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The electronic and magnetic properties of a new diluted magnetic semiconductor (DMS)

Ba1−xKx(Zn1−yMny)2As2, which is isostructural to so-called 122-type Fe-based superconductors, are

investigated by x-ray absorption spectroscopy (XAS) and resonance photoemission spectroscopy (RPES). Mn

L2,3-edge XAS indicates that the doped Mn atoms have the valence 2+ and strongly hybridize with the 4p

orbitals of the tetrahedrally coordinating As ligands. The Mn 3d partial density of states (PDOS) obtained by

RPES shows a peak around 4 eV and relatively high between 0-2 eV below the Fermi level (EF ) with little

contribution at EF , similar to that of the archetypal DMS Ga1−xMnxAs. This energy level creates d5 electron

configuration with S = 5/2 local magnetic moments at the Mn atoms. Hole carriers induced by K substitution

for Ba atoms go into the top of the As 4p valence band and are weakly bound to the Mn local spins. The

ferromagnetic correlation between the local spins mediated by the hole carriers induces ferromagnetism in

Ba1−xKx(Zn1−yMny)2As2.

PACS numbers: 75.50.Pp,74.70.Xa,79.60.-i,78.70.Dm

Diluted magnetic semiconductors (DMSs) have received
much attention due to the possibility of utilizing both charge
and spin degrees of freedom in electronic devices1–5. In or-
der to realize functional spintronics devices, it is important
to have a full control of the carrier density and ferromagnetic
Curie temperature (TC). Prototypical DMS systems such as
Ga1−xMnxAs, In1−xMnxAs and Ga1−xMnxN, however, show
severely limited chemical solubility due to the substitution of
divalent Mn atoms for the trivalent Ga or In sites. Besides, the
simultaneous doping of charge and spin induced by Mn sub-
stitution prevents us from optimizing the charge and spin den-
sities independently, although the tuning of the charge density
by applying gate voltage is possible and can be used to control
TC

6.

A newly-found DMS, Ba1−xKx(Zn1−yMny)2As2
7 (Mn-

BaZn2As2), is isostructural to the “122”-type iron-based high-
temperature superconductors8 and has a TC as high as 230
K9. This material has an advantage that the charge reservoir
Ba layer and the ferromagnetic ZnAs layer are spatially sepa-
rated, which allows us to control the amount of hole carriers
by K substitution to the Ba layer and that of magnetic ele-
ments by substituting Mn to the ZnAs layer rather indepen-
dently. In addition, the substitution of Mn atoms for isovalent
Zn atoms enables us to circumvent the difficulty of limited
chemical solubility in Ga1−xMnxAs and related DMSs, which
makes it possible to obtain bulk specimens. Anomalous Hall
effect observed in Mn-BaZn2As2

7 provides evidence that fer-
romagnetism here is intrinsic as in Ga1−xMnxAs10,11. This
new series of DMSs, together with the new “111”-type mate-
rials Li(Zn,Mn)As12 and Li(Zn,Mn)P13, opens up new possi-
bilities for the next generation spintronics devices. To achieve
this goal, it is important to investigate the electronic and mag-

netic structure of Mn-BaZn2As2 and clarify the advantages
of this material as compared with the archetypal Mn-doped-
based DMS materials like Ga1−xMnxAs and In1−xMnxAs.

In the present work, we have performed x-ray absorp-
tion spectroscopy (XAS) and resonance photoemission spec-
troscopy (RPES) measurements on Mn-BaZn2As2 (x = 0.3,
y = 0.15, TC = 180 and 230 K). Polycrystalline samples were
synthesized under high pressure by the method described in
Ref. 7. XAS measurements for samples with TC = 230 K were
performed at the Dragon Beamline BL-11A of National Syn-
chrotron Radiation Research Center (NSRRC), Taiwan. The
spectra were taken in the total-electron yield (TEY: probing
depth ∼ 5 nm) mode. The monochromator resolution was
E/∆E > 10000 and the x-rays were circularly polarized. The
samples were filed in situ before the measurements to obtain
fresh surfaces. RPES experiments for samples with TC = 180
K were performed at Beamline 2C of Photon Factory, High-
Energy Accelerator Research Organization. RPES experi-
ments were done before the synthesis of TC = 230 K samples9.
Calibration of the Fermi level (EF ) was achieved using the EF

of gold which was in electrical contact with the samples. In-
cident photon energies from 635 eV to 643 eV were linearly
polarized. In order to gain insight further into the electronic
structure of the host semiconductor BaZn2As2, we have per-
formed density-functional theory (DFT) calculations.

