWHM of the temporal correlation of pump and

probe pulses at the sample is 1.2 ps. Most of the temporal broadening is coming from the

ultrasteep long-pass filter in the pump path.

The maximum temperature excursion created by each pump optical pulse is ∼ 10 K.

Since this is a small fraction of absolute temperature, the thermal response of the sample

is linear in both the pump and probe powers allowing for a frequency domain description

of the signals (compare Ref. 18). In the frequency domain, the incident probe beam can

be represented by a frequency comb of delta functions separated by 80 MHz, while the

modulated incident pump beam, and thus the thermal response of the sample, includes

additional side bands at 10, 70, 90, 150, 170 MHz, etc. The reflected probe signal can be

represented as a convolution of the frequency spectra of the incident probe beam and the

thermal response of the sample. The components of the reflected probe signal at ± 10 MHz
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are extracted by an RF Lock-in Amplifier after conversion into an electrical signal using a

photodiode. The double modulation approach employed includes an audio-frequency Lock-in

amplifier for recording the output of the RF Lock-in Amplifier at 200 Hz.

B. Time-domain thermoreflectance analysis

The TDTR signal is recorded as a function of time delay between pump and probe pulses.

The time delay is varied between -20 ps and 4 ns. Since the diameter of the pump beam is

much larger than the thermal diffusion distance at maximum time delay, thermal transport

on the short time-scales between pump and probe pulses is predominately one-dimensional.

The in-phase component Vin of the measurement voltage oscillates in-phase with the 10 MHz

modulation of the pump beam and can be interpreted as the time-domain response of the

sample to pulsed heating. The out-of-phase component Vout of the measurement voltage

does not change significantly with time delay18. We analyze the ratio −Vin/Vout, which is

independent of laser intensities, sample absorptivity, and thermoreflectance coefficient, and

insensitive to accidental nonconcentric alignment of the pump and probe beams21,22. More-

over, analyzing the ratio −Vin/Vout can approximately correct for changes in the diameter

of the pump beam with time delay.

Thermal transport properties of the sample are determined by adjusting free parameters

in a heat diffusion model to obtain the best fit between the predicted and measured thermal

response of the sample18. While a three-temperature model is required to explain why the

thermal conductivity of the Co/Cu multilayer changes upon application of a magnetic field,

determination of the effective thermal conductivity as a function of magnetic field can be

achieved using a one-channel heat diffusion model. We assume that the initial temperature

profile is proportional to the absorption profile. To account for the initial temperature

distribution, we use a bidirectional heat diffusion model and make use of the superposition

principle. The bidirectional model splits the transducer layer into two layers. At the artificial

interface, a heat flux boundary condition is used to model the absorption of laser energy. We

solve the model for varying depths of the artificial interface. Superposition of the resulting

thermal responses weighted by the normalized optical absorption profile yields the thermal

response of the sample. An example of this approach are shown in Fig. 7 (a) in Appendix B.

Determining the intitial temperature profile from the optical absorption profile can be
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problematic in metals with weak electron-phonon coupling, such as Cu, because electronic

heat conduction during thermalization of electrons and phonons can alter the initial tem-

perature profile in the nanometer length-scale23. However, as demonstrated in Appendix B,

the thermal response of our samples is insensitive to the initial temperature profile for time

delays longer than ∼ 200 ps. Analyzing TDTR data in the time delay range between 200 ps

and 4 ns, we can further assume that the temperature variation within the optical penetra-

tion depth is small compared to the average temperature excursion [compare Fig. 7 (b) in

Appendix B].

C. Experimental results

We measured the cross-plane thermal conductivity of Co(3nm)/Cu(1nm) multilay-

ers using time-domain thermoreflectance (TDTR) as described in Secs. III A and III B.

The Co(3nm)/Cu(1nm) multilayers were deposited on MgO substrates using magnetron-

sputtering. Sample I is composed of 39 Co/Cu bilayers with a 2-nm-thin Ru layer on top.

A scematic of Sample I is depicted in Fig. 3 (a). Sample II is composed of the same layer

stack as Sample I, only the Ru layer is 60 nm thick. Sample III is composed of a 25-nm-

thin Co(3nm)/Cu(1nm) multilayer covered with a 2-nm-thin Ru layer. Exchange coupling

between the ferromagnetic Co layers results in an antiparallel magnetic ground state. By

applying magnetic fields, the magnetization vectors of the Co layers can be aligned parallel.

We used a reference sample composed of a 60-nm-thick Ru layer sputtered directly on

MgO to determine the thermal conductivity of the MgO substrates from TDTR measure-

ments and the thermal conductivity of Ru from four-probe sheet resistance measurements

and the Wiedemann-Franz law.

