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We demonstrate that the tunneling spectra from deeply underdoped Bi2Sr2CuO6+δ (Bi2201) and
Ca2CuO2Cl2 (CCOC) provide clear evidence for a nanoscale phase separation (NPS), which causes
the gap to fill rather than close with doping. The phase separation extends from half-filling to a
doping of x ∼ 0.09. Assuming that the NPS is in the form of stripes, the nodal gap, which we
model as a Coulomb gap, arises from impurity pinning of the charged stripes, and ultimately drives
a metal-insulator transition.

PACS numbers: 74.72.Gh, 74.72.Cj, 74.25.Dw, 74.25.Jb

Just how a correlated material evolves from being a
Mott insulator into a high-Tc superconductor remains a
highly contentious issue nearly three decades after the
discovery of the cuprates with important implications for
the underlying mechanism of superconductivity. A major
puzzle concerns what happens to the 2 eV gap present in
the half-filled Mott insulator when it is doped. Various
theoretical models make clear predictions in this connec-
tion. In strong coupling theories (t − J or the U → ∞
Hubbard model) the gap remains large, but there is an
anomalous spectral weight transfer (ASWT) from the up-
per (UMB) to the lower magnetic band (LMB)[1]. The
width of the LMB gradually increases from ∼ 2J to ∼ 8t
as doping changes from x = 0 to x = 1. For the smaller-U
Hubbard models, the ASWT is actually faster, as elec-
trons can lower their kinetic energy by hopping through
occupied states. In the intermediate coupling models[2],
this is associated with a decrease of the magnetic gap
with doping.[3]

In order to explain the rapid changes observed at low
doping, one would require doping-dependent screening
of the effective Hubbard U : In a two-dimensional system
with a magnetic gap, the screening would, in fact, need
to turn on discontinuously with doping away from half-
filling[4]. In such a case, Mott showed that the transition
would be first order.[5] This would present a very differ-
ent scenario for the doping dependence of the gap, leading
to a filling in rather than a closing of the gap as islands of
doped phase appear in the sample. Here we compare and
contrast the various scenarios in the light of recent scan-
ning tunneling microscopy/spectroscopy (STM/STS) ex-
periments on the cuprates.

Experimental data in the deeply underdoped regime,
which could help discriminate between different theoreti-
cal scenarios, have been difficult to obtain until recently.
Photoemission is unable to probe the Mott gap as it
only sees the filled states. STM finds only a ∼ 100 meV
pseudogap[6] without revealing how this gap is connected
to the 2 eV optical gap at half-filling. Resonant in-
elastic x-ray scattering (RIXS) provides evidence of gap
collapse, but since it measures a joint density of states
(DOS), the analysis is model dependent[7]. Very recent

STM data from CCOC[8] and Bi2201[9] give new insight
into this problem as these data show the presence of a
large gap at half-filling, comparable to the optical gap.
Remarkably, the gap in the STM spectra neither remains
unchanged nor shrinks with doping, but instead it fills in.
This observed behavior is not consistent with a uniform
doping scenario. A possible explanation is provided by
a model involving competing magnetic orders in which
there can be a phase separation between the undoped in-
sulator and an incommensurate magnetic phase near 1/8
doping[10]. Since the positive ions are fixed in the lattice,
this electronic phase separation cannot be macroscopic,
but must be a NPS, possibly in the form of stripes.

Here we show how the recent STS data on deeply un-
derdoped cuprates can be understood within the frame-
work of an intermediate coupling model.[11] The band
dispersion is taken from density functional theory (DFT)
calculations, renormalized to account for the effects of
electronic correlations[3, 12], while the magnetic order is
calculated self-consistently within the random phase ap-
proximation (RPA). We use a mean field treatment of
the Hubbard model given by the Hamiltonian

H =
∑
k,σ

(εk − εF )c†k,σck,σ

+∆AF

∑
k,k′

[c†k+Q,↑ck,↑ − c
†
k′−Q,↓ck′,↓]

+
∑
k

[∆kc
†
k,↑c

†
−k,↓ + ∆∗kc−k,↓ck,↑], (1)

where c†k,σ (ck,σ) are the creation (annihilation) oper-
ators for an electron at momentum k with spin σ, εk
is the corresponding non-interacting energy level, εF is
the Fermi energy, and Q = (π, π). ∆AF is the an-
tiferromagnetic (AF) order parameter, and ∆k is the
d-wave superconducting (SC) gap function with ∆k =
∆0(cos(kxa) − cos(kya))/2, where ∆0 is the supercon-
ducting order parameter.