To understand the electronic structure of the host semi-
conductor, we performed band-structure calculations on
BaZn2As2 using the Wien2k package14. Figure 1 (a) shows
the calculated band structure and the density of states (DOS).
BaZn2As2 has space group I4/mmm and the first Brillouin
zone is shown in the inset of the right panel. The calcula-
tions were done using the experimentally determined tetrago-
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nal lattice constants a = 4.12 Å, c = 13.58 Å7 and the arsenic
height hAs = 1.541 Å15. First we tried the local density ap-
proximation (LDA) and generalized gradient approximation
(GGA) exchange functionals16,17, but they gave overlapping
conduction and valence bands, inconsistent with the semicon-
ducting electrical conductivity with a band gap of 0.23 eV18.
This is the well-known underestimation of band gap in LDA
and GGA, and therefore we next employed the so-called mod-
ified Becke-Johnson exchange potential (mBJ) implemented
in Wien2k program19 with a standard mixing factor for the
exact-exchange term of 0.2520. We thus obtained a semicon-
ducting band structure with the valence-band maximum at the
Γ point and the conduction-band minimum at the Z point,
in agreement with the previous calculation using optimized
atomic positions21. A significant reduction of the resistivity
at T = 0 through K substitution to BaZn2As2

7, from 1× 104

Ω cm (x = 0) to 5× 10−1 Ω cm (x = 0.1), is caused by the
downward shift of EF . Unlike the iron pnictide superconduc-
tors, the conduction bands are composed mainly of Ba 5d and
As 4d orbitals, and the valence bands are composed of the Zn
4p and As 4p orbitals. Weakly dispersive bands around -7.5
eV originate from the Zn 3d orbitals and have a DOS as high
as 50 eV−1 at the peak position.
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FIG. 1: (Color online) Band structures and the density of states for

BaZn2As2 calculated using modified Becke-Johnson exchange po-

tential. The lattice parameters a = 4.120 Å , c = 13.578 Å7 and

hAs = 1.541 Å15 are used in the calculation.

In order to clarify the electronic states of the doped Mn,
we have performed XAS measurements in the photon en-
ergy regions around the L2,3 edge of Mn. Figure 2 shows
the Mn L2,3 absorption edges of Ba0.7K0.3(Zn0.85Mn0.15)2As2

compared with those of some reference systems. The line
shapes of Ba0.7K0.3(Zn0.85Mn0.15)2As2 is intermediate be-
tween two DMS systems Ga0.922Mn0.078As22 (GaMnAs) and
Ga0.958Mn0.042N23 (GaMnN), indicating that the Mn atoms
take the valence of 2+ and that Mn 3d orbitals strongly hy-
bridize with the surrounding As 4p orbitals as in GaMnAs
and GaMnN. From the shoulder structures around hν = 640
and 643 eV, which are more pronounced than in GaMnAs
and weaker than in GaMnN, we see that the strength of hy-
bridization is weaker than in GaMnAs but stronger than in

GaMnN. The line shape has more localized nature than metal-
lic compounds Mn metal24 and Mn doped into BaFe2As2

25.
However, it does not have clear multiplet structures seen in
the spectra of LaMnO3 and MnO26, consistent with the semi-
metallic conductivity in Mn-BaZn2As2.
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FIG. 2: (Color online) Mn L2,3-edge XAS spectra of

Ba0.7K0.3(Zn0.85Mn0.15)2As2 (Mn-BaZn2As2). The spectrum

is compared with those of Ga0.922Mn0.078As22, Ga0.958Mn0.042N23,

Mn metal24, Ba(Fe0.92Mn0.08)2As2
25, LaMnO3, and MnO26. The

valence and the local symmetry of the Mn atom are indicated for

each compound.
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FIG. 3: (Color online) (a) Evolution of the valence-band photoemis-

sion spectra of Mn-BaZn2As2 with photon energy hν = 635-643 eV.