TDTR measurements on Sample I and Sample II clearly resolve the CPP-GMTR effect.

Figure 3 (b) depicts TDTR data measured on Sample I at zero applied field (AP configu-

ration) and in an applied in-plane field of µ0H = 400 mT (P configuration). The TDTR

ratio −Vin/Vout of in-phase and out-of-phase signals is plotted as a function of time delay

t and mimics the thermal response of the sample. Due to CPP-GMTR, the measurements

show a faster temperature decay for the P configuration. Analysis of TDTR data from

Sample I yields CPP thermal conductivities of ΛAP = (18 ± 2) W m−1 K−1 and ΛP =

(32±3) W m−1 K−1, corresponding to a CPP-GMTR ratio of (ΛP−ΛAP)/ΛP = 0.44±0.08.
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The systematic error includes uncertainties in the thermal conductivity of the MgO sub-

strate and in the thickness of the Co/Cu multilayer. The best fit curves are shown as solid

lines in Fig. 3 (b). The parameter set of the heat diffusion model of Sample I is listed in

Table I.

For Sample II, due to the increased sample thickness, a part of the sensitivity to the

thermal conductivity of the Co/Cu multilayer is shifted to the out-of-phase signal. Therefore,

the corresponding TDTR ratios in AP and P configuration cross at ∼ 200 ps [compare

Fig. 3 (c)], although the in-phase signals differ only for time delays longer than ∼ 100 ps. We

obtain thermal conductivities of ΛAP = (17±1) W m−1 K−1 and ΛP = (28±5) W m−1 K−1,

corresponding to a CPP-GMTR ratio of (ΛP−ΛAP)/ΛP = 0.39±11. Compared to Sample I,

the systematic error is larger due to additional uncertainties in the thermal conductivity of

the Ru layer. The parameter set of the heat diffusion model of Sample II is listed in Table II.

TDTR measurements on Sample III are insensitive to thermal transport through the

Co/Cu multilayer, because the thickness of the sample is comparable to the optical penetra-

tion depth. As shown in Fig. 3 (d), we obtained identical in-phase signals for both magnetic

configurations. This shows that the influence of a giant magnetorefractive effect (MRE) is

negligible. MRE describes changes in the refractive index of a magnetic multilayer due to

changes in the magnetic configuration, which can become significant at infrared wavelengths

longer than ∼ 5 µm24. Moreover, the TDTR ratio is insensitive to the absorption in the

sample and thus insensitive to MRE.

The sizeable CPP-GMTR observed for Sample I and Sample II and the magnitude of

the results are in very good agreement with the predictions from the W-F law in Sec. II C,

where we used spin-asymmetry coefficients of the electrical conductivity of Co and of the

electrical interface conductance from Ref. 13 measured at liquid Helium temperatures. We

note that spin asymmetry coefficients of Co/Cu multilayers have only been determined at

low temperatures, where the dominating resistance of contact leads can be circumvented

by using superconducting strips13. The size of CPP-GMTR observed in this work indicates

that the spin asymmetry parameters do not change significantly with temperature.

Furthermore, we measured the in-plane electrical resistivity of Sample I as a function

of applied magnetic field using van der Pauw measurements. In Fig. 4, we compare the

resulting CIP-GMR curve with the magnetic-field dependence of the cross-plane thermal

conductivity determined from TDTR measurements at constant time delay. The CIP-GMR
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shows similar magnetic-field dependence as the CPP-GMTR. However, the CIP-GMR ratio

of (ρAP − ρP)/ρAP = 0.34 is clearly smaller than the CPP-GMTR ratio. To address the

anisotropy of electrical and thermal transport in Co/Cu multilayers in more detail, we recap

results from a prior work, where we studied CIP-GMTR in periodic Co(3nm)/Cu(1nm)

multilayers25. We obtained similar in-plane electrical resistivities of ρ̃AP ≈ 19 × 10−8 and

ρ̃P ≈ 27× 10−8 Ω m, which confirms the comparability of the two studies. Both CIP-GMR

and CIP-GMTR ratios determined in the prior study are approximately 30%, well below the

CPP-GMTR ratio of (44±8)% of the present study. In the CIP geometry, the probability of

electrons to transport heat through successive Co layers is reduced in comparison to the CPP

geometry. Shunting heat currents parallel to the plane of the layers increase the thermal

conductivity in the AP configuration thereby reducing the CIP-GMTR ratio.

