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DFT calculations of the vibrational modes of Bi12SiO20 are presented, with a detailed assignment
and geometry-investigation of the vibrational modes in the sillenite structure. We show that the
symmetry and geometry of the strong Raman peaks allow direct probing of the Bi-O(1) and Bi-O(2)
bonds. The physical significance of the vibrational modes are considered to discuss experimental data
on the trivalent sillenites and show evidence of O(1) and/or O(2) vacancies in the Bi-O framework.
The infrared modes are also discussed to motivate future systematic studies of sillenites. The Born-
effective charges of sillenites are studied for the first time and the results show the existence of large
and anisotropic charges. The magnitude of the LO-TO splits are also calculated and compared with
experiment.

PACS numbers: 63.20.dk, 78.30.-j

I. INTRODUCTION

The sillenites Bi12SiO20 and Bi12GeO20 have been
extensively studied for decades due to their numerous
nonlinear-optic properties.1–5 The crystal structure of
these sillenites are the simplest in the family and can
be referred to as the ideal sillenite structure. Bi12TiO20

has also gained recent interest not only for nonlinear
applications6,7 but also for its photocatalytic activity.8–10

For the latter application the iron sillenite Bi25FeO39

has also received recent attention.11,12 The synthesis and
characterization of new sillenites remains an active re-
search topic.13–19

The simplest description of the sillenite structure is
a bcc arrangement of MO4 tetrahedra connected by a
bismuth-oxygen framework. The center of each tetra-
hedron houses a metal cation M (e.g. Si4+, Ge4+).
All bismuth atoms occupy sites with equivalent symme-
try, while the oxygen atoms have three equivalent sites.
O(1), the least symmetric site, has one bismuth atom as
its nearest-neighbour; O(2) has three bismuth nearest-
neighbours; and O(3) oxygen atoms form the tetrahe-
dra. (See Table I and Figure 1). If the metal cation is
not tetravalent, the resulting structure is more complex
and depends on the valence number of the cation. Al-
though there are conflicting views, the latest stoichiome-
try model of sillenites, by Valant and Suvorov,21 assumes
partial occupation of Bi3+ cations in the center of the
tetrahedron (M site); and the occupation percentage de-
pends on the valence of the metal cation. For example,
sillenites with trivalent metal cations (i.e. Ga3+, Fe3+)
result in 50% Bi3+ occupation of the M site.21 The lone-
pair of Bi3+ then creates an oxygen vacancy in the tetra-
hedron due to the large size of the lone-pair.21

Vibrational spectroscopy continues to be useful in
understanding the electronic and structural proper-
ties of many compounds: from traditional22 and
novel superconductors,23–26 to multiferroics,27–29 and
dielectrics.30,31 Although the assignment of Raman and

IR peaks can be difficult for some compounds; care-
ful assignment can improve understanding of the struc-
ture. Detailed assignment of vibrational modes in Bi
pyrochlores have resulted in several insights;32 the spec-
tra reveal relaxation of the selection rules due to dis-
placement disorder,30,32,33 and the spectra can be used
to study the effects of the displacement disorder on the
tunability of the permittivity.34.

In this work, we report density functional theory
(DFT) calculations of the infrared (IR) and Raman spec-
tra of sillenites. The first purpose is to understand the
physical significance of the vibrational modes. IR and
Raman spectra are more useful if one understands the
geometry of the vibrations. We made a careful compar-
ison of different functionals to be able to correctly as-
sign the experimentally observed IR and Raman modes.
The analysis shows that the vibrational spectra can pro-
vide information into specific components of the sillenite
structure. Only the vibrational spectra of the tetrava-
lent and “ideal” sillenites Bi12SiO20 and Bi12GeO20 were
investigated. The vibrational spectra of trivalent sillen-
ites with random occupations would prove too difficult
due to the large calculation times it would require to
build large enough supercells that mimic true random
occupation of M sites and O(3) vacancies.35 Although
it is difficult to prove using expensive DFT calculations,

Site x y z Wyckoff site Occupancy
Bi 0.32 0.18 0.02 24f 1
Si 0 0 0 2a 1

O(1) 0.37 -0.01 0.26 24f 1
O(2) 0.20 0.20 0.20 8c 1
O(3) -0.095 -0.095 -0.095 8c 1

TABLE I. Wyckoff table for the silicon sillenite structure. Us-
ing simple-cubic translational vectors, 66 atoms are generated
by applying 24 symmetry operations where two are always re-
lated by a simple BCC translation.
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FIG. 1. A representative sillenite structure. An M cation,
such as Si4+ [blue], sits on the most symmetric site (2a) that
correspond to the edges and the center of the BCC cell. Each
M cation is surrounded by four O(3) oxygens [red] in a tetra-
hedron configuration. Both O(2) and O(3) sit on 8c symmet-
ric sites where O(2) [purple] are located farther from the 2a
sites. The O(2) oxygens have three nearest-neighbour Bis-
muth ions, which later in the text will be referred to as a
Bi3 plane for the discussion of some phonon modes. The Bis-
muth [gray] and O(1) oxygen [orange] atoms sit on 24f sites,
the least symmetric. Bi and O(1) are each other’s nearest-
neighbours but each O(1) has another very close bismuth
bonded to it. The Bi, O(1) and O(2) atoms form what is
commonly called “a Bismuth-oxygen” framework that inter-
connect the M -O(3)4 tetrahedra. The image was created us-
ing the XCrySden program.20

a physical argument is that the geometry of the vibra-
tions should be very similar for the tetravalent and the
trivalent sillenites since the substitutions and vacancies
in the trivalent sillenites are random and correspond to
(in average) one atom per unit cell of 33 atoms. In other
words most modes such as “stretching of the Bi-O(1)
bond” should have similar geometries for both tetrava-
lent and trivalent sillenites. The experimentally similar
spectra of trivalent and tetravalent sillenites in Ref. [32]
gives validity to this argument. Knowledge of the geom-
etry of the modes proves useful in a comparison of the
experimentally observed modes across different sillenites.
The comparison shows that the trivalent sillenites devi-
ate from the tetravalent sillenites at not only the tetra-
hedra; but also at the surrounding Bi-O framework. As
it will be discussed later in the text, one possibility is
the existence of oxygen vacancies in the bismuth-oxygen
framework of trivalent sillenites (Bi25GaO39, Bi25FeO39,
and Bi25InO39).

The second purpose was to investigate the origin of LO-
TO splitting in Bi12SiO20. Our calculations show highly
anisotropic and anomalously large Born effective charges
associated with the bonds between Bi-O(1) and Bi-O(2).

This is an interesting result since most studies of large
Born-effective charges deal with ferro-electric compounds
in polar space-groups,36–38 while the the sillenites are well
known to be in a non ferro-electric space group.

