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We establish the phase diagram of the strongly-interacting Bose-Hubbard model defined on a
two-leg ladder geometry in the presence of a homogeneous flux. Our work is motivated by a recent
experiment [Atala et al., Nature Phys. 10, 588 (2014)], which studied the same system, in the
complementary regime of weak interactions. Based on extensive density matrix renormalization
group simulations and a bosonization analysis, we fully explore the parameter space spanned by
filling, inter-leg tunneling, and flux. As a main result, we demonstrate the existence of gapless and
gapped Meissner and vortex phases, with the gapped states emerging in Mott-insulating regimes.
We calculate experimentally accessible observables such as chiral currents and vortex patterns.

Introduction. The quantum states of interacting elec-
trons in the presence of spin-orbit coupling and magnetic
fields are attracting significant attention in condensed
matter physics because of their connection to Quantum
Hall physics [1], topological insulators [2–4] and the emer-
gence of unusual excitations in low dimensions [5, 6]. Re-
cent progress with quantum gas experiments has led to
the realization of artificial gauge fields [7], both in the
continuum [8–10] and for bosons in optical lattices [11–
14], paving the way for future experiments on the inter-
play of interactions, dimensionality, and gauge fields in
a systematic manner. This has motivated theoretical re-
search into the physics of strongly interacting particles in
the presence of abelian and non-abelian gauge fields and
various questions such as the Quantum Hall effect with
bosons [15–22], unusual quantum magnetism [23–26], and
the emergence of topologically protected phases [27–29]
have been addressed.

Given the complicated interplay between interactions,
gauge fields and dimensionality, one often has to resort
to mean-field approaches to build up intuition for the
emergent phases, which should be complemented by reli-
able analytical and numerical results. In one dimension,
both bosonization [30] and numerical techniques such
as the density matrix renormalization group (DMRG)
method [31–33] provide powerful tools to characterize
the emergent quantum phases. Here we consider inter-
acting bosons on a two-leg ladder in the presence of a
homogeneous magnetic flux (see Fig. 1 for a sketch of
the model and definitions of parameters). Such a system
has been realized in a recent experiment with bosons in
optical lattices [34], yet in the weakly-interacting regime
of high densities per site. The existence of a transition
between a phase with Meissner-like chiral currents and
a vortex phase as a function of flux and rung tunneling
strength has been demonstrated [34], reminiscent of the
field-dependence of currents in type-II superconductors.
Here we provide complementary insights into the emer-
gent phases in the strongly-interacting case where, in par-
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FIG. 1. (Color online) Sketch of the model Eq. (1): bosons on
a two-leg ladder, with J and J⊥ the hopping matrix elements
along the legs and rungs, respectively, with φ the magnetic
flux per plaquette, and U the onsite interaction strength.

ticular, also Mott-insulating phases can appear [35, 36].
Bosons on a ladder subjected to gauge fields have

been the topic of previous theoretical work [37–44] (see
also [45, 46] for 2D lattices), yet complete quantitative
phase diagrams are lacking. In our work, we use DMRG
to systematically explore the full dependence on J⊥, φ,
and filling and, as a main result, we observe both gapped
and gapless Meissner and vortex phases for strongly-
interacting bosons. We focus on the gapped phases that
emerge at a filling of one boson per rung, for which we
present detailed results for chiral currents, the vortex
density and current patterns in the vortex phase. In this
Mott phase, Meissner currents are suppressed compared
to superfluid phases, and can even decay to zero for an
infinitely strong Hubbard interaction in the limit of large
rung couplings J⊥ ≫ J .
Hamiltonian and observables. The Hamiltonian is

given by (see Fig. 1):

H =

L
∑

ℓ=1,2;r=1

[

−J
(

a†ℓ,r+1aℓ,r +H.c.
)

+
U

2
nℓ,r(nℓ,r − 1)

]

−J⊥

L
∑

r=1

(

e−irφa†1,ra2,r +H.c.
)

(1)

on a ladder with L rungs where a†ℓ,r creates a boson on
site ℓ = 1, 2 of the rth rung. Energy is measured in units
of J . We define the filling as n = N/(2L), where N is
the total number of bosons.
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FIG. 2. (Color online) Phase diagram of HCBs for J⊥/J = 1
(circles) and J⊥/J = 1.5 (squares) as a function of flux φ and
density n (DMRG data, L = 101). The region 0.5 < n ≤ 1 is
related to the low-density regime by particle-hole symmetry.