IV. DISCUSSION

In Sec. II, we demonstrated that the steady-state theory of CPP-GMTR in F/N mul-

tilayers predicts SHA in the AP configuration of the multilayer. As stated in Sec. I, the

observation of CPP-GMTR in spin valves has been interpreted as a proof of the existence

of SHA7,9. We believe that this conclusion is too strong. Both SHA and CPP-GMTR are

predictions derived from a spin-dependent scattering theory. While the prediction of CPP-

GMTR has been verified in spin valves7 and with this work in periodic Co/Cu multilayers,

the prediction of SHA still needs to be verified experimentally. This could be accomplished,

e.g., using spin-selective thermometers6. Observation of CPP-GMTR is consistent with the

concept SHA, but does not verify the prediction of SHA.

In Sec. III, we determined the thermal conductivity of Co/Cu multilayers from TDTR

measurements using a one-channel heat diffusion model. In the following, we discuss the

simulation of the TDTR experiments on Sample I using the three-temperature model dis-

cussed in Sec. II B. We extend Eqs. (2) through (4) to a multilayer model and consider a

spin-dependent interface thermal conductance for the electron heat channels at the Co/Cu

interfaces. Note that in the AP configuration the spin character (↑ or ↓) of the two electron

heat channels is not unique, but alternates through successive Co layers. The parameters

used for modeling Sample I are listed in Table IV and discussed in Appendix C. Of signifi-

cance in the following discussion are only the electron-phonon coupling parameters defined
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in Sec. II B, and the spin-dependent thermal conductance per unit area of a Co/Cu inter-

face determined from the spin-dependent interface resistance discussed in Sec. II C and the

W-F law26. We assume that laser energy is transfered to the two electron reservoirs with

equal rates. In accordance with the TDTR experiments, we consider a heat pulse with an

average fluence of 0.85 J m−2, gaussian in time with a full width at half maximum (FWHM)

of 1.2 ps. Furthermore, we consider the spatial absorption profile of pump laser light. We

solve the problem using a finite difference method.

The three-temperature simulation yields good agreement with TDTR measurements on

Sample I at time delays between 100 and 1000 ps. Figure 4 (a) depicts the time-evolution

of the temperatures T↑, T↓, and Tp computed for the center of the upmost Co layer (lines)

together with TDTR data scaled to the simulation at a time delay of 300 ps (symbols). The

dominant contribution to the thermoreflectance signal comes from the phonon temperature.

It takes ∼ 200 ps until changes in the temperature within the optical penetration depth are

small compared to the average temperature rise. Therefore, predicted and measured thermal

response deviate from each other at shorter time delays. Due to the small value of gep in

Cu14, it takes ∼ 10 ps until the Cu layers thermalize with the Co layers via phonon thermal

transport, resulting in an enhanced TDTR signal below ∼ 10 ps. Deviations at time delays

longer than ∼ 1 ns originate from changes in the pump beam diameter with time delay that

affected the thermal response measured but were not considered in the model.

Interestingly, the three-temperature model predicts SHA in both AP and P configurations

[see Fig. 5]. During laser excitation, the ↑ electron reservoir gains a higher temperature than

the ↓ electron reservoir, due to the assumption of g↑p < g↓p
16. After the heating pulse, this

initial SHA is rapidly transfered to the phonon reservoir via electron-phonon scattering. To

understand the subsequent dynamic of the three temperatures in the P configuration, it is

useful to define electron-phonon conductances per unit area in the Co layers, G↑p = g↑phCo,

and G↓p = g↓phCo, where hCo = 3 nm is the thickness of each Co layer. We compare these

electron-phonon conductances with the interface thermal conductances G
Co/Cu
↑ and G

Co/Cu
↓ .

For the parameter set chosen, G↓p ∼ G
Co/Cu
↓ , while G↑p � G

Co/Cu
↑ . This means that in P

configuration, heat is transported across a Co/Cu interface via the ↑ electron heat channel,

before ↑ electrons thermalize with phonons in the Co layer. As a consequence, T↑ < T↓ in

the upper Co layers in the time delay range between ∼ 2 and ∼ 100 ps. This transient SHA

develops throughout the multilayer and changes sign at a certain depth of the multilayer
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that depends on the time delay. The profiles of T↑, T↓, and Tp predicted in AP and P

configuration through a part of the Co/Cu multilayer are shown in Fig. 4 (b) and (c).