The third purpose was the opportunity to expand the
literature on phonon calculations of metal oxides. The
unit cell of the sillenites is large, and thus computations
are expensive; we therefore present careful discussions on
the convergence of important physical values. Also, al-
though recent manuscripts have used the LDA functional
and claimed superiority over the GGA functional in some
metal oxides,39 our results for sillenites show that GGA
outperforms LDA in calculating the lattice parameters
and bond-lengths. Also, by using two different function-
als for the calculation, we can improve the confidence in
the understanding of the geometry and physical signifi-
cance of the vibrational modes.

The manuscript has been divided into four mostly-
independent sections. The first section presents the de-
tails of the DFT calculations and includes discussion
about convergence, and a comparison of LDA and GGA.
The second section presents the assignment of the Ra-
man modes, the comparison of the Raman spectra across
different sillenites, and the evidence for O vacancies in
the Bi-O framework. The third section presents the cal-
culations on the strong IR modes, the anomalous Born
effective charges, and LO-TO splitting. Finally, the last
section discusses how the DFT calculations contrast and
complement lattice dynamical calculations that fit spring
constants, or potential parameters, to known vibrational
spectra. This section also discusses future work.

II. DFT CALCULATION DETAILS

A. Unit cell

The sillenite structure occurs in the body-centered I23
space group, and has 33 atoms in the unit cell. (See Ta-
ble I). The site with highest symmetry is theM -site since
only one atom is generated by the operations. O occurs
on two equally symmetric sites, the O(3) site which gen-
erate the four atoms in the tetrahedron, and the O(2)
site, which generates four O ions each bonded to three
nearest-neighbour Bi atoms. The least symmetric sites
are those of Bi and O(1) with degeneracy 12 inside the
Bi-O framework. In crystallography, it is custom to use a
simple cubic unit cell with 66 atoms. Both choices of the
unit cell yield the same physical crystal when translated.
The larger supercell is useful for doping studies.8 It is
important to note, however, that only the bcc unit cell
(and its translation vectors) yields the minimal-volume
Brillouin zone. Therefore only 33 atoms should be used
in a phonon calculation; using a larger unit cell results
in non-physical modes.
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B. Energy calculations

Energy calculations were carried using the open-
source DFT software Quantum Espresso.40 For compar-
ison, we used two norm-conserving pseudopotentials: a
Perdew-Burke-Ernzerhof (PBE) GGA functional,41 and
a Perdew-Wang (PW) LDA functional. Structural calcu-
lations using the GGA functional were performed using
both the 6s2 6p3 and 5d10 6s2 6p3 valence states for Bi.
The calculated lattice parameters from the 6s2 6p3 state
agreed better with experiment (0.1 % agreement com-
pared to 2 %). Due to the better results of the structural
calculations of our system, unless otherwise noted, all re-
sults presented in this work use the 6s2 6p3 valence state
for Bi.
Unless otherwise noted, all calculations used an en-

ergy cutoff of 100 Ry for the expansion of plane waves in
the self-consistent calculation. A 100 Ry cutoff is higher
than the value used in other studies of sillenites in the
literature,42–44 and comparable to values used for phonon
calculations of pyrochlores.45,46 The convergence versus
cutoff energy will be discussed when we present interest-
ing physical quantities.
A 3×3×3 mesh of k-points in the Brillouin zone was

generated using the Monkhorst-Pack scheme.47 At this k-
mesh density, considering the large unit cell, the lattice
parameter converged within less than 0.01 % for both
functionals and the phonon frequencies are converged
within less than 1 cm−1 for all modes.

C. Optimization of the unit cell

The minimum energy configuration of the crystal was
investigated by two approaches, a manual variation of
the lattice constant followed by relaxation of internal co-
ordinates, and a constrained minimization of the stress
tensor. The results, using the GGA functional, agreed on
the final lattice constant (10.12 Å) to within 0.1%. For
both functionals, the convergence of the lattice parame-
ter versus the kinetic-energy cut-off for the plane waves
was better than 0.1%.
Using the GGA functional, the calculated lattice pa-

rameter compares well with the experimentally observed
value for Bi12SiO20 (10.12 Å.42). The LDA functional
predicted a 9.78 Å lattice constant; an underestimation
of the lattice constant common in LDA calculations and
previously reported in pressure-dependent calculations
of Bi12SiO20.

42 The results were similar for Bi12GeO20,
where the experimental lattice constant (10.14 Å)21,48 is
closer to the value obtained from the GGA functional
(10.17 Å), rather than the LDA functional (9.81 Å). For
Bi12SiO20, the bond experimentally measured by Wiehl
et. al. were compared to our DFT calculations.42 The
bond lengths calculated from the GGA functional were
accurate within about 1% and outperformed LDA. (See
Table I in the supplementary documents).
The pseudopotential comparison is not trivial since it

has been reported that calculations for metal oxides of
the lattice parameter and bond lengths agree better with
experiment for LDA than for GGA.39 Although LDA
yielded accurate lattice constants in calculations of the
Bi2Ti2O7 pyrochlore,39 and other pyrochlores;49 our re-
sults for sillenites are similar to calculations of other sys-
tems where LDA underestimates cell parameters more
than GGA does.50–52

D. Phonon calculations

The vibrational frequencies were calculated in the lin-
ear response regime using Density Functional Perturba-
tion Theory (DFPT). The “crystal” acoustic-sum-rule
(ASR), which takes into account both the sum rule and
the index rule,53,54 was imposed on the calculated dy-
namical matrix. The infrared cross sections were calcu-
lated within the linear response by analyzing the induced
dipole for each phonon calculation. The Raman cross
sections were calculated using the second order response
method by Lazzerri and Mauri.55 Figure 2 shows the cal-
culated scattering cross sections for Raman and IR.
The convergence of the phonon modes versus the

cutoff-energy of the plane waves was not trivial. Figure
3 shows representative phonon modes for Raman (a) and
IR (b) calculated from GGA. Our results show that the
some phonon modes converge to a value rather quickly
while others show an uncertainty as high as 3%. The
convergence of the calculations for both functionals was
more than satisfactory for the assignment of the Raman
modes; and the geometry of the vibrational modes ver-
sus the cutoff-energy was also carefully investigated. The
predicted IR and Raman intensities converged even more
slowly; however, at 100 Ry and the k-mesh described
earlier, it was possible to discern the relative intensities.
Overall, the accuracy of the calculations was satisfactory
for all the conclusions presented in this manuscript.