On the one hand, the Hamiltonian (1) can be viewed as
a minimal model for describing the edge states of a two-
dimensional interacting Bose system pierced by a flux.
On the other hand, we can interpret the system as a
one-dimensional two-component gas [41, 42], where the
two species are labeled with ℓ = 1, 2. In the latter case,
the term proportional to J⊥ breaks the U(1) symmetry
related to the conservation of the particle numbers of the
individual components.
Local currents will be a key quantity for characterizing

different phases. We define the currents along the legs j‖

ℓ,r

and rungs j⊥
r as

j‖

ℓ,r = iJ
(

a†ℓ,r+1aℓ,r − a†ℓ,raℓ,r+1

)

(2)

j⊥

r = iJ⊥

(

e−irφa†1,ra2,r − eirφa†2,ra1,r

)

. (3)

The chiral (or Meissner) current is jc = ∂E0/∂φ =
1
2L |

∑

r〈j
‖

1,r − j‖

2,r〉|, where E0 is the ground-state energy
per site. Note that the operators given in Eqs. (2)-(3) de-
pend on the gauge, but the associated expectation values
are gauge invariant [46], as can be explicitly seen in the
definition of the Meissner current. For the data shown
in the figures, jc is computed by restricting the sum to
r ∈ [−L/4, L/4] to suppress boundary effects, since in
DMRG simulations we use open boundary conditions.
Phase diagram as a function of filling. Let us start

by giving an account of our main results, which can be
inferred from considering the limit of hard-core bosons
(HCBs), i.e., U/J = ∞. Figure 2 shows the phase dia-
gram for this case as a function of n and φ for J⊥/J = 1
and 1.5. These results are based on a combination of a
field-theory analysis and DMRG simulations for current
correlation functions, the von Neumann entropy, excita-
tion gaps, and the equation of state n = n(µ), where µ
is the chemical potential.
In Fig. 2 we identify mainly four types of phases. At

half-filling (n = 0.5), there is a Mott insulator (MI) with
a mass gap for any value of φ and J⊥ 6= 0. At small val-
ues of φ, we find a Meissner phase (M-MI) while at large

(a1) φ/π =0.5, J⊥/J =0.05 V-MI

(a2) φ/π =0.5, J⊥/J =0.5 V-MI

(a3) φ/π =0.5, J⊥/J =2 M-MI
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FIG. 3. (Color online) (a1)-(a3) Typical current patterns for
n = 0.5, φ/π = 0.5 and J⊥/J = 0.05, 0.5 and 2 and (b)
chiral current jc as a function of φ and J⊥ (HCBs, L = 101).
The width of the arrows in (a1)-(a3) is proportional to the
expectation values of the local currents. In (b), the solid line
locates the maximum at fixed φ and the dashed line the cut
considered in Fig. 4.