The band dispersion of the non-interacting system, εk,
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is modeled in the tight binding form:

εk = −2t[cx(a) + cy(a)]

−4t′cx(a)cy(a)− 2t′′[cx(2a) + cy(2a)]

−4t′′′[cx(2a)cy(a) + cy(2a)cx(a)]

−4tivcx(2a)cy(2a), (2)

in terms of the tight binding parameters ti. Here,
ci(αa) = cos(αkia), and a is the lattice constant. The
tight binding parameters for CCOC determined through
a fit to the corresponding DFT calculations[13, 14] are:
t = 0.36eV, t′ = −0.1eV, t′′ = 0.035eV, and t′′′ = 0.01eV.
The tight binding parameters for Bi2201, which are taken
from an experimental fit [15] are: t = 0.22eV, t′ =
−0.034315eV, t′′ = 0.035977eV. t′′′ = −0.0071637eV.

The ∆AF term in the Hamiltonian splits the quasipar-
ticle spectrum into two bands, where ν = + and ν = −
represent the UMB and LMB, respectively. These bands
are again split by the SC order, resulting in a total of
four bands with dispersions given by:

Eνk = ±
√

(Es,νk )
2

+ ∆2
k. (3)

where ξk = εk − εF and ξ±k = (ξk ± ξk+Q)/2. Es,νk =

ξ+k + νE0k, with E0k =

√(
ξ−k
)2

+ (US)2 describes the
quasiparticle dispersion in the absence of superconduct-
ing order. The transformation between the momentum
and quasiparticle spaces involves the coherence factors

αk(βk) =
√

(1± ξ−k /E0k)/2,

uνk(vνk) =
√

[1± (ξ+k + νE0k)/Eνk]/2. (4)

The self-consistent equations for the superconducting
gap parameter ∆0 and the staggered magnetization, S,
where ∆AF = SU are

∆0 = −V
∑
k

gk

×
[
u+k v

+
k tanh (βE+

k /2) + u−k v
−
k tanh (βE−k /2)

]
= −V∆0

∑
k

g2k

×
[

1

2E+
k

tanh (βE+
k /2) +

1

2E−k
tanh (βE−k /2)

]
,(5)

S =
1

N
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)

+
(
(v+k )2 − (u+k )2

)
f(E+

k )
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(
(v−k )2 − (u−k )2

)
f(E−k )

]
,

=
US

N

∑
k

1

4E0k

×

[
Es,+k

E+
k

tanh (βE+
k /2)−

Es,−k

E−k
tanh (βE−k /2)

]
,(6)

where in equation 5, V is the superconducting potential
and gk = cos(kx)− cos(ky).

In the undoped CCOC, our model predicts a large,
∼ 2 eV gap at half filling, consistent with experiment[8]
as seen in Fig.2(c). We find that the AF gap param-
eter, 2∆AF = 2.76eV , is approximately equal to the
energy difference between the top of the LMB and the
VHS of the UMB. Moreover, the same model reproduces
the experimental dispersions and density of states (DOS)
for x ≥ 0.1, in both Bi2201[16] and Bi2Sr2CaCu2O8+δ

(Bi2212)[11].