E. Pseudopotentials

The justification to use two different functionals is
twofold. One, for metal oxides, there are very few com-
parison studies. Earlier studies on Bi2Ti2O7 used an
LDA functional and claimed that LDA works better for
metal oxides in the estimation of lattice constants. The
authors39 reference two publications50,51 by Wu et al ; in
these two manuscripts it is shown that LDA outperforms
GGA for BaTiO3 and PbTiO3; however, one can also see
that GGA outperforms LDA in other compounds such
as MgO,50 KTaO3 and KNbO3 (Table II and Table VI
in ref [51]). Recently, DFT phonon studies on other py-
rochlores also choose LDA over GGA;45,46 but the justi-
fication is based on a reference49 that used only LDA cal-
culations. As previously stated, for our structural calcu-
lations on Bi12SiO20, the GGA functional outperformed
the LDA functional (< 1% compared to 3% deviation
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FIG. 2. Raman and IR scattering cross sections calculated using the LDA functional. The intensity of the modes was taken
into consideration in the assignment of the modes.
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FIG. 3. Frequency of the phonon modes versus the cutoff-energy of the plane-wave expansion. Subfigure (a) shows a few of
the strong Raman modes while (b) shows some strong IR modes. Many reports on metal oxides use cutoff energies between
70-90 Ry since higher cutoff energies result in calculations that are too long. This convergence study shows that the calculated
phonon frequencies can have an inaccuracy as much as 5-10 cm−1 in some modes. All frequencies plotted are after imposing
the crystal ASR.

.

from experiment). In the phonon calculations, GGA also
fared slightly better.(Table II). However, the calculation
should only be taken as one data point in the comparison
between two functionals. Only as more and more calcu-
lations on large unit-cell metal oxides are presented, can
we make stronger conclusions.

The second and most important justification is the de-
pendence of phonon mode calculations on accurate en-
ergy calculations. The frequency and the geometry of
the IFCs of each mode is dependent on the dynamical
matrix and the corresponding second derivatives. An 80
Ry cut-off energy for the plane waves in the energy calcu-
lations resulted in convergence-uncertainties around 0.01
Ry (150 meV). This is only 10−5 of the total energy, but
as Fig. 3 shows, this still corresponds to uncertainties in
the phonon frequencies higher than 10−2. The internal
force constants (IFCs) converge slowly and they require

imposition of the sum rules. Since LDA and GGA are
both approximations, it is more transparent to use both
functionals to explore the geometry of the phonon modes.
Therefore, for modes with important physical geometries,
the results will be shown from each functional calculation
to strengthen the validity of the conclusions. As a last
note, when plotting the geometry of the modes we have
chosen to show all atoms and their force constants so
that it is clear which atoms are mainly responsible for
the particular mode (see Figures 4-6).

III. RESULTS AND DISCUSSION: RAMAN

The 33 atoms in the sillenite bcc unit cell result in 96
optical and 3 acoustic modes. The symmetry operations
of the space group yield degeneracies in the frequencies
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of these modes. For the simple sillenite structure, the 99
modes are grouped in the A, E, and F (or T ) represen-
tations as:

Γ = 8A(R) + 8E(R) + 24F (R, IR) + F, (1)

which means that there are 41 resonant frequencies. (For
convenience we say “41 modes”). There is one F zero-
frequency acoustic mode, and only the rest of the F
modes are IR-active. The A, E, and F modes are all
Raman-active.
Table II shows the calculated phonon frequencies for

Bi12SiO20. The table also shows the experimental Ra-
man frequencies: 5 K data from single crystals56 and
room-temperature data from powder samples.48 The lat-
ter data is also presented since the systematic study of
various sillenite compounds in Reference 48 was per-
formed on these conditions. Table II also shows IR data
at 90 K from Wojdowski et. al.57. The assignment of the
modes was not limited to choosing calculated frequencies
that were closest to the experimental values. Such an
assignment is not honest for this system since there are
more than 20 experimental peaks in a range of 750 cm−1

and 40 calculated frequencies to choose from. Rather, we
performed a careful assignment that uses the symmetry
of the modes (A, E, and F ) and comparison to the IR
data. Although the LDA calculations overestimated the
frequency of the modes, the intensity calculations (Fig.
2) which are not available for GGA functionals were im-
portant in identifying which mode geometries should be
stronger in the Raman spectrum. It should be men-
tioned that since the frequencies calculated using LDA
and GGA were different, extra care was taken in identi-
fying the geometry of each mode so that the calculations
could be compared to each other —a comparison based
on closest frequencies would be erroneous in some of the
modes.

A. Assignment and symmetries of the six strongest

Raman modes

First, we will focus our discussion to the six strongest
modes in the Raman. These modes are the easiest to
track along different sillenite compounds and therefore
offer the possibility for systematic studies. Apart from
the lowest-frequency mode, the LDA calculations were
successful in predicting these modes as the strongest Ra-
man scatterers. As a note for this section, when we refer
to a particular mode, we refer to the experimental fre-
quency of Bi12SiO20 at 90 K (Column 1 of Table II).
The figures showing the comparison across different sil-
lenites use the values from Ref. [48] where six sillenites
were measured at 300 K in identical conditions.
The six most pronounced modes in the Raman offer

the best opportunity to test the accuracy of the DFT
calculations. Excluding the 58 cm−1 mode, the GGA

calculations agreed with experiment by 3 % and the av-
erage variance was around 1 %. For LDA, the modes
agreed by better than 6% and the average variance was
less than 4%. (See Table II). The remarkable agree-
ment with experiment should justify future DFT studies
of phonon modes in bismuth oxides.

1. 58 cm−1 Raman mode

The 58 cm−1 Raman mode is clearly visible across the
six sillenites studied in Ref. [48]: Bi12SiO20, Bi12GeO20,
Bi12TiO20, Bi25GaO39, Bi25FeO39, and Bi25InO39. Ram-
das et al. showed in their single crystal measurements
that the symmetry of the mode is F .56 Comparison
to IR was not useful because the few IR studies on
Bi12SiO20 and Bi12GeO20 do not report any modes be-
low 90 cm−1.57,58 Figure 4 shows the symmetry of the
58 cm−1 Raman mode as well as the change in fre-
quency and width of the mode across six different sil-
lenites. The vibration involves both the tetrahedron and
the Bi-O framework and therefore does not provide clear
insight into any particular bond or structural region. As
a side note, this was the only experimentally-strong Ra-
man mode that the calculations did not predict a high
intensity for.

2. 92 cm−1 Raman mode

The strong Raman mode around 90 cm−1 is at first
difficult to assign due to the proximity of many modes
in the experimental56 and computational results. An E

(88 cm−1) and A (92 cm−1) mode, resolved at lower
temperatures,56 are indistinguishable from each other at
300 K.48 The DFT calculations also yield proximal E
and A modes at 82 cm−1 and 94 cm−1. DFT using GGA
also predicts a 95 cm−1 F mode, but polarization mea-
surements at low temperatures show that this mode is
weaker than the aforementioned. Also, the calculations
predict that the A mode has a stronger Raman scattering
cross section. As shown in Fig. 4, this mode is mostly
breathing of the O(2) atoms away from the Bi3 plane and
movement of the O(1) atoms.