φ, a gapless vortex state exists (V-MI). This confirms
the prediction of a Mott gap for HCBs at n = 0.5 and
J⊥ 6= 0 [35, 36] and the emergence of the Meissner cur-
rents and a vortex phase for φ 6= 0 [41]. At finite values of
U/J < ∞, there will be a MI-SF transition, with critical
interaction strength depending on J⊥/J [47]. At n < 0.5,
there are superfluid phases which can again be divided
into a Meissner superfluid (M-SF) and a vortex superfluid
(V-SF). The terms Meissner and vortex state are justified
by the existence of characteristic current patterns. Ex-
amples for n = 0.5 are shown in Figs. 3(a1)-(a2) (V-MI)
and Fig. 3(a3) (M-MI) (current patterns in the M-SF and
V-SF are qualitatively similar to the ones in the M-MI
and V-MI, respectively: see Figs. S4(a)-(c) [47]). The
Meissner phases have vanishing rung currents 〈j⊥

r 〉 but a
finite chiral current jc, while in the vortex phase, 〈j⊥

r 〉 6= 0
on finite systems, with various possible vortex patterns.
The M-SF phase has one gapless mode (central charge
c = 1), while the V-SF has c = 2. We expect M-SF and
V-SF to be adiabatically connected to the corresponding
phases established at weak interactions [34, 37, 44].

The M-SF phase penetrates into the V-SF phase at
intermediate values of J⊥ ∼ J . The vicinity of φ = π
is special because at n = 0.25, a gapped charge-density-
wave (CDW) phase emerges at J⊥ & 1.3J . Once this
happens, the M-SF phase touches this phase, splitting
the V-SF into two lobes. Eventually, both the V-MI and
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the upper lobe of the V-SF phase disappear for large
J⊥ & 1.7J . For J⊥ & 1.5J , we find a jump in density at
φ = π, from n > 0.25 to the gapped n = 0.5 state, which
for J⊥/J → ∞ extends down to n = 0.25.

Effective field theory. The nature of the phase tran-
sitions can be elucidated using bosonization. If we fix
J⊥ 6= 0 and change the flux at half-filling, there is a
commensurate-incommensurate (C-IC) quantum phase
transition [30] from a gapped (φ < φcr) to a gapless
(φ > φcr) behavior of the relative phase fluctuations of
the two-leg system, whereas the total density mode is
always gapped for strong interactions [47]. Away from
n = 0.5, the total density mode becomes immediately
gapless [36] and there is a C-IC transition in the relative
degrees of freedom from a gapped to a gapless behavior
as a function of flux [37]. This picture is confirmed by
DMRG results for the von Neumann entropy (see Figs. S3
and S6 [47]) and consistent with the transitions shown in
Fig. 2.

The emergence of a two-component Luttinger liquid
(LL) at large values of φ becomes transparent in the
low-density limit where it is connected with the devel-
opment of a double-minimum structure in the single-
particle dispersion ǫk for φ > φcr(J⊥) [42, 44]. Note
that the physics at low densities is very similar to that
of frustrated chains in high magnetic fields below satura-
tion (see [54–56] and references therein). For bosons and
in the limit of vanishing density, once the single-particle
dispersion acquires a double-minimum, the c = 2 LL is
stabilized. To show this, we solve the low-energy scat-
tering problem of two bosons and extract the relevant
scattering lengths. There are two important scattering
processes at low energy: either the two bosons belong
to the same minimum of ǫk (intra-species scattering) or
they belong to different minima (inter-species scattering).
In 1D, the scattering length is related to the scattering
phase shift via ai,j = limK→0

[

cot(δi,j)/K
]

, where K is
the relative momentum of the two bosons and i, j = 1, 2
distinguish bosons belonging to the minimum in ǫk at
k < 0 or k > 0, respectively. The scattering length
is related to the amplitude of the contact potential of
the two-component Bose gas Ui,j(x − x′) = gi,jδ(x − x′)
with gi,j = −2/(ai,jm). By comparing the scattering
lengths ai,j to each other we find that in strong coupling
a1,1 > a1,2, such that once the double-minimum structure
appears in ǫk, the c = 2 LL is energetically preferred for
n → 0, consistently with the mean-field argument of [44]
and with the DMRG results shown in Fig. 2.