V. CONCLUSION

We introduced a three-temperature model capable of predicting the time-evolution of T↑,

T↓, and Tp subsequent to pulsed laser heating. We used this model to quantify spin heat

relaxation lengths in Co and in Cu, which justified the prediction of GMTR in our samples

based on the W-F law. We measured the cross-plane thermal conductivity and the CPP-

GMTR of Co/Cu multilayers. The experimental results are in very good agreement with

the predictions based on the W-F law, indicating that the spin asymmetry coefficients do

not change significantly with temperature. We found that TDTR measurements on Co/Cu

multilayers are well explained by the three-temperature model. In contrast to the steady-

state, the three-temperature model predicts SHA in the P configuration of the multilayer

for a time-period of the order of 100 ps after pulsed laser heating.
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Appendix A: Spin heat accumulation in steady-state

In Ref. 11, Valet and Fert derived the spin-diffusion equation from a Boltzmann equa-

tion and solved the problem of spin-dependent charge transport through a periodic Co/Cu

multilayer. In the following, we assume that the constitutive equations for describing spin

dependent thermal transport are equivalent to the constitutive equations for spin dependent

charge transport12 and discuss the thermal equivalent of the Valet and Fert model.

In steady-state,

J = J↑ + J↓ ≡ J0 = const., (A1)

13



where J denotes heat current density. Differentiation of J in combination with the Fourier

law yields (compare Eq. (17) in Ref. 11)

∂2(Λ↑T↑ + Λ↓T↓)

∂z2
= 0, (A2)

where Λ denotes thermal conductivity.

The general solution of the spin heat diffusion equation, Eq. (1), and Eq. (A2) in a ferro-

magnetic metal (F) is given by

T↑ − T↓ = A exp

(
z

lqF

)
+B exp

(
−z
lqF

)
(A3)

and

Λ↑T↑ + Λ↓T↓ = Ez + F. (A4)

Combining Eqs. (A3) and (A4) yields

T↑(z) =
1− β

2

[
A exp

(
z

lqF

)
+B exp

(
− z

lqF

)]
+

1− β2

Λ∗F
(Ez + F ), (A5)

J↑(z) = −Λ↑
∂T↑
∂z

= − Λ∗F
4lqF

[
A exp

(
z

lqF

)
−B exp

(
− z

lqF

)]
− 1 + β

2
E, (A6)

T↓(z) = −1 + β

2

[
A exp

(
z

lqF

)
+B exp

(
− z

lqF

)]
+

1− β2

Λ∗F
(Ez + F ), (A7)

J↓(z) = −Λ↓
∂T↓
∂z

=
Λ∗F
4lqF

[
A exp

(
z

lqF

)
−B exp

(
− z

lqF

)]
− 1− β

2
E, (A8)

where we used a spin asymmetry coefficient β defined by

Λ↑ =
Λ∗F

2(1− β)
, (A9)

Λ↓ =
Λ∗F

2(1 + β)
. (A10)

In a normal metal (N), β = 0, i.e.,

Λ↑ = Λ↓ =
ΛN

2
, (A11)

and Λ∗F and lqF in Eqs. (A5) through (A8) are replaced by ΛN and lqN.

The spin averaged temperature is defined by

J = J↑ + J↓

⇔ −Λ
∂T

dz
= −Λ↑

∂T↑
dz
− Λ↓

∂T↓
dz

⇒ T (z) =
Λ↑
Λ
T↑ +

Λ↓
Λ
T↓ + C, (A12)
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where the integration constant C can be set to zero, because limz→∞ T = 1
2
(T↑ + T↓).

Inserting Eqs. (A6) and (A8) into Eq. (A1) determines

E = −J, (A13)

Inserting Eqs. (A5) and (A7) into Eq. (A12) yields the spin averaged temperature as

T =
1− β2

Λ∗F
(−J + F ). (A14)

1. Bilayer model

We consider a semi-infinite ferromagnetic metal (F) in contact with a semi-infinite normal

metal (N) and assume only bulk spin-dependent scattering and transparent interfaces. Van-

ishing SHA for z → ±∞ and continuity of the spin-dependent temperatures and heat current

densities at the interface at z = 0 yields the following solution in the F layer (z <= 0).

T↑(z) =
1− β

Λ∗F
J

[
βΛ∗FlqNlqF

ΛNlqF + Λ∗FlqN
exp

(
z

lqF

)
− (1 + β)z

]
+ T0, (A15)

J↑(z) =
1

2
J

[
− βΛ∗FlqN

ΛNlqF + Λ∗FlqN
exp

(
z

lqF

)
+ (1 + β)

]
, (A16)

T↓(z) = −1 + β

Λ∗F
J

[
βΛ∗FlqNlqF

ΛNlqF + Λ∗FlqN
exp

(
z

lqF

)
+ (1− β)z

]
+ T0, (A17)

J↓(z) =
1

2
J

[
βΛ∗FlqN

ΛNlqF + Λ∗FlqN
exp

(
z

lqF

)
+ (1− β)