3. 132 cm−1 Raman mode

The strong 132 cm−1 peak in the Raman is assigned to
the 129 cm−1 E mode in the GGA calculations. (Fig. 5).
The assignment is straighforward due to the polarization
properties and the lack of proximal strong-modes.56 DFT
also predicts an F mode at 119 cm−1 which is observed
in the Raman at 115 cm−1 in low temperatures,56 but is
not resolved at high temperatures. The F mode is also
observed at 115 cm−1 in the IR.57 Figure 5 shows the
symmetry of the mode and the variation across sillen-
ites. This E mode involves movement of the O(1) atoms
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Bi12SiO20

Raman freq. [56] Raman freq. [48] IR freq. [57] DFT: GGA DFT: LDA Assignment
(cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

44 44 33? 30? F

58 56 52 43 F†R :
68 65 58 68 E

92 88 94 92 A†R : Mostly O(2) breathing and Bi and O(1)
movement.

89 88 89 83 73 F

99 98 99 95? 98? F

106 n.o. 107 111 111 F†IR : M-O4 tetrahedron displacement.
114 n.o. 115 102 111 F

132 129 129 140 E†R : Bi and O(1) atoms shear the framework.

135 n.o. 136 117? 121? F†IR : M-O4 tetrahedron displacement. Bi-O(1)
move together.

149 144 142 152 A
174 n.o. 175 164 163 F
171 167 184 177 A

196 n.o. 195 205? 187? F

209 205 208 218? 206? F

238 n.o. 237 245 235 F†IR : Mostly Bi-O(1) and Si-O(3) bending.
252 n.o. 260 260 E

282 277 285 282 A†R : O(2) atoms breathe away from the nearby Bi3
plane.

n.o. n.o. 288 276 282 F

n.o. n.o. 314 326 330 F†IR : Mostly displacement of Si+4 opposite to all
O(2) atoms.

331 328 330 349 A†R : O(1) bend the Bi-O(1) bond.
352 351 353 371 374 F

n.o. n.o. 462 472 488 F†IR : Mostly O(2) movement in the nearby Bi3
plane.

464 458 465 492 E

n.o. n.o. 531 535 549 F†IR : O(2) and O(1) movement.

546 538 562 579 A†R : O(1) move and stretch the Bi-O(1) bond.
n.o. n.o. 579 590 602 F
n.o. n.o. 609 604 606 F
626 621 637 652 E : Mostly stretching of the Bi-O(1) bond.
785 787 743 777 A : Symmetric stretch of the M-O4 tetrahedron.

827 n.o. 822 796 841 F†IR : Asymmetric stretch of the M-O4 tetrahedron.

TABLE II. Comparison of the Raman and IR modes of Bi12SiO20 with the DFT calculations using the PBE-GGA and PW-LDA
functionals. The calculations are compared to the experimental values from references [56], [48], and [57]. The optical-activity of
the modes were useful in the assignment of the modes: A and E are Raman-active but IR-inactive while the F-modes are active
on both. The most pronounced Raman and IR modes in the experimental spectra are marked with †R and †IR, respectively; the
geometries of IR/Raman modes that may be useful for comparison across sillenites are described. All reported DFT frequencies

are after application of the ‘crystal’ acoustic-sum-rule to the dynamical matrix. (?) marks modes with difficult assignment due to
different geometries predicted from LDA and GGA and/or proximity of various modes with similar symmetries and calculated
intensities.

and the bismuth atoms. It is important to note that the
bismuth and O(1) atoms move in similar directions to
each other and therefore the Bi-O(1) force constant be-
tween the nearest neighbors may not largely contribute
to the frequency. The frequency of this E mode decreases
strongly across different sillenites. There is overall only
a ∼ 30% change in width across the compounds, but,
compared to other modes, the change is less striking in
going from tetravalent to trivalent compounds. The sig-
nificance of the small change in width will be discussed

later in the text.

4. 282 cm−1 Raman mode

The strong 282 cm−1 Raman mode is easily assigned
to an A symmetry due to the polarization properties and
the lack of proximal strong modes.56 DFT calculations
resulted in an A mode at 285 cm−1 and a 276 cm−1 F
mode. The latter is weak in the Raman,56 but it was
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FIG. 4. The Raman-strong 58 and 92 cm−1 modes. The 58 cm−1 F mode involves the movement of many atoms in both the
Bi-O framework and tetrahedron and does not offer insight into any particular bond. The 92 cm−1 A mode mostly corresponds
to O(2) breathing and Bi and O(1) movement. The geometries of the vibrations obtained from GGA (a,e) and LDA (b,f)
calculations are shown. Si and Bi are denoted by blue and grey, respectively; O(1), O(2) and O(3) by orange, purple, and
red. Green arrows denote the force on each atom. Using the experimental data from Ref. [48], the frequency (c,g) and the
width (d,h) of the mode for six sillenites are plotted in increasing ionic radius of the M cation: Bi12Si+4O20, Bi12Ge+4O20,
Bi12Ti+4O20, Bi25Ga+3O39, Bi25Fe+3O39, and Bi25In+3O39.

observed in the IR at 288 cm−1.57

The 282 cm−1 A mode has an important symmetry;
Fig. 5 shows that the largest contribution to this vibra-
tions is the expansion of O(2) atoms away from its 3 Bi
nearest neighbours. This Raman peak is a strong probe
of the Bi-O(2) bond. Across different sillenites, the fre-
quency of this mode has the strongest dependence with
the ionic radius of the metal cation. The dependence can
be assigned to the larger unit cells for larger M cations.
The width of this mode increases by a factor of 30% and
shows some level of disorder for the Bi-O(2) bond.

5. 331 cm−1 Raman mode

The 331 cm−1 Raman mode observed at 90 K was as-
signed to the A mode calculated by DFT at 330 cm−1.
Polarization measurements by Ramdas show that the
strongest peak has A symmetry.56 The assignment of
this mode is straightforward and is useful for compari-
son across sillenites. Figure 6 shows the Bi-O(1) bending
geometry - an important geometry since the frequency
should only depend on this bond. The variation across
sillenites of the phonon-width has a 2-3 fold increase. As
it will be further discussed below, this mode shows a vari-
ation in the Bi-O(1) bond across different sillenites.
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(e)PBE-GGA (f)PW-LDA
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(e)-(h) 282 cm−1 A mode.