Large J⊥/J limit. Another interesting limit amenable
to analytical treatment is the case of strong rung tun-
neling J⊥/J → ∞. In that regime we introduce a

pseudo-spin-1/2 operator ~Sr on each rung r associated
to the states (|1, 0〉r + eirφ|0, 1〉r)/

√
2 → | ↓〉r, and

|0, 0〉r → | ↑〉r. The effective spin-1/2 model for the
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FIG. 4. (Color online) Cut through the phase diagram
Fig. 3(b) at φ/π = 0.5 for HCBs as well as U/J = 4, 8, 16
and 32. Dashed lines: Theoretical predictions for J⊥ ≪ J
and J⊥ ≫ J [see Eqs. (5) and (6)]. Inset: Asymptotic
value jc(J⊥/J → ∞) as a function of 1/U , together with
jc(∞) = 4J2/U . (U/J < ∞: L = 60, L = 201 for U/J = ∞).

special case of φ = π and to first order in J2/J⊥ is [47]:

H 1
2
=

J2

2|J⊥|
∑

r

(

2Sz
rS

z
r+1 −

[

S+

r (
1

2
− Sz

r+1)S
−

r+2 + h.c.
]

)

.

(4)
In this basis, n = 0.5 corresponds to the fully polarized
state

∏

r | ↓〉r and the vacuum of bosons n = 0 corre-
sponds to

∏

r | ↑〉r, while n = 0.25 implies a vanishing
magnetization 〈Sz

r 〉. The classical Néel-state |... ↑↓↑↓ ...〉
is an eigenstate of the effective model Eq. (4) and for
quarter-filling it becomes the ground state due to the
dominant Ising interaction. Hence, in the vicinity of
φ = π the ground state of bosons for J⊥/J ≫ 1 at
quarter-filling (n = 0.25) is a doubly-degenerate CDW
state, which breaks translational invariance. Away from
φ ∼ π, the effective model undergoes a Kosterlitz-
Thouless T transition at some φcr

CDW
from the Néel state

(φcr
CDW

< φ ≤ π) into a gapless XY phase (φ ≤ φcr
CDW

),
the latter being characterized by c = 1. The existence of
a fully gapped CDW state at n = 0.25 for strong J⊥/J
in the vicinity of φ = π and of a direct transition from
the fully gapped state to a c = 1 phase with decreasing
φ explains the tendency of the M-SF to pierce the V-SF
(see Fig. 2).
The effective spin- 1

2
model Eq. (4) further unveils the

presence of a metamagnetic behavior just below the sat-
uration magnetization, corresponding to a jump in the
density of bosons from n = 0.25 to n = 0.5 at J⊥/J → ∞.
Due to the absence of spin-inversion symmetry in Eq. (4)
there is no such jump from n = 0.25 to n = 0. For
J⊥/J < ∞, this metamagnetic behavior survives with a
jump between some n > 0.25 to n = 0.5, which explains
the numerical data shown in Figs. S1 and S2 [47].
Dependence of currents on φ and J⊥. Figure 3(b)

shows the chiral current as a function of φ and J⊥/J for
HCBs at n = 0.5. The chiral current takes a maximum
at the transition from the V-MI to the M-MI. Using field
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φ/π = 0.2, 0.5 and 0.8 (L = 101).

theory, we derive an expression for the chiral current, in
the regime J⊥ ≪ J and for small φ

jc ∼
J2

⊥

Jφ3−1/K0
+O(J4

⊥
) , (5)

where K0 is the LL parameter for the Bose-Hubbard
model of decoupled chains (J⊥ = 0), and ranges from
K0 = ∞, for U = 0, to K0 = 1, for HCBs. The jc ∝ J2

⊥

behavior is a generic result, valid for any repulsion U
and filling [47]. Equation (5) implies that jc increases
the fastest with J⊥ at small values of φ. In particular,
for HCBs, we obtain jc ∼ (J⊥/φ)

2.
For the opposite limit of large J⊥ ≫ J , we use pertur-

bation theory at n = 0.5 [47] to derive that for U/J ≫ 1

jc =
J2(4J⊥ + U)2

2J⊥U(2J⊥ + U)
sin(φ) . (6)