For a uniformly doped system, the AF gap at half-
filling would decrease steadily with doping, leaving only
a small pseudogap, as illustrated for Bi2201 in Fig. 1. In
contrast, recent STM experiments on deeply underdoped
CCOC and Bi2201 reveal a more complicated doping evo-
lution, where a strong growth of in-gap states in the local
DOS is observed in the spectra.[8, 9] Our analysis will
show that these results can be understood in terms of a
NPS. While NPS can have different spatial patterns, in-
cluding stripes, dots, or polarons, stripes seem to be fa-
vored in La2−xSrxCuO4 (LSCO)[17–19] and Bi2201[20]
as they provide a natural explanation for the Yamada
plot[21].

In the cuprates, there are several sources of charge in-
homogeneity that may act in parallel. First, a charge-
density wave phase has been reported in a number of
cuprates[22–28]. Then, STM studies find patches of vary-
ing local density, which are mainly correlated with oxy-
gen vacancies in the Bi-cuprates.[29] Finally, a phase sep-
aration has been predicted in Bi-cuprates, most notably
between the insulating phase in the undoped compound
and at a doping around x = 0.125,[10] which as already
noted would lead to NPS. We emphasize that NPS differs
from a macroscopic phase separation in that in the latter
case only two densities are involved, so that properties
such as the AF and SC gaps will be doping independent.
In the NPS scenario, the individual domains are so small
that properties will evolve with doping in each domain
type due to the proximity of other domains.[30, 31] For
instance, in oxygen-doped La2CuO4+δ, the excess oxygen
remains mobile down to below room temperature. This
results in a macroscopic phase separation over a wide
doping range where the SC transition temperature Tc has
a fixed value close to that at optimal doping, while the
AF Néel temperature remains nearly unchanged from its
value at zero doping.[32] In contrast, in Sr-doped LSCO,
the Sr ions are immobile, and a macroscopic phase sep-
aration is replaced by spin-and-charge stripes[17], which
can be a form of NPS, while Tc varies smoothly with x.

The main effect of nanoscale proximity of domains is
to produce relatively small shifts in the DOSs associated
with the end phases: for example, the undoped insulator
phase might acquire a small hole doping[31, 33]. Here we
simplify the analysis by assuming that in a NPS model
of stripes, the total DOS is approximately given by the
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superposition of the DOSs of the two end phases.

The DOSs for the end phases of Bi2201 and CCOC
used in this article have been obtained within the frame-
work of the quasi-particle GW (QP-GW) scheme for
modeling the electronic structures of the cuprates.[2] The
only essential parameters involved in the QP-GW scheme
are the material specific tight-binding band parameters
and the value of the Hubbard U at half-filling. The dop-
ing dependent electronic structure is then determined via
a self-consistently computed self-energy correction, which
accounts for strong correlation effects within an interme-
diate coupling scenario. A key feature of the scheme is
that the low energy uncorrelated DFT based states near
the Fermi energy are renormalized and broadened due
to charge and magnetic fluctuations in the presence of
AF and SC orders, in addition to the appearance of high
energy features in the electronic spectrum, which reflect
remnants of Mott physics. Notably, the theory predicts
the value of the low-energy dispersion renormalization
factor, Z,in a doping dependent manner. The renormal-
ization factor Z is determined self consistently within the
QP-GW scheme. For details of these and other aspects
of the QP-GW scheme we refer the reader to a recent
review[2], which discusses the methodology and its ex-
tensive applications, and shows how this scheme reason-
ably captures many salient features of the doping and
temperature dependent spectra of the cuprates.

Figure 2 displays the DOS calculated in the NPS
model for Bi2201 and CCOC within the QP-GW scheme.
The dopings for CCOC correspond to the STM data of
Ref. 8, which is plotted along with the calculated curves
in frames (c) and (d), assuming that each patch con-
tains a stripe-like mix of two phases. For Bi2201, in
Figs. 2(a,b), we invoke two stable phases one with x0
= 0.0, U/t = 7.576, and Z = 0.9, and the other with x1
= 0.09, U/t = 3.576, and Z = 0.7. Linear combinations
of these DOSs are then generated to represent an aver-
age doping, xav, where xav = 0.03 in Fig. 2(a) and 0.08
in Fig. 2(b). For CCOC, Figs. 2(c,d), the stable phases
have x0 = 0.0 with U/t = 8.5, Z = 1 and x1 = 0.09 with
U/t = 3.3, Z = 0.5. In our model, x0 corresponds to half-
filling and gives the experimentally observed large gap,
x1 is taken to be the doping which reproduces the DOS
of the in-gap states, and Z is determined self-consistently
within the QP-GW scheme[2]. For Bi2201 we used the
effective U/t calculated in Ref.[34], fit to a decaying expo-
nential U/t = a1e