]
, (A18)

where T0 is the temperature in the F layer at z = 0. In the N layer, the corresponing solution

reads (z > 0)

T↑(z) =
1

ΛN

J

{
βΛNlqFlqN

ΛNlqF + Λ∗FlqN

[
exp

(
− z

lqF

)
− β

]
− z
}

+ T0, (A19)

J↑(z) =
1

2
J

[
βΛNlqF

ΛNlqF + Λ∗FlqN
exp

(
− z

lqN

)
+ 1

]
, (A20)

T↓(z) =
1

ΛN

J

{
− βΛNlqFlqN

ΛNlqF + Λ∗FlqN

[
exp

(
− z

lqF

)
+ β

]
− z
}

+ T0, (A21)

J↓(z) =
1

2
J

[
− βΛNlqF

ΛNlqF + Λ∗FlqN
exp

(
− z

lqN

)
+ 1

]
. (A22)

(A23)
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2. Spin-dependent thermal diffusion model for a periodic multilayer

To treat the multilayer problem, we consider two spin heat channels with fixed spin direc-

tions: the ‘+’ heat channel with spin direction parallel to the x-axis and the ‘−’ heat channel

with spin direction antiparallel to the x-axis. In the P configuration of the multilayer, the

‘+’ heat channel is characterized by the transport properties of majority (↑) spin electrons,

while the ‘−’ heat channel is characterized by the transport properties of minority (↓) spin

electrons. In the AP configuration, the spin character of each channel changes alternates

through successive F layers. Since we are interested in periodic magnetic multilayers with a

large number of repetitions of F/N bilayers, we consider two F/N bilayers (F1/N2/F3/N4)

with periodic boundary conditions. As before, we consider only bulk spin-dependent scat-

tering and assume transparent interfaces. In AP configuration, application of the boundary

conditions determines the coefficients Ai, Bi, and Fi in Eqs. (A5) through (A8) for layers

i ∈ 1, 2, 3, 4 as

A1 = B1 = −A3 = −B3 =
−βJlqNlqF sinh

(
h
lqF

)
ΛNlqF sinh

(
h
lqN

)
sinh

(
h
lqF

)
+ Λ∗FlqN cosh

(
h
lqN

)
cosh

(
h
lqF

) ,(A24)

A2 = −B2 = A4 = −B4 =
βJlqNlqF cosh

(
h
lqN

)
ΛNlqF sinh

(
h
lqN

)
sinh

(
h
lqF

)
+ Λ∗FlqN cosh

(
h
lqN

)
cosh

(
h
lqF

) ,(A25)

F2 =
Λ∗F

1− β2

[
βA1 cosh

(
h

lqN

)
− Jh

(
1− β2

Λ∗F
+

1

ΛN

)]
+ T0

Λ∗F
1− β2

, (A26)

F3 = 2ΛN

[
βA1 cosh

(
h

lqN

)
− Jh

(
1− β2

Λ∗F
+

1

ΛN

)]
+ T0ΛN, (A27)

F4 =
3Λ∗F

1− β2

[
βA1 cosh

(
h

lqN

)
− Jh

(
1− β2

Λ∗F
+

1

ΛN

)]
+ T0

Λ∗F
1− β2

, (A28)

where e = −1.602 × 10−19 As is the charge of an electron, and 2h is the thickness of the

individual layers, which we assume to be equally thick. Furthermore, we defined T1(z =

0) = F1/ΛN ≡ T0.
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In P configuration, we obtain

Ã1 = −B̃1 = Ã3 = −B̃3,=
−βJlqNlqF sinh

(
h
lqF

)
ΛNlqF cosh

(
h
lqN

)
sinh

(
h
lqF

)
+ Λ∗FlqN sinh

(
h
lqN

)
cosh

(
h
lqF

) ,(A29)

Ã2 = −B̃2 = Ã4 = −B̃4 =
βJlqNlqF sinh

(
h
lqN

)
ΛNlqF cosh

(
h
lqN

)
sinh

(
h
lqF

)
+ Λ∗FlqN sinh

(
h
lqN

)
cosh

(
h
lqF

) ,(A30)

F̃2 =
Λ∗F

1− β2

[
βÃ1 sinh

(
h

lqN

)
− Jh

(
1− β2

Λ∗F
+

1

ΛN

)]
+ T0

Λ∗F
1− β2

, (A31)

F̃3 = 2ΛN

[
βÃ1 sinh

(
h

lqN

)
− Jh

(
1− β2

Λ∗F
+

1

ΛN

)]
+ T0ΛN, (A32)