FIG. 5. The Raman-strong 132 and 282 cm−1 modes. For the 132 cm−1 E mode Bi and O(1) atoms shear the framework. Note
that the Bi and O(1) ions move in similar direction and therefore the frequency of the mode should not be as sensitive to the
Bi-O(1) bond. The 282 cm−1 A mode corresponds to breathing of the O(2) atoms. The atoms breathe away from the center of
the unit cell and the nearby Bi3 plane. The geometries of the vibrations obtained from GGA (a,e) and LDA (b,f) calculations
are shown. Si and Bi are denoted by blue and grey, respectively; O(1), O(2) and O(3) by orange, purple, and red. Green
arrows denote the force on each atom. Using the experimental data from Ref. [48], the frequency (c,g) and the width (d,h)
of the mode for six sillenites are plotted in increasing ionic radius of the M cation: Bi12Si+4O20, Bi12Ge+4O20, Bi12Ti+4O20,
Bi25Ga+3O39, Bi25Fe+3O39, and Bi25In+3O39.

6. 546 cm−1 Raman mode

The 546 cm−1 Raman mode was assigned to the 562
A cm−1 mode calculated from DFT. This mode is very
straightforward to assign due to its strength and polar-
ization properties.48,56 This mode is physically important
because it only involves Bi-O(1) stretching. (See Figure
6). Therefore, this mode is an excellent probe of the Bi-
O(1) force constant. Similarly to the Bi-O(1) bending
mode, the width of the stretching mode has a large jump
from the tetravalent to the trivalent sillenites.

B. Insights into the trivalent sillenites from the

strong Raman modes

Assignment and understanding of the symmetry of the
six strongest Raman modes present some interesting in-
sight into the trivalent sillenites. The DFT calculations
show that the largest contribution to the frequencies of
these modes come from the movement from atoms in the
Bi-O framework. The increase in the width of the modes
from tetravalent to trivalent sillenites clearly shows that
there is an inhomogeneous disorder in trivalent sillenites;
that is, there are deviations in the resonant frequencies
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(a)PBE-GGA (b)PW-LDA
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(a)-(d) 331 cm−1 A mode.

(e)PBE-GGA (f)PW-LDA
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(e)-(h) 546 cm−1 A mode.

FIG. 6. The Raman-strong 331 and 546 cm−1 modes. The 331 cm−1 A mode involves bending of the Bi-O(1) bond. This
A mode presents important physical information because it involves mostly the bending force constant of Bi-O(1). The 546
cm−1 mode also probes the Bi-O(1) bond for it involves movement of the O(1) atoms to stretch the Bi-O(1) bond. The
geometries of the vibrations obtained from GGA (a,e) and LDA (b,f) calculations are shown. Si and Bi are denoted by blue
and grey, respectively; O(1), O(2) and O(3) by orange, purple, and red. Green arrows denote the force on each atom. Using the
experimental data from Ref. [48], the frequency (c,g) and the width (d,h) of the mode for six sillenites are plotted in increasing
ionic radius of the M cation: Bi12Si+4O20, Bi12Ge+4O20, Bi12Ti+4O20, Bi25Ga+3O39, Bi25Fe+3O39, and Bi25In+3O39.

of these modes across unit cells.

Keeping in mind that these modes are mostly depen-
dent of movement of the Bi, O(1) and O(2) atoms, we
will consider two scenarios to explain the large difference
in phonon widths between trivalent and tetravalent com-
pounds. First, we can assume that the occupancies of
Bi and O(1) and O(2) remains singular in the trivalent
sillenites; then the large phonon widths in trivalent sil-
lenites show there are differing Bi-O bond lengths across
different unit cells. Distortions or displacements due to
the large metal cation may result in distortions of the
Bi-O framework. If the model where Bi5+ ions sit on

the M-site is correct,59 then the inhomogeneity may be
caused by distorted Bi-O polyhedra in the outside frame-
work.

A second scenario is the existence of O vacancies.
O vacancies were suggested by Valant et al. to exist
in the tetrahedra, O(3) sites, due to the lone pair of
Bi3+. Recently, streaks in the electron diffraction pat-
tern of trivalent sillenites35 also suggest the existence
of short-range ordered O-vacancies. However, since the
strongest Raman modes are relevant to the Bi-O frame-
work then these modes may have large phonon widths
because oxygen vacancies can also exist at the O(1) and
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O(2) sites. The four easiest modes to assign (132, 282,
331, and 546 cm−1) provide interesting insights. The
largest percentage-changes (100-200 %) in phonon width
occurred in the rocking (331 cm−1) and stretching (546
cm−1) modes of the Bi-O(1) bond. In contrast, the Bi-
O(2) bond had a 30% increase in width for the stretching
bond. Additional evidence, although weaker, is that the
132 cm−1 mode, which geometry suggests that the fre-
quency should not strongly depend on the Bi-O(1) bond,
also had a small increase in phonon width (∼ 33 %).
Further evidence is provided by the 626 cm−1 E mode,
(Figure S1 in the supplementary documents), which de-
pends mostly on O(1) stretching away from its nearest Bi
neighbour and has a large phonon width in the trivalent
compounds.
In summary, the strongest conclusion that can be

drawn from the Raman spectrum, based on six modes,
is that there are O vacancies in the O(1) and O(2) posi-
tions that contribute to the large phonon width; a weaker
conclusion, based on the comparison of one mode to two
modes, is that O(1) vacancies may be more likely than
O(2).

C. Other interesting but weak Raman modes

The 626 cm−1 mode is absent in the IR and can be
easily assigned to the 637 cm−1 E mode from the DFT
calculations. (Figure S1 in the supplementary documents
shows this vibration.) Previously Mihailova et. al. as-
signed this mode mostly to O(3) vibrations based on lat-
tice dynamical calculations. Our DFT calculations show
that this mode is mostly from O(2) and O(1) motion.
The agreement of our calculations with experiment for
the other modes, suggests that our assignment is correct.
The comparison in width of this mode across sillenites
also gives proof of disorder in Bi-O(1) and Bi-O(2) bonds.
Finally, the 785 cm−1 A mode in the silicon sillenite

corresponds to the symmetric stretching of the tetrahe-
dron. This mode would be an excellent probe of the M-
O(3) bond for comparison across sillenites; unfortunately,
the mode is already very weak in Bi12SiO20, Bi12GeO20,
and Bi12TiO20 and it was not observed in the trivalent
sillenites.48

IV. RESULTS AND DISCUSSION: IR

Here the DFT calculation results will be compared to
the experimental IR data on the tetravalent sillenites.
Unfortunately, there is no systematic IR study of the
trivalent sillenites. Surprisingly, there are also no studies
on the tetravalent sillenites that discuss the optical con-
stants (i.e. refractive index or optical conductivity) as
wells the intensity and width of the modes. The strongest
IR modes were identified based on the 90 K reflectance
data from Wojdowski et al.57 and compared to the LDA
calculations. We will also discuss a few IR modes with in-

teresting symmetries and show how they could be useful
for future IR studies of trivalent sillenites. In this section,
when referring to a mode we will use column 3 of Table
II which corresponds to the IR experimental frequency.