−x/b + a2, where a1 = 4.626, a2 = 2.95,
and b = 0.045. The resulting self-consistent values of
∆AF are shown in Fig. 1(e). For CCOC, values of U are
chosen such that the self-consistent ∆AF ’s give the DOSs
that match the experimental large gap and in-gap states
in ref. 8 for x0 and x1, respectively. This simple picture
is seen in Fig. 2 to reproduce the effect of gap-filling as
a function of doping, rather than the gap-closing shown
in Fig. 1. In Figs. 2(c,d) the model calculations are in
good accord with the corresponding experimental data

FIG. 1. (Color online) (a-d) DOS for uniformly doped Bi2201
with AF + SC orders at four different dopings x. Fermi energy
is defined to be zero. The dip near zero energy in (a) is due
to the SC gap. (e) Two gap scenario, showing self-consistent
values of ∆AF (solid blue line) and ∆0 (dashed red line) vs
doping. The ∆0 curve is scaled up by 50 for clarity.

(solid lines with noise). The model captures both the
gap edge and the DOS peak (subband Van Hove singu-
larity), and, for the doped sample, the in-gap DOS. Note
that at energies < −1 eV or > 3 eV there is additional
DOS weight associated with bands not included in the
present modeling.

Fig. 3 compares our model calculations with data from
Ref. 6 over a narrow energy range. It is important to
recognize here that at low energies the system under-
goes a metal-insulator transition associated with a nodal
gap[6, 35–38]. Within the present model, this gap arises
on the charged stripes (regions of higher doping) and in-
creases as the doping decreases and the stripes separate
further. Assuming this to be an effect of stripe pinning
by impurities, we model it as a Coulomb gap[39], as has
been suggested previously[36, 40]. The Coulomb gap is a
soft gap arising from the Coulomb interaction of particles
on impurity sites, and its effect on the DOS (in a two-
dimensional system) can be calculated self-consistently
via the following equation[39]:

g(ω) = ∆exp

(
−
∫ ∞
0

g(ω′)dω′

(ω + ω′)2

)
, (7)
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FIG. 2. (Color online) DOS for the AF system in the pres-
ence of a NPS for xav = 0.03 (a) and 0.08 (b) for Bi2201[43].
(c) Calculated DOS at half-filling (solid blue line) for CCOC
compared to the corresponding STM data[8] (black curve with
noise). (d) Calculated DOS for the AF system with NPS in
CCOC (solid blue line) compared to the corresponding exper-
imental data[8] (solid red line with noise). STM intensities in
(c,d) are scaled to match the Van Hove singularity below the
Fermi energy[44].

where g(ω) is the DOS at frequency ω, and ∆ is the width
of the Coulomb gap. In our case, we multiply g(ω) by
the DOS obtained from a QP-GW computation with AF
order to simulate the presence of a Coulomb gap. Fig. 3
shows that the resulting DOS reproduces the character-
istic features of the STM data quite well, including the
peak above the Fermi energy due to the bottom of the
UMB in the x1 phase, the peak below the Fermi energy
from the LMB in the x0 phase, and the soft gap with
zero states at the Fermi energy due to the Coulomb gap.
Table I gives details of the parameters used for the model
results (dashed curves) in Fig. 3 from top down. In or-
der to minimize the number of parameters, we estimate
the energy of the Coulomb gap from the experimental
data. The onset temperature, T0, of the Coulomb gap
was derived from transport measurements given in Fig-
ure 4(c) of Ref. 36, and used to estimate the size of
the gap assuming 2∆/kBT0 = 4. Gap values for CCOC,
determined in this way, are listed in Table I and Fig. 3.