Excitation photon energies are shown by arrows on the XAS spec-

trum in panel (b).

In order to extract the local electronic structure of the doped
Mn, we performed RPES experiments using photon energies
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around the Mn L3 edge. In RPES, one makes use of the prop-
erty that the cross-section of photoemission from an atomic
orbital is enhanced by quantum-mechanical interference be-
tween direct photoemission of a d electron, 3dn

+ hν →

3dn−1
+e−, and absorption followed by a Coster-Krönig tran-

sition 2p63dn
+ hν → 2p53dn+1

→ 2p63dn−1
+ e−27,28. This

effect is useful in extracting the 3d partial density of states
(PDOS) of a transition element in solids. Following the ob-
served x-ray absorption spectra, we measured the valence-
band photoemission spectra with photon energies from the
off-resonance to on-resonance regions. A series of photoe-
mission spectra taken with a small photon energy interval en-
ables us to clearly identify the resonance enhancement of Mn
3d-related photoemission features.

Figure 3 (a) shows the valence-band spectra taken with pho-
ton energies in the Mn L3 absorption region. Photon ener-
gies used are shown by arrows on the XAS spectrum in panel
(b). The high DOS of the Zn 3d states is clearly observed
∼ 10 eV below EF . Note that, regardless of hole doping in
Mn-BaZn2As2, the Zn 3d peak is located at ∼ -10 eV. (In
DFT calculation, it is calculated to be ∼ -7.5 eV, see Fig. 1.
Similar discrepancy of the Zn 3d energy level between DFT
and photoemission is also found in Zn-doped BaFe2As2

29,30.)
Photon-energy-independent peaks observed at -15 eV and -18
eV originate from the Ba 5p and K 3p orbitals, respectively.
Most importantly, one can see the enhancement of spectral
features in -8 ∼ 0 eV as the photon energy approaches on-
resonance energy at 638.5 eV and the subsequent reduction of
spectral weight at higher photon energies.
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FIG. 4: (Color online) (a) Evolution of the valence-band photoemis-

sion difference spectra of Mn-BaZn2As2 for photon energies hν =

635-643 eV. Off-resonance photoemission spectrum at the bottom of

the panel (hν = 635 eV) has been subtracted from the original spectra

in order to highlight the resonant enhancement of the spectral weight.

On-resonance spectrum is shown by a black curve. Vertical bars indi-

cate a constant kinetic energy characteristic of Auger-electron emis-

sion if it existed. The absence of clear Auger peaks reflects the lo-

calized nature of the Mn 3d electrons. (b) Mn 3d partial density of

states deduced by subtracting the off-resonance spectrum (hν = 635

eV) from the on-resonance spectra (hν = 638.5 eV). (f) Mn 3d PDOS

of Ga0.957Mn0.043As31 compared with that of Mn-BaZn2As2.

In order to highlight the resonance enhancement of Mn 3d-
derived spectral weight, we show on-off the difference spec-

tra in Fig. 4. The off-resonance spectrum (hν = 635 eV) at
the bottom of Fig. 4 (a) has been subtracted from each spec-
trum. The strongest enhancement around the Mn L3 edge (hν
= 638.5 eV) is seen around -4 eV. Vertical bars indicate a con-
stant kinetic energy characteristic of Auger emission. The
absence of clear Auger peaks represents that the core hole
created in the Mn 2p level is not efficiently screened before
the Coster-Krönig decay due to the low Mn 3d PDOS around
EF (below). From this result, we see that the Mn 3d elec-
trons are essentially localized and do not form band states
with the As 4p valence band. The absence of Auger emis-
sion is similar to RPES spectra taken at Mn L3 edges in Mn-
doped BaFe2As2

25, which demonstrates the localized nature
of Mn 3d electrons in the metallic FeAs layer, and is in con-
trast with the strong Auger feature observed at the Co L2,3

edges in Ca(Fe0.944Co0.056)2As2
32, which clearly signifies the

metallic nature of Co 3d electrons and the high Co 3d PDOS
at EF .

