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In systems with broken U(1) symmetry, such as superfluids, superconductors or magnets, the symmetry
restoration is driven by proliferation of topological defects in the form of vortex loops. Here we discuss that
proliferation of topological defects can, by contrast, lead to the breakdown of an additional symmetry. We
demonstrate that this effect should take place in s+ is superconductors, which are widely discussed in connec-
tion with the Iron-based materials (although the mechanism is much more general). In these systems a vortex
excitation can create a “bubble" of fluctuating Z2 order parameter. Thermal excitation of vortices then leads to
breakdown of Z2 time-reversal symmetry when the temperature is increased.

Usually states which break symmetries and exhibit long-
or quasi-long-range order (such as superconductors, superflu-
ids and ordered magnetic states) form at low temperatures.
For example, three-dimensional conventional superconduc-
tors and superfluids break U(1) local and global symmetries
respectively1. At elevated temperatures, fluctuations destroy
the order and symmetry is restored. The generic mechanism
that drives this phase transition in superfluids is prolifera-
tion of vortex loops that destroy long-range order in the cor-
responding order parameter field |ψ(r)|eiϕ(r)2–4 (unless the
system has a strong first order phase transition like type-I
superconductors5,6).

Similarly, in two-dimensional superfluids, the transition to
the normal state is driven by proliferation of topological de-
fects in the form of vortex-antivortex pairs7.

Likewise, in systems with different symmetries, phase tran-
sitions to more symmetric states are driven by proliferation of
corresponding topological defects. Examples of this include
domain walls in systems that break Z2 symmetry, or bound
states of topological defects in systems with multiple broken
symmetries8–12.

In this work we demonstrate that topological defects can
play a radically different role in certain systems, and instead
lead to spontaneous breakdown of a symmetry which is not
broken in the ground state. We specifically focus on frustrated
three-band superconductors, but the scenario is by no means
limited to this case.

This effect arises when fluctuations are included in the
multi-component Ginsburg-Landau free energy density that
describes the s+ is superconducting state:

H =

3∑
a=1

{1

2
|Dψa|2 + αa|ψa|2 +

βa
2
|ψa|4

}
+

1

2
(∇×A)2 +

∑
a 6=b

ηab|ψa||ψb| cos(ϕa − ϕb), (1)

where D = ∇ + ieA is the covariant derivative and ψa =
|ψa|eiϕa are complex fields representing, for example the su-
perconducting components in different bands. The last terms
in (1) represent Josephson-Leggett interband coupling. The
magnetic field is given by B = ∇×A. The s+ is state is re-
alized due to frustration with respect to the phase differences
between superconducting components. This for instance oc-
curs if all ηab are positive since the last terms in Eq. 1 then

are minimised by all phase differences being ϕa − ϕb = π,
which cannot be simultaneously satisfied. Likewise, the case
with one positive and two negative couplings is also frustrated.
Such a situation also occurs in systems with more than three
components13. The s + is s state is currently attracting sub-
stantial interest in connection with iron-based14–16 as well as
other kinds of superconductors17. Inter-component interac-
tions of this type can also be realized in cold atom experi-
ments.

An example of the ground state of a frustrated system is
given in Fig. 1. Here η13 = η23 < 0, is varied on the x-
axis, while η12 > 0 is kept constant. The resulting phases are
shown in (B) and reveal a transition point at ∼ −0.0578, that
separates two regions with different phase-locking patterns.
The state on the left spontaneously breaksU(1) symmetry, but
on the right side, time-reversal symmetry is also broken since
the resulting state is not invariant under ϕi → −ϕi. Broken
time-reversal symmetry implies an additional twofold degen-
eracy of the ground state, and thus the transition is between the
broken symmetries U(1) and U(1)×Z2 respectively. Increas-
ing η13 = η23 further, Z2 symmetry is restored at∼ −0.0542,
see (B) in Fig. 1.