A. Strongest IR modes

1. The 107 and 135 cm−1 IR modes

The assignment of these two modes merits extra atten-
tion. The DFT calculations predict multiple modes with
very similar frequencies in this region. The 107 cm−1

mode was assigned to the 111 cm−1 frequency predicted
by both LDA and GGA. (See Table II). The IR intensity
of this mode was very slow to converge but it was clear it
was the strongest in its region. A comparison between the
calculated and experimental LO-TO splits aided in the
assignment. The 135 cm−1 mode was assigned to LDA’s
117 and GGA’s 121 cm−1 modes. (Table II). This mode
had similar issues, at plane-wave cutoffs smaller than 80
Ry, this mode had a relatively high predicted IR inten-
sity (comparable to the other strong IR modes). How-
ever, after 100 Ry, the calculated IR intensity drops to
near zero and converges. Fortunately, comparison of the
calculated and experimental LO-TO splits were helpful
in assigning the mode. Lastly, Figure 7 shows that the
calculation of geometry of vibrations is not trivial; GGA
and LDA yielded noticeable differences —but at least the
descriptions are overall the same for both functionals.
The geometry of the two modes are shown in Figure

7. The 107 cm−1 vibration corresponds to movement
of the whole tetrahedron against the Bi-O framework.
The strong infrared response is expected from the geom-
etry of the mode; a large change in polarization results
from moving the whole tetrahedron. The 135 cm−1 mode
also has displacement of the whole tetrahedron as well as
movement of the Bi and O(1) atoms. The latter two
move in unison and the Bi-O(1) pair moves opposite to
the Bi-O(1) pair across the cell.
Since both modes involve displacement of the tetrahe-

dron, their behaviour across sillenites could be interesting
since trivalent sillenites are expected to have half of the
tetrahedrons occupied by a Bi3+ cation in the center;
therefore, the width of the modes should increase dra-
matically from the tetravalent to trivalent compounds.
Even more interesting would be to measure the width
of these phonons for pentavalent compounds; in Valant’s
stoichiometry model the M site is shared by Bi3+, the
M5+ cation, and a vacancy, and we therefore expect an
even larger jump in phonon width for these compounds.

2. 238, 314, 462 and 531 cm−1 IR mode

The next strong IR mode is at 238 cm−1. The ge-
ometry of this vibration, and other strong IR modes, is
given in the supplementary documents in Fig. S2. The
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(a)PBE-GGA (b)PW-LDA (c)PBE-GGA (d)PW-LDA

FIG. 7. The IR-strong 107 and 136 cm−1 F modes. The 107 cm−1 mode (a,b) corresponds to displacement of the whole M-O4

tetrahedron. The 135 cm−1 mode (c,d) involves tetrahedron displacement but also movement of both Bi and O(1) atoms.
The geometries of the vibrations obtained from (a,c) LDA and (b,d) GGA calculations are both shown. See the text about a
discussion on the assignment of these modes. Si and Bi are denoted by blue and grey, respectively; O(1), O(2) and O(3) by
orange, purple, and red. Green arrows denote the force on each atom.

vibration corresponds to a combination of bending of the
Si-O(3) bond and the Bi-O(1) bond. Since O(3) and O(1)
vacancies may be present in the trivalent sillenites, a large
increase in width is expected for this mode. However, it
would be difficult to pinpoint if the width increase is due
to O(1), O(3) or both. The IR strong 314 cm−1 (Fig. S2
in supplementary documents) also does not have an inter-
esting geometry that would allow probing of a particular
bond. For both modes, the biggest change in polariza-
tion comes from moving of the positive M cation in a
direction opposite to the O(1) anions. The strength of
this mode may be attenuated in other sillenites where
compounds have a M2+, M3+ cation, or a vacancy. The
next two strongest IR modes are located at 462 cm−1

and 531 cm−1; similar to the two previous modes, the
geometry of the vibrations do not offer a clear probe of
a particular bond. (Fig. S2).

3. 822 cm−1 IR mode

The 822 cm−1 F mode has long been know to corre-
spond to the asymmetric stretching mode of the tetrahe-
dron (Fig. S2 in supplementary documents). Unfortu-
nately, this mode is very weak in the Raman spectrum
of the tetravalent sillenites and was not observed in the
trivalent sillenites. In a systematic IR study of triva-
lent sillenites, this mode could offer the best probe of
the M-O(3) bonds. In a similar prediction for the 135
cm−1 mode, a large increase in width, or a peak split, is
expected for the divalent and trivalent sillenites due to
the larger mass of the Bi3+ cation in half of the tetra-
hedrons. For pentavalent sillenites, a larger increase in
width is also expected although the vacant tetrahedrons
may not contribute significantly to the IR spectrum due
to the lack of a positive cation to contribute to the po-

larization change.

B. Born Effective Charges

The low temperature Raman and infrared spectra of
Bi12SiO20 and Bi12GeO20 show LO-TO splitting of the
F modes.56,57 However, the cause of the LO-TO splitting
was not one of the main focus of the manuscripts and
was only discussed as a product of long-range polariza-
tion fields.56 Other interesting systems with large LO-TO
splitting include ferroelectric perovskites such as BaTiO3

and SrTiO3.
36,37 In these perovskites, the Born effective

charges (Z∗) have been carefully studied since the effec-
tive charges play a role in the LO-TO splitting. The
anomalously large Born effective charges, where ‘large’
refers to bigger than the nominal ionic charges, are con-
sidered to be indications of ferroelectricity or proximity
to a ferroelectric phase-transition.38 Obviously, the per-
ovskites mentioned above are in a tetragonal polar space
group and exhibit high ferroelectricity while the sillenites
are in a non-polar space group and do not exhibit ferro-
electricity. It is, however, still surprising that the Born
effective charges have not been studied in sillenites. It
should also be mentioned that recent theoretical studies
by Filippetti et al. on Born effective charges show that
the anomalous charges can be caused by other phenom-
ena other than ferroelectricity, such as strong electron
correlation;38 therefore, Born effective charges in systems
that exhibit LO-TO splitting remain an interesting topic.