F̃4 =
3Λ∗F

1− β2

[
βÃ1 sinh

(
h

lqN

)
− Jh

(
1− β2

Λ∗F
+

1

ΛN

)]
+ T0

Λ∗F
1− β2

. (A33)

The thermal resistance area products AWAP and AWP of one bilayer of the multilayer are

given by

AWAP = −T3(−b)− T1(−b)
J

= −F3 − T0ΛN

Λ∗NJ
, (A34)

AWP = − T̃3(−b)− T̃1(−b)
J

= − F̃3 − T0ΛN

Λ∗NJ
. (A35)

In the limit h� {lqN, lqF}, we obtain in first order in h
lqN

and h
lqF

AWAP = 2h

(
1

ΛN

+
1

Λ∗F

)
≡ AW 2CSR

AP , (A36)

AWP = 2h

[
1

ΛN

+
1

Λ∗F
− β2ΛN

Λ∗F(ΛN + Λ∗F)

]
≡ AW 2CSR

P . (A37)

Equations (A36) and (A37) are equal to the corresponding bilayer thermal resistance area

products derived from a simpe two-current series resistor (2CSR) model that assumes parallel

thermal transport through uncoupled spin channels (compare Ref. 11). Figure 6 showsAWAP

and AWP as a functions of the spin heat relaxation length lqN.

Appendix B: TDTR analysis using superposition of bidirectional heat flow

As discussed in Sec. III B, we use the superposition of individual solutions of a bidi-

rectional heat flow model to analyze the TDTR measurements. Figure 7 (a) shows the

individual solutions of the bidirectional heat flow model as blue solid lines. The different
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curves correspond to different depths z ∈ {2, 6, 10, ..., 50} nm of the heat flux boundary con-

dition used for modeling the absorption of laser light. The superposition of the individual

solutions weighted by the absorption profile is shown as black solid line. We approximated

the absorption profile using an optical transfer matrix model. Optical constants, summarized

in Table III, were determined using ellipsometry.

The thermalization length between electrons and phonons in Co is given by the spin heat

relaxation lengths lq1 ≈ 27 nm and lq2 ≈ 7 nm [compare Secs. II B and II C]. As shown in

Fig. 7 (a), at time delays longer than approximately 200 ps, the individual solutions for heat

flux boundary conditions at depths below ∼ 14 nm are close together indicating that the

model is robust against changes of the absorption profile due to diffusion of hot electrons.

Appendix C: Parameter set of the three-temperature model of Sample I

Below, we discuss the parameter set considered for the simulation of TDTR measuremnets

on Sample I using the three-temperature model. The values are listed in Table IV.

1. Interface thermal conductances G↑, G↓, and Gp

Pratt and Bass measured resistance area products AR of various metal1/metal2

interfaces27. For Ru/Co interfaces, they obtained AR ≈ 0.5 fΩm2. For Co/Cu interfaces,

Pratt and Bass obtained AR∗ = (AR↑ − AR↓)/4 ≈ 0.5 fΩm2. We use the Wiedemann-

Franz law to estimate the corresponding interface thermal conductances26. To obtain

G↑ = G∗Co/Cu/[2(1 − γ)] and G↓ = G∗Co/Cu/[2(1 + γ)], we assume γ = 0.77 as discussed

in Sec. II C.

For phonons, we consider a typical interface thermal conductance of 300×106 W m−2 K−1

at all interfaces, which is much smaller than the interace thermal conductances of electrons.

Therefore, contribution of phonons to the total thermal conductivity is small.

2. Coupling parameters g↑p, g↓p, and g↑↓

Definition of g↑p and g↓p of Co and of gep of Cu is discussed in Sec. II B. We estimated

gep of Ru using gep of Pt measured in Ref. 15. Since at room temperature, electron-phonon
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scattering dominates over spin-flip scattering, we assume that gee � gep. Based on this as-

sumption, the three-temperature model is insensitive to gee. Therefore, we chose an arbitrary

value in agreement with this assumption.

3. Thermal conductivities Λ↑, Λ↓, and Λp

Definition of Λ↑ and Λ↓ of Co and of Λe of Cu is discussed in Sec. II B. Since the thermal

conductance of phonons in the Co/Cu multilayer is dominated by the Co/Cu interface

thermal conductance, the model is insensitive to Λp. Therefore, we set Λp to the same

arbitrary but small value for all layers.