By subtracting the off-resonance spectra from the on-
resonance spectra, we have deduced the PDOS of Mn 3d or-
bitals as shown in Fig. 4 (b). The DOS is low at EF , fi-
nite between -2 eV and EF and takes a maximum at -4 eV.
Mn 3d spectral weight is widely distributed from ∼ -10 eV
to ∼ -2 eV. The deduced PDOS is compared with that of
Ga0.957Mn0.043As31 in Fig. 4 (c). Except that the peak in
Ga0.957Mn0.043As is about 0.4 eV deeper than that of Mn-
BaZn2As2, the overall spectral shapes are quite similar, in-
dicating that the electronic states of doped Mn are alike in
these two DMS systems. This similarity originates from the
same chemical valence 2+ of the Mn atoms and the tetrahedral
coordination by the As 4p orbitals.

From the obtained energy levels, we gain insight into the
location of hole carriers doped by K substitution in Mn-
BaZn2As2. The Zn 3d orbital is located as deep as 10 eV
below EF and thus cannot accommodate holes. Also, since
the Mn 3d PDOS has a maximum at -4 eV and very little
contribution at EF , they cannot accept holes either. There-
fore, holes are predominantly introduced into the valence band
composed mainly of the As 4p states. Thus Mn atoms have
the valence of 2+ as observed in the XAS spectrum in Fig.
2, and the local magnetic moments with S = 5/2 are formed
there in the presence of Hund’s coupling between electrons of
d5 configuration33.

The formation of the local magnetic moments affects the
hole mobility. Upon K doping into the parent compound (x =
y = 0), the resistivity at T = 0 significantly decreases from
1× 104 Ω cm (x = 0) to 5× 10−1 Ω cm (x = 0.1)7. On the
other hand, it does not radically decrease in samples with y =

0.1, from 4 Ω cm (x = 0) to 2 Ω cm (x = 0.3). This behavior
indicates that, while hole carriers introduced into the As 4p-
derived valence band are originally itinerant, they are weakly
bound to the local magnetic moments and lose mobility in the
Mn-doped samples.

The ferromagnetic correlation between the local S = 5/2
spins of Mn2+ ions is considered to be mediated by the holes
weakly bound to them. In generating ferromagnetism, the po-
sitions of the impurity level and EF are key parameters. A
combined approach of density functional theory and quantum
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Monte Carlo method34 on the Haldane-Anderson model35,36

showed that, when EF is located between the bound im-
purity state and the valence-band maximum of GaMnAs, a
long-range ferromagnetic correlation between the impurities
develops as a result of the antiferromagnetic impurity-host
coupling and that it is enhanced with decreasing tempera-
ture. Indeed, a recent resonance angle-resolved photoemis-
sion study on GaMnAs37 reveals the presence of a nondis-
persive impurity band in the vicinity of the valence-band
maximum as a split-off Mn-impurity state. Given that the
valence-band top of BaZn2As2 is higher than that of GaAs,
Mn-BaZn2As2 seems to satisfy the above condition. How-
ever, in order to precisely determine the mechanism of fer-
romagnetism in Mn-BaZn2As2, it is essential to experimen-
tally investigate the properties of the impurity state. Optical
and angle-resolved photoemission spectroscopy studies on the
new series of DMSs are desired in future studies.

In conclusion, by using XAS and RPES tech-
niques, we have studied the electronic structure of
Ba1−xKx(Zn1−yMny)2As2, in particular that related to
the Mn 3d states. Mn L2,3-edge XAS spectrum indicates that
the doped Mn atoms have the valence 2+ and are strongly
hybridized with the As 4p orbitals as in archetypal DMSs
GaMnAs. The Mn 3d PDOS obtained by RPES shows

a peak around EB = 4 eV and is relatively high between
EB = 0-2 eV with little contribution at EF . These electronic
states below EF leads to the d5 electron configuration of
Mn atoms with the local magnetic moment of S = 5/2.
From comparison between DFT band dispersions of the host
semiconductor BaZn2As2 and the experimental Mn 3d PDOS
of Mn-BaZn2As2, we conclude that doped holes go into
the top of the As 4p-derived valence band and are weakly
bound to the Mn local spins. The ferromagnetic correlation
between the local spins mediated by the hole carriers induces
ferromagnetism in Ba1−xKx(Zn1−yMny)2As2.
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