The Born-effective charge tensor Z
∗ describes the

change in total polarization ~Ptotal caused by the displace-
ment of atoms s:

Z∗
s,i,j =

∂P
j
total

∂ris
, (2)
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where i and j denote cartesian coordinates. In BaTiO3

and SrTiO3, the Born-effective charge of the O anions is
anomalously large along the direction away from the Ti+4

cation while it is much smaller in the plane perpendicu-
lar to this direction.36 Table III lists the Born-effective
charges for the Bi12SiO20 sillenite. The accuracy of the
Born-effective charges were estimated three ways. First,
the convergence of the Born effective charges was checked
against the plane wave cutoff-energy and the density of
the k-mesh; the charges converged within less than 1%
at a 100 Ry cutoff energy and a 3×3×3 k-point mesh.
Second, as it is common in the literature,49,60 the charge
neutrality was checked:

∑

s

Z∗
s,i,j = 0, (3)

in other words, summations over all atoms should give a
zero Born-effective charge in all directions. The LDA
calculations resulted in a total isotropic excess-charge
less than -10−3e per atom. Other authors have reported
similar excess charges for unit cells of smaller size.60

The isotropy of
∑

s Z
∗ gives confidence of no direction-

dependent errors. The GGA calculations resulted in a
larger total (but still small) excess-charge of 10−2e per
atom. Third, the accuracy of the theoretical predic-
tions was tested by using two different functionals. The
values calculated using the GGA and LDA calculations
gave very similar results and strengthen our discovery of
highly anisotropic and anomalous Born-effective charges
in Bi12SiO20. The results also showed, however, that
the biggest uncertainty in Z

∗ should be attributed to the
choice of functionals and not to the calculated excessive
charge.
Table III lists the calculated Born-effective charges for

the various atoms. It is more common to report the Born
effective charge for each ion along the interesting direc-
tions rather than reporting the whole tensor for each
ion.36,38,60 In this manuscript, when the charge is re-
ported along a direction r̂, the quantity refers to:

Z∗
r̂ = r̂†Z∗

s
r̂, (4)

and it corresponds to the projection along r̂ of the total
change of polarization P when the atom is moved in the
r̂ direction. The projection along r̂ is a useful concept
that can be related to two simple charges that form a
dipole; the change in polarization along r̂ is proportional
to the charge of the ion when the ion is moved in that
direction.
The plane formed by the three bismuth atoms bonded

to O(2) show interesting born effective charges. Z∗
r̂ for

bismuth is around 4.5 in the direction of Bi towards the
O(2) atom. Compare this 1.5 born/nominal ratio to the
1.8 ratio observed for Ti4+ in the BaTiO3 ferroelectric
perovskite and other similar compounds.60 Moreover, the
Born/Nominal ratio of O(2) in the direction towards any
of the nearby Bi is also anomalous at 1.7. The anomaly
for O(2) is more interesting for the direction perpen-

dicular to the Bi3 plane where the Born/Nominal ra-
tio drops to 0.65. Such a large change with directions
of Z∗

r̂ is also observed in the octahedral O ions of per-
ovskite ferroelectrics.60 In these compounds, however,
the Born/Nominal ratio of the oxygens does not reach
such a small value.36

The Bi-O(1) bond also shows anomalous charges as
shown in Table III. The effective charge of O(1) in the
direction towards another nearby O(1) was however not
anomalous. Finally the O(3) Born effective charges were
much more isotropic and with smaller Born/nominal ra-
tios. Table S2, in the supplementary documents, shows
various Z∗

r̂ for the Bi12GeO20 sillenite and shows that
this compound also has anomalous and highly anisotropic
Born-effective charges.
As a final note, the significance of the large value of

Born effective charges would be better understood if cal-
culations were made for many different Bi compounds
with various known physical characteristics (strong cor-
relation, ferroelectric, etc...). The largest amount of Born
effective charge calculations have been made on ferroelec-
tric compounds and these compounds all show anoma-
lous Z

∗. However, there are not many reports of Born-
effective calculations on other systems that do not show
an anomalous value; therefore, it is difficult to argue the
importance of anomalous Z

∗s if there are not many re-
ports for systems with normal Z

∗. The authors plan
to work on a comprehensive study of the Born-effective
charges of various Bi oxides.

C. LO-TO splitting

In this report, the large anomalous born-effective
charges are reported to indicate that they play a role
in the splitting of LO-TO modes. The term in the dy-
namical matrix responsible for the splitting is a direction-
dependent term valid only at the Γ point, q = [0, 0, 0],
that involves the born-effective charges for each atom (s)
along a chosen direction Z∗

s′r̂ and the high-frequency di-
electric constant ǫ∞

Dss′ =
4πe2

Ω

Z∗
sr̂Z

∗
s′ r̂

ǫ∞
, (5)

Each matrix term is direction-dependent due to the ten-
sor nature of Z∗. For our cubic crystal, the calculated
LO-TO splitting was independent of the chosen direc-
tion. Table IV shows the experimental splits in fre-
quency between the LO and TO modes, ∆LO−TO from
the 90 K Bi12SiO20 infrared data from Wojdowski et al.
.56,57 The infrared analysis by Wojdowski calculates the
frequency of the TO modes by finding the maxima in
the imaginary permittivity Im{ǫ(ω)} and calculates the
frequency of the LO modes by using the loss function
Im{ 1

ǫ(ω)}.
57 Since the results are dependent on Kramers

Kronig analysis, a certain error is expected. Table IV
also shows the magnitude of the splits calculated using
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a norm-conserving pseudopotential and both LDA and
GGA functionals. The numerical agreement between the
calculated values and the experimental values is poor;
however, the LDA calculations at least predict which
modes will have the strongest splits. The qualitative
agreement further strengthened the assignment of some
of the modes. Finally, the high-frequency dielectric con-
stant calculated using LDA was 6.2, and 5.9 for GGA,
close to the experimental value, 6.3, obtained from re-
ported optical measurements.61 The convergence of ǫ∞
was within less than 1% at a k-mesh of 3×3×3 and a 100
Ry cutoff for plane waves.

V. ADDITIONAL DISCUSSION

A. Comparison with lattice dynamical calculations

It is interesting to compare our DFT results to the
lattice dynamical (LD) calculations presented by previ-
ous authors in the literature. Both methods have ad-
vantages and disadvantages and they should therefore be
considered complementary. Lattice dynamical calcula-
tions use the experimental frequencies of the spectra to
calculate the force-constants between atoms; then, the
force-constants are used to recalculate the vibrational fre-
quencies and are compared to experiment. The method
is useful in using force-constants from strong and well
known modes and then calculating weaker and more com-
plicated vibrations. A variation of the method uses a
potential model for each atom; but, the idea is the same
because several parameters for the potential are varied
until it agrees with experiment. Lattice dynamical cal-
culations provide a lot of insight into many systems such
as perovskites,62–65 pyrochlores,66–68 and sillenites.69,70