The Coulomb gap is the natural result of pinning of
stripe order by impurities. Therefore, it exists over the
doping range, 0.00 ≤ xav ≤ 0.09, where we are mod-
eling the NPS as a stripe order. As xav moves away
from half-filling, the magnitude of the Coulomb gap de-
creases to account for the shrinking width of magnetic
stripes. If we ignore the Coulomb gap, spectral weight
would be present at the Fermi energy as seen in the DOS
of Fig. 1(b-d) resulting in a significant deviation from
experimental results at low energies[6, 8]. Notably, the
experimental data in Fig. 3 show that the soft gap closes
at a point at the Fermi energy, whereas our computa-

TABLE I. Value of Coulomb gap ∆ and the corresponding
average doping values, xav, used in calculating the DOSs of
CCOC shown in Fig. 3. The calculated curves from top to
bottom in Fig. 3 correspond to DOS indices 1 through 9 in
this table.

DOS index ∆(meV ) xav

1 44.5 0.060

2 50.8 0.055

3 57.2 0.050

4 63.5 0.045

5 69.8 0.040

6 76.1 0.035

7 82.4 0.030

8 88.8 0.025

9 95.1 0.020

tions yield a broad minimum which is symmetric around
the Fermi energy. The simple model of DOS introduced
in this study, however, is only meant to capture global
features of an NPS with a Coulomb gap. A more sophis-
ticated model should take into account the local topology
of the NPS phase, and the details of the associated phase
separation. For instance, in the low-doping regime, the
doped-phase could take the form of islands or stripes,
and these details will modify the nature of the result-
ing Coulomb gap. It may also be necessary to include
disorder effects (see Fig. 65 of Ref. 18).

The role of NPS or ‘stripe’ physics near a Mott transi-
tion has been discussed often in the litertaure[17, 18, 41].
Note that NPS bears a resemblance to the strong-
coupling effects, which give rise to ASWT with doping in
the cuprates.[1] ASWT is generally interpreted in terms
of Mott physics: there is a penalty U for putting a second
electron on a copper site that is already occupied. When
an electron is now removed from a given site, both holes
lie at a low energy above the Fermi energy since there is
no U -penalty for adding a hole with either spin. Thus,
because of ASWT, the occupation of the upper Hubbard
band is not fixed, but decreases with increased hole dop-
ing. In an intermediate coupling model, the Mott gap
becomes an AF gap. In the presence of NPS, adding a
hole creates a region of higher doping, where the AF gap
is considerably smaller, so that the second hole is shifted
to a much lower energy just as in ASWT (see Fig. 2). Fi-
nally, in the strong coupling regime, there is a tendency
for atoms with two holes to cluster (to increase the kinetic
energy without introducing a U -penalty), thus providing
an additional link with NPS.

In conclusion, we have demonstrated that the gap-
filling with doping, rather than gap-closing, observed
experimentally in STM studies of deeply underdoped
CCOC and Bi2201 is naturally understood in terms of
a NPS[10]. Local stripes would be strongly pinned by
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FIG. 3. (Color online) Calculated DOSs including Coulomb
gap for modeling a NPS in an AF system (dashed lines) com-
pared to the corresponding STM data from Ref. 6 (solid lines).
The number next to a theoretical curve indicates the DOS in-
dex of that curve associated with Table I. The curves are
shifted vertically for clarity. Different experimental curves
correspond to DOS measured on different patches in a single
CCOC sample.

impurities, explaining the occurrence of a nodal gap, a
metal-insulator transition, and spin-glass-like phenom-
ena found in underdoped cuprates. The NPS model also
predicts[10] the coexistence of (π, π) AF order and an in-
commensurate SDW phase, as has been observed recently
in LSCO[42].
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