A phase diagram of this type has been studied as a func-
tion of doping in connection with the iron based supercon-
ductor Ba1−xKxFe2As2. At the level of mean-field theory
it features a U(1) × Z2 phase at low temperature (i.e. an
s+ is state)14–16. The corresponding London model has been
studied beyond the mean-field approximation, and it was then
shown that fluctuations produce an additional phase where Z2

symmetry is broken butU(1) is restored18,19. The effect which
we discuss below revises these phase diagrams. It has not been
observed in the previously studies because it requires that den-
sity fluctuations are present besides phase fluctuations.

An important point here is that the interband terms take the
form

ηab|ψa||ψb| cos(ϕa − ϕb), (2)

i.e. they are modulated by the amplitudes. Since the phase-
locking pattern is potentially altered by changing the param-
eters ηij , it follows that perturbations to the amplitudes also
have this capacity. This gives vortices a very particular role
in this model, since vortex cores suppress densities in a non-
trivial way.

The parameter set on which we focus here (marked by the
red dot in Fig. 1) features broken U(1) symmetry in the
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Figure 1. Ground state and mass spectrum of frustrated three-band
GL model. Two of the model parameters, η13 = η23 are scaled on
the x-axis. The others are given by α1 = α2 = −3/64 , α3 =
2.673/64, β1 = β2 = 3/64, β3 = 0.18/64, η12 = 2.25/64 and
e = 1.8/8. (In this example the parameters were choose such that
the relevant length scales of the theory to be larger than numerical
lattice spacing and substantially smaller than the system size.) The
panel (A) gives the ground state amplitudes of the fields while (B)
gives the phases (ϕ3 is fixed to 0). A critical point at η13 = η23 ≈
−0.0578 separates a region with broken U(1) symmetry (left) from
a region that also breaks time-reversal symmetry (right). At a second
critical point η13 = η23 ≈ −0.0542, time-reversal symmetry is
restored. The broken symmetries are indicated in (B). (C) gives the
mass spectrum and thus the the inverse of the length scales (in units
of lattice spacings) associated with the three fields. One mass (5)
becomes zero at the critical point, implying a diverging length scale.
The mode that corresponds to this mass is shown in (D). On the left
side it describes a perturbation to the phases ϕ1, ϕ2, i.e. a Leggett
mode, which becomes massless at the critical point. In the region to
the right of the critical point the character of the mode changes, as
it now describes a perturbation to both phase and amplitude (mainly
|ψ3|). The red dot indicates the parameters simulated below.

ground state. It is clear from (B), that the system undergoes a
symmetry change when the magnitude of η13 = η23 is dimin-
ished. However according to Eq. 2, this effect can likewise be
obtained by depleting the amplitude |ψ3|.

Vortex excitations in this three-band model are composite
(i.e. can be viewed as a bound state of vortices with 2π wind-
ing in each of the phases ϕa) and have three cores which, in
general have different sizes (for a detailed study of the differ-
ent characteristic length scales in vortex cores in such models
see20,21) . For the parameters considered here, the third com-
ponent has the largest vortex cores. The consequence of this
is that vortices deplete the three inter-band interaction terms
to different extent, affecting interactions that involve the third
component more. For a sufficiently dense group of vortices,
this results in the formation of a bubble of induced non-trivial
phase difference between the superconducting components,
on average different from 0 or π. That is, a region of fluc-
tuating Z2 order parameter.

An example of this is given in Fig. 2. Here, numeri-
cal minimisation of the model (1) was carried out on a two-

dimensional grid. The system was prepared with a group
of 12 numerically pinned vortices, and the energy was min-
imised subject to the constraint that the vortex-core positions
remained unchanged. This problem has two solutions that
share the same distribution of magnetic flux (A). The plots
(B,C) correspond to different solutions and reveal an induced
phase difference between the components ψ1 and ψ2, which
can be either positive (B) or negative (C). See also remark22

We now turn to the main question of this paper: whether
topological excitations with this property drive a transition to
a state with spontaneously broken Z2 symmetry upon heat-
ing. Unless the systems is strongly Type-1, thermal fluctua-
tions in the U(1) sector results in excitation of vortex loops.
These tend to disorder the U(1) sector, but at the same time,
as shown above, they create bubbles of fluctuating Z2 order
parameter. Indeed as long as the vortex loops are finite and
well-separated this cannot lead to breakdown of Z2 symmetry.
However a conjecture which we investigate below is that once
the density of vortex loops in the system grows to some char-
acteristic value, the bubbles with “locally broken" Z2 sym-
metry form a connected network that spans the entire system.
This in turn can lead to spontaneously broken time-reversal
symmetry in the system resulting from heating. Restoration of
the symmetry requires further heating to higher temperature.
The phase with broken Z2 symmetry thus exists between two
characteristic temperatures.