LD calculations also have their weaknesses. In prac-
tice, several parameters are calculated from a small num-
ber of known variables. Such calculations raise con-
cerns if there is only one combination of multiple force-
constants that would predict the observed frequencies.
Furthermore, the number of springs or terms in the po-
tential are also variable. The technique has been very
useful but it has its difficulties. In some pyrochlore
compounds, the highest-frequency Raman peak is ob-
served around 600 cm−1. Lattice dynamical calculations
yielded force-constants that agreed with experiment but
predicted the highest mode around 600 cm−1. After-
wards, many studies assigned higher-frequency modes in
other pyrochlores to overtones or bands. Lately, experi-
mental and DFT studies have shown that the highest-
frequency mode in some pyrochlores can far exceed
this frequency.32,45,46 Such re-assignments are not triv-
ial since the highest-frequency mode is useful for some
non-linear applications.71

DFT calculations offer an impressive advantage in that
the structure is built using pseudo-potentials specific for
each atom; the structure is relaxed towards the lowest-
energy configuration; and the phonon frequencies are cal-

culated without biasing the results towards known opti-
cal spectra. The pseudopotentials available online for
the atoms studied in this compound have been tested for
not only phonon calculations, but also other applications.
Therefore, DFT offers higher potential for predictions.
However, DFT is not without its disadvantages. Dif-
ferent choices of approximations in the pseudopotentials
can yield different results. The use of different pseudopo-
tentials in this work was important in making the right
conclusions.

B. Relevance and future work

The analysis of the Raman data across different sil-
lenites suggest the existence of O vacancies in the Bi-
O framework. These vacancies would be difficult to de-
tect with X-ray measurements since bismuth is a stronger
scatterer than oxygen based due to their atomic numbers.
Furthermore, no previous Rietveld refinements were per-
formed assuming O(1) vacancies or Bi-O(1) distortions.
In the trivalent sillenites, it was expected that the large
M cation, and the Bi3+ cation, would distort the tetra-
hedron, and the lone pair of Bi3+ would result in O(3)
vacancies only. Future studies of the trivalent sillenites
using neutron scattering may provide additional insight
since the scattering from oxygen atoms would not be so
weak compared to bismuth.

The stoichiometry model by Valant et al., which de-
scribe in detail the occupation of the M -site for vari-
ous metal valences, could be further corroborated by a
systematic study of the IR spectra of different sillenites.
As discussed earlier in the text, some modes such as the
tetrahedron displacement could show splitting of frequen-
cies for divalent, trivalent and pentavalent sillenites. The
intensity of the split modes could also be related to the
occupation of the M-site.

The accuracy of both the LDA and GGA calculations
in the sillenites strengthens the confidence of DFT calcu-
lations in other systems. In the Bi pyrochlores, there are
strong Raman peaks around 750 cm−1, uncharacteristic
of second-order Raman scattering,32 that put doubt on
the traditional assignment of modes above 600 cm−1 as
an overtone. DFT calculations on Bi2Ti2O7 by Patterson
et al.,32,72 and Ti pyrochlores by Kumar and Gupta,45,46

suggest that the 750 cm−1 mode is a fundamental and not
an overtone. The relative accuracy of the LDA functional
on sillenites, average variance of 3%, gives confidence that
the LDA phonon calculations on pyrochlores46,72 are not
incorrect by 25% of the experimental frequency. In this
case, the prediction by Patterson et al. that the highest
frequency mode for a Bi pyrochlore is 711 cm−1 agrees
well with the experimental data.32 It would also be in-
teresting to restudy these systems using the PBE-GGA
functionals and see what the highest predicted frequency
is for a fundamental mode.
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Si+4 Z∗
LDA, Z∗

GGA

Z∗
isotropic 3.23 , 3.12

Bi3+

Z∗
Bi→O(2) 4.60 , 4.40

Z∗
⊥Bi3−O(2) 4.50, 4.34

Z∗
Bi→O(1) 3.46 , 3.22

Z∗
Bi→Bi 4.65 , 4.38

O−2(3) Z∗
LDA, Z∗

GGA

Z∗
O(3)→Si -2.77, -2.82

Z∗
O(3)→O(3) -2.57, -2.70

O−2(2)

Z∗
O(2)→Bi -3.43, -3.41

Z∗
⊥O(2)−Bi3

-1.34, -1.26

Z∗
O(2)→O(1) -3.53, -3.50

Z∗
O(2)→O(2) -2.07, -2.01

O−2(1)

Z∗
O(1)→Bi -3.27, -3.34

Z∗
O(1)→O(1) -1.81, -1.55

TABLE III. Born-effective charges for each ion calculated along different directions for Bi12SiO20. The charges were calculated
using both the PBE-GGA and PW-LDA functionals. Both functionals predict large anomalous and highly anisotropic born-
effective charges for the Bi, O(1) and O(2) ions. Similar results for the Ge sillenite are presented in the supplementary
documents.

LO-TO splitting of F modes in Bi12SiO20

Raman freq. [56] IR freq. [57] IR ∆LO−TO [57] LDA LDA ∆LO−TO GGA GGA ∆LO−TO

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)
89 89 2 73 <1 83 5
99 98 2 98 <1 95 <1
106 107 5 111 10 111 5
115 115 3 111 <1 103 3
135 136 32 121 19 117 24
171 175 10 163 <1 164 <1
196 195 1 187 <1 206 <1
209 208 4 206 2 218 2
252 237 20 235 19 245 16
n.o. 288 37 282 12 276 7
n.o. 314 37 330 21 326 18
352 353 21 374 19 372 11
464 462 44 488 31 471 32
n.o. 531 26 550 28 532 34
n.o. 579 22 602 <1 590 <1
n.o. 609 11 606 11 604 13
827 822∗ 16 841 11 795 14

TABLE IV. LO-TO splitting calculations for Bi12SiO20. The calculations are compared to the experimental values from
references [56], [48], and [57]. The PW-LDA and PBE-GGA calculations show good qualitative agreement in predicting which
F modes experience the largest LO-TO split in frequency.

VI. CONCLUSIONS

The vibrational frequencies of Bi12SiO20 were stud-
ied using DFT with norm-conserving pseudopotentials
and both PW-LDA and PBE-GGA functionals. Un-
like reports on other metal oxides, GGA outperformed
LDA in structural calculations. Both the IR and Raman
scattering cross sections were calculated and the LDA
functional successfully predicted which modes should be
the strongest in the experimental spectra. The assign-

ment of the modes allows understanding of the geome-
try of the vibrations and the understanding can be used
to understand patterns across different sillenites. The
large phonon widths in vibrations involving Bi-O(1) and
Bi-O(2) bonds are evidence of inhomogeneous disorder
in the Bi-O framework and suggest O vacancies at the
O(1) and/or O(2) positions. The careful discussion on
Bi12SiO20 about the convergence of physical values for a
large system, the use of different pseudopotentials, and
the use of two different sum rules, may be useful for the
study of other metal oxides.
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