4. Volumetric heat capacities C↑, C↓, and Cp

The thermalization time of electrons and phonons in the Co layers is much shorter than

the duration of the laser pulse, i.e., only a small amount of the energy of the laser pulse

is stored in the electron reservoir after the pulse28. This means that the sensitivity of

the three-temperature model to the electronic heat capacity Ce = C↑ + C↓ is negligibly

small. The values of Ce were calculated using the low-temperature approximation Ce =

π2k2BN(EF)T/329, where N(EF) is the density of electronic states at the Fermi Energy EF,

kB is the Boltzmann constant, and T denotes temperature. In Co, N↓(EF) > N↑(EF). We

considered a spin dependence of N(EF) in Co that has been calculated using the density

functional theory program WIEN2k30.

Values for Cp were determined by substracting Ce from the respective total heat capacities

taken from Ref. 31.

5. Absorption rates P↑ and P↓

The thermal response of the sample is linear in both the pump and probe powers. There-

fore, accurate knowledge of the absorbed energy is not required for analyzing TDTR data.

However, in the three temperature model, P↑, P↓, g↑p, and g↓p determine the initial SHA
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during laser excitation.

∗ Electronic address: kimling@illinois.edu

1 M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet,

A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988), URL http://link.aps.org/

doi/10.1103/PhysRevLett.61.2472.

2 G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989), URL

http://link.aps.org/doi/10.1103/PhysRevB.39.4828.

3 H. Sato, H. Henmi, Y. Kobayashi, Y. Aoki, H. Yamamoto, T. Shinjo, and V. Sechovsky, J.

Appl. Phys. 76, 6919 (1994), URL http://link.aip.org/link/?JAP/76/6919/1.

4 J. Shi, K. Pettit, E. Kita, S. Parkin, R. Nakatani, and M. Salamon, Phys. Rev. B 54, 15273

(1996), URL http://link.aps.org/doi/10.1103/PhysRevB.54.15273.

5 G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nature Mater. 11, 391 (2012), ISSN 1476-1122,

URL http://dx.doi.org/10.1038/nmat3301.
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FIG. 1: (Color online). Simulation of spin heat accumulation (SHA) in steady-state assuming

spin-dependent thermal conductivities in F layers and transparent interfaces. (a) SHA near the

interface of a semi-infinite F layer in contact with a semi-infinite N layer. SHA at the F/N interface

is proportional to the heat current density J and rises with increasing spin-asymmetry coefficient

β and increasing spin heat relaxation lengths lqF and lqN. (b) and (c) SHA through a periodic

F/N multilayer assuming lqF = 5h and lqN = 50h. In AP configuration (b), SHA in N layers is

proportional to Jβ. In P configuration (c), SHA is negligible. The difference in the temperature

drops of the two configurations reveals the CPP-GMTR effect.
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FIG. 2: (Color online) Scheme of the time-domain thermoreflectance setup described in the main

text. PBS: polarizing beam splitter, EOM: electro optic modulator, BS: beam splitter, PD: pho-

todiode.
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FIG. 3: (Color online). (a) Scematic of Sample I in AP configuration studied using time-domain

thermoreflectance (TDTR). (b) TDTR data (symbols) recorded on Sample I at zero applied field

(AP config.) and in an in-plane field of 400 mT (P config.). The ratio of in-phase and out-of-phase

voltages, −Vin/Vout, mimics the thermal response of the sample. The best fits between predicted

and measured thermal response (shown as solid lines) yield cross-plane thermal conductivities

ΛAP = 18 ± 2 and ΛP = 32 ± 3 W m−1 K−1. (c) Corresponding curves for Sample II yielding

ΛAP = 17 ± 1 and ΛP = 28 ± 5 W m−1 K−1. (d) Vin as a function of time delay measured on

Sample III.
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FIG. 4: (Color online). Cross-plane thermal conductivity Λ (left y-axis) and in-plane electrical

resistivity ρ (right y-axis) measured on Sample I as a function of magnetic flux density µ0H. Left-

and right-pointing triangles indicate the direction of the field sweep. Lines serve as a guide to the

eye.
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FIG. 5: (Color online). Three-temperature simulation of pulsed laser heating of Sample I. (a)

Temperatures of majority-spin electrons (T↑), minority-spin electrons (T↓), and phonons (Tp) in

the center of the upmost Co layer of Sample I in AP (solid lines) and P (dashed lines) configuration.

The model succeeds in explaining the experimental data (symbols) over a wide range of time delays

t. (b) and (c) Temperature profiles in AP and P configuration at time delay of 100 ps. In AP

configuration, the sign of SHA in the Cu layers alternates. In contrast to steady-state, the three-

temperature model predicts SHA in both AP and P configurations.