To test this hypothesis we have conducted large scale Monte
Carlo simulations of the model (1) using the metropolis algo-
rithm. In the discretised version of the Hamiltonian the co-
variant derivative and magnetic flux take the form

|Dxψa,ijk|2 = |ψa,ijk − ψa,(i+1)jke
ieAxijk |2, (3)

Bzijk = Ax(i, j, k) + Ay(i+ 1, j, k) (4)
− Ax(i, j + 1, k)−Ay(i, j, k) (5)

where the subscript xijk means vector component x on the
lattice point ijk and so forth. The discrete Hamiltonian is
then given by

H =
∑
i,j,k

{ 3∑
a=1

1

2
|Dψa,ijk|2 +

1

2
B2
ijk + Uijk

}
(6)

where the last term is the potential which does not depend on
gradients. The corresponding partition function is given by
Z =

∫
DA(r)Dψ1(r)Dψ2(r)Dψ3(r)e−βH , with the inverse

temperature β. The model 1 is expressed in dimensionless
units, with a length scale that is equal to the lattice spacing.
The parameters used in the simulations are given in Fig. 1
with η13 = η23 = 0.0611. At zero temperature this system
breaks U(1) symmetry only. The figure also gives the masses
of normal modes which, by definition are inverse coherence
lengths. In this model they are associated with linear combi-
nations of the fields ψa20. The effects which we discuss do
not require fine-tuning. Our parameters are selected so that all
the length scales are bigger than the lattice spacing but smaller
than the system size.23

To construct the order parameter associated with time-
reversal symmetry breaking we introduce a projection of the
configuration space {ψ1, ψ2, ψ3} → ±1 given by: f(ϕ̄) =
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Figure 2. Vortex group solutions resulting from energy minimisation of the model (1) on a two-dimensional grid. An initial configuration
of 12 vortices was prepared and the energy minimisation was carried out with the constraint that the positions of vortex cores remain fixed.
This problem has two solutions that share the same magnetic field∇×A, shown in (A). However the solutions do not exhibit the same phase
difference between the components. The panels (B) and (C) display |ψ1||ψ2| sin(ϕ1−ϕ2) for these two cases. The GL parameter set is given
by the red dot in Fig. 1 and features a ground state that breaks U(1) symmetry only, implying that in the ground state sin(ϕ1 − ϕ2) = 0.
The presence of vortices however induces a phase difference between the components ψ1 and ψ2 which is positive in the first solution (B) and
negative in the second solution (C). Away from the vortices, the phase differences decay exponentially to zero. The group thus produces a
bubble of Z2 order parameter.

sgn
(

sin[ϕ3](− cos[ϕ1] + cos[ϕ2]) + sin[ϕ1](− cos[ϕ2] +

cos[ϕ3]) + sin[ϕ2](− cos[ϕ3] + cos[ϕ1])
)
, which is odd un-

der time reversal and changes sign if, and only if phases are
permuted. Ordering in the Z2 sector can then be determined
by an order parameter that takes the same form as that of the
Ising model:

OZ2 =
〈∣∣∣ ∑

k,l,m

f(ϕ̄k,l,m)
∣∣∣〉 1

L3
. (7)

Restoration of the local U(1) symmetry and thus the onset of
the non-superconducting state can be identified by the scaling
properties of the Fourier components of the magnetic field.
We start by introducing

c = 2L−3
∑
ijk

By cos
2πi

L
, s = 2L−3

∑
ijk

By sin
2πi

L
. (8)

In the normal state, the gauge field is massless and the expec-
tation value of c, s is given by

〈s2〉 = 〈c2〉 =

∫
dc c2e−βL

3c2/4∫
dc e−βL3c2/4

=
2

βL3
. (9)

We thus define

FA(L, β) = L3〈c2 + s2〉 (10)

which should be scale invariant in the non-superconducting
state. Plotting FA(L, β) versus β for several system sizes, we
expect the curves to collapse onto the same line once U(1)
symmetry is restored.