Therefore, in the limit of infinitely strong interactions,
the chiral current decays to zero in the M-MI as jc ∝
1/J⊥, contrary to the behavior at finite U/J < ∞ where
the chiral current saturates at large J⊥ ≫ J , as jc(∞) ∝
1/U (see the inset in Fig. 4). This latter saturation is
known from the U = 0 limit [34, 42] and is also observed
in M-SF phases for U 6= 0 (results not shown).
Figure 4 presents a cut of Fig. 3 at φ = π/2, together

with finite U/J data. The analytical predictions for the
weak- and strong-coupling regimes from Eqs. (5) and
(6) agree very well with our DMRG data for U/J ≫ 1
[dashed lines in Fig. 4]. The essential features of the HCB
case carry over to finite values of U/J < ∞, yet a finite U
suppresses the chiral current, which should be accessible
in experiments.
The vortex phases can be further characterized by their

current patterns which bear well-defined structures, with
varying spatial extension and density as a function of
J⊥ and φ. For the parameters of Fig. 3(a1), the sign of
the current alternates along the legs, reminiscent of the
chiral MI phase discussed in [39, 40] These structures
can be quantitatively studied by analyzing the rung cur-
rents 〈j⊥

r 〉. Figure 5 shows the vortex density l−1
V

at
n = 0.5 as a function of J⊥/J for various values of φ,

where lV is the typical size of vortices extracted from the
Fourier transform of the real-space patterns 〈j⊥

r 〉 over
r ∈ [−L/4, L/4]. This can be interpreted as a measure of
the order parameter of the transition from the Meissner
into the vortex phase [37]. As expected, l−1

V
decreases to

zero as the transition into the M-MI phase is approached,
where only longitudinal currents survive. This is consis-
tent with field theory predictions, which also provide that
in the J⊥ ≪ Jφ limit, l−1

V
∼ φ [47]. The rung-current cor-

relation function 〈j⊥
r j

⊥

r′〉 decays algebraically in all vortex
phases (see Fig. S5 [47]), unlike in the so-called chiral MI
phase [39, 40] realized for U/J < ∞, φ = π, J⊥ = J , and
n = 1, which has long-range rung-current correlations.

Summary. Based on a combined DMRG and field-
theoretical study, we obtained the phase diagram of
strongly interacting bosons on a two-leg ladder in the
presence of a homogeneous flux per plaquette. We
demonstrated the existence of both gapless and gapped
Meissner and vortex phases, where the gapped Meissner
phase emerges in the Mott-insulating regime. The chi-
ral current is suppressed by interactions and for HCBs it
decays to zero in the M-MI, with increasing J⊥. These
results substantially extend previous studies of related
models [39–41] and confirm various predictions from field
theory [37, 44]. We provided analytical results for the
weak- and strong-coupling limit, in very good agreement
with numerical data. Our findings will provide guidance
for future experimental studies (similar to [34]) of the
strongly-interacting regime. The interaction strength,
density and the ratio of hopping matrix elements can rou-
tinely be tuned in optical lattice experiment [57], and so
far, φ = π/2 has been realized [13, 14, 34]. Interesting ex-
tensions of our present study include the current patterns
in harmonic traps. For this case, our results for n = n(µ)
provide information about the real-space density profiles
via the local density approximation. Moreover, there is
the possibility to stabilize vortex solids [37], which are so
far elusive in the strongly-interacting regime at incom-
mensurate fillings. In the strong-coupling limit U ≫ J ,
vortex solids are not observed in our numerical data ei-
ther in the superfluid or in the n = 0.5 Mott phase, as
opposed to the n = 1 Mott phase for moderate values of
U/J [39, 40], where a vortex solid appears at φ = π.

Note added. Very recently, two more experimental
studies have investigated fermions [58] and bosons [59]
on ladders in optical lattices in the presence of artificial
gauge fields.
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