26



 0.1    1   10  100
0.7

0.8

0.9

1.0

1.1

AW
AP

AW
P

AW
2CSR
P = 2h

[

1

ΛN
+

1

Λ∗

F

−

β2
ΛN

Λ∗

F(ΛN +Λ∗

F)

]

AW
2CSR
AP = 2h

(

1

ΛN
+

1

Λ∗

F

)

l
qN

 / 2h

A
W

 / 
A

W
 A

P
 2

C
S

R

FIG. 6: (Color online). Thermal resistance area product AW of one bilayer of a periodic multilayer

as function of the spin heat relaxation length lqN of the normal metal layers in the antiparallel

(AWAP, red line) and the parallel (AWP, blue line) magnetic configuration. In the limit lqN/h� 1,

AWAP and AWP converge to the respective thermal resistance area products determined from a

simplified two-current series resistor (2CSR) model that assumes parallel thermal transport through

uncoupled spin channels [Eqs. (A36) and (A37)].
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FIG. 7: (Color online). (a) TDTR ratio −Vin/Vout of Sample I in AP configuration. Red circles:

measurement data. Light blue lines: solutions from a bidirectional thermal diffusion model with

heat flux boundary condition at different depths zi from the surface as indicated in the figure.

Black line: superposition of the solutions of the bidirectional model, weighted by the absorption

profile. (b) Corresponding Temperature profiles through Sample I at time delays indicated in the

graph. The verical dashed line indicates the optical penetration depth (opd).
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TABLE I: Properties of sample I. Λ: thermal conductivity, C: volumetric heat capacity, h: layer

thickness, G: interface thermal conductance.

Λ C h

(W m−1 K−1) (106 J m−3 K−1) (10−9 m)

Co/Cu ML 32±3a (P); 18±2a (AP) 3.64b 161±3c

MgO 40a 3.36d ∞

GCo/MgO = (300± 27)× 106 W m−2 K−1 a

aDetermined from TDTR measurements.
bAverage value using volumetric heat capacities of Co and of Cu taken from Reference 31.
cNominal total thickness of Ru(2nm)/[Co(3nm)/Cu(1nm)]39Co(3nm) multilayer, confirmed using x-ray

reflectometry.
dReference 31.
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TABLE II: Properties of sample II. Λ: thermal conductivity, C: volumetric heat capacity, h: layer

thickness, G: interface thermal conductance.

Λ C h

(W m−1 K−1) (106 J m−3 K−1) (10−9 m)

Ru 45±5a 2.90b 57±2c

Co/Cu ML 28±5d (P); 17±1d (AP) 3.64e 159±3f

MgO 40d 3.36b ∞

GRu/Co = 1400× 106 W m−2 K−1 g

GCo/MgO = 328× 106 W m−2 K−1 h

.

aDetermined from electrical sheet resistance measurements and the Wiedemann-Franz law.
bReference 31.
cDetermined using picosecond acoustics.
dDetermined from TDTR measurements.
eAverage value using volumetric heat capacities of Co and of Cu taken from Reference 31.
fNominal total thickness of Ru(2nm)/[Co(3nm)/Cu(1nm)]39Co(3nm) multilayer, confirmed for Sample I

using x-ray reflectometry.
gEstimated using experimentally determined values of the interface resistance between Ru and Co and the

Wiedemann-Franz law26,27
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TABLE III: Refractive index n and extinction coefficient k determined using ellipsometry.

n k

Rua 5.3 4.9

Co/Cu MLb 3.2 4.7

aReference sample: Ru(60nm) on MgO
bSample I
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TABLE IV: (Color online). Parameter set used for the three-temperature model of Sample I in

AP configuration. Λ: thermal conductivity, C: volumetric heat capacity, h: layer thickness, G:

interface thermal conductance. Subscript p refers to phonons, superscripts + and − distinguish the

two electron heat channels of opposite spin direction. Properties of majority spin electron electrons

are indicated in italics and red font color, properties of minority spin electrons are indicated in

blue font color.

Λ+ Λ− Λp C+ C− Cp g+p g−p g+− h G+ G− Gp

(W m−1 K−1) (104 J m−3 K−1) (1017 W m−3 K−1) (10−9 m) (109 W m−2 K−1)

Ru 18 18 5 3 3 284 2.3 2.3 0.1 2 7 7 0.3

Co 44 16 5 1 10 361 0.6 3.9 0.1 3 31 4 0.3

Cu 75 75 5 2 2 339 0.4 0.4 0.1 1 4 31 0.3

Co 16 44 5 10 1 361 3.9 0.6 0.1 3 31 4 0.3

Cu 75 75 5 2 2 339 0.4 0.4 0.1 1 4 31 0.3

MgO 0 0 40 0 0 336 0 0 0 ∞ - - -
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