To determine how thermally excited vortex loops affect the
OZ2 order parameter we define the total length of all vortex
lines %, and introduce the quantity

ρV = %L−3, (11)

which allows us to define the correlator of the amount of ther-
mally induced vortex matter and the order parameter OZ2:

CV,Z2 =
〈ρVOZ2〉 − 〈ρV 〉〈OZ2〉

σ(ρV )σ(OZ2)
, (12)

where σ denotes the standard deviation.
The results of the simulations, shown in Fig. 3 confirm the

scenario described above. At low temperature the system does
not break time-reversal symmetry. Note that in that case OZ2

is only nonzero due to finite size effects: it decreases rapidly
with system size. As the temperature increases, we see the
onset of a genuine Z2 order, which reaches a maximum at
β ≈ 1.35 − 1.4. This symmetry change is primarily driven
by excitation of vortices (as opposed to non-topological fluc-
tuations). This is clear from the correlator CV,Z2 shown in
(D), which reaches ∼ 0.72, indicating a very strong correla-
tion between the density of vortices and the order parameter
OZ2. It is also consistent with the fact that the Z2 order pa-
rameter is only nonzero in a temperature region where there is
an appreciable density of vortices.

As the temperature increases further, OZ2 starts to decrease
as expected. While thermal fluctuations generally tend to re-
store broken symmetries, an additional effect is also present.
At higher temperatures the correlatorCV,Z2 becomes strongly
negative, suggesting that further increase in the density of
thermally induced vortices helps to destroy the Z2 order. Re-
turning to Fig. 1 (B), it is clear that in the model we use, the
region with broken time-reversal symmetry corresponds to in-
termediate magnitudes of η13 = η23. Decreasing the magni-
tude beyond |ηi3| ∼ 0.0542 restores time-reversal symmetry
and results in the “s± state" which is characterized by phase
“anti-locking", i.e. ϕ1 − ϕ2 = π. Likewise, depleting |ψ3|
beyond a certain point contributes to destroying the Z2 order
by the same mechanism. The other process which should, in
general, contribute to the anticorrelation at elevated tempera-
tures is the splitting of composite vortices into fractional ones
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Figure 3. Summary of the simulation results. (A) The density of thermally induced vortices (ρV , Eq. 11). It approaches zero at low
temperature, but starts to increase substantially at β ≈ 1.5. (B) The Fourier components of the magnetic field scaled by system size (FA(L,K),
Eq. 10) collapse onto the same curve, indicating that the system is non-superconducting for β < βc ≈ 0.9. (C) The order parameter of the
broken time-reversal symmetry OZ2 (Eq. 7) is zero at low temperature (except for finite size effects). As the temperature increases an order
emerges and reaches a maximum at β ≈ 1.35− 1.4. At higher temperatures this order starts to decay rapidly. (D) The correlation between the
density of thermally-induced vortices ρV and the Ising order parameterOZ2 (Eq. 12) is positive at low temperature and reaches a maximum of
∼ 0.72, implying that breaking of the Z2 symmetry is driven by vortex proliferation. At higher temperatures the correlation becomes negative,
indicating that vortices contribute to restoring the symmetry.

connected by Z2 domain walls (for a detailed discussion of
these objects see24).

In conclusion, it is well known that broken symmetries can
be restored by entropy-driven proliferation of topological de-
fects. Here we have shown that for a class of systems, the
proliferation of topological defects instead leads to a sponta-
neous breakdown of an additional symmetry. The implication
of this is a phase transition where a symmetry is broken as the
temperature is increased. We have demonstrated this effect
using a three-component GL model with frustrated interband
interaction as an example. These models are currently dis-
cussed in connectionBa1−xKxFe2As2 for a certain range of
dopings. This transitions should be detectable in calorimetry

experiments. The mechanism described here is however more
generic and should also apply to other systems where topo-
logical defects induce a bubble of fluctuating order parameter
associated with a different symmetry.
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