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Bose-Einstein condensates of exciton-polaritons are described by a Schrödinger system of two
equations. Nonlinearity due to exciton interactions gives rise to a frequency band of dark soliton
solutions, which are found analytically for the lossless zero-velocity case. The soliton’s far-field value
varies from zero to infinity as the operating frequency varies across the band. For positive detuning
(photon frequency higher than exciton frequency), the exciton wavefunction becomes discontinuous
when the operating frequency exceeds the exciton frequency. This phenomenon lies outside the
parameter regime of validity of the Gross-Pitaevskii (GP) model. Within its regime of validity, we
give a derivation of a single-mode GP model from the initial Schrödinger system and compare the
continuous polariton solitons and GP solitons using the healing length notion.

I. INTRODUCTION

Exciton-polaritons are matter-light quasiparticles that
arise from the coupling between excitons and photon
modes in a semiconductor microcavity and can form
Bose-Einstein condensates (BEC) at relatively high tem-
peratures [1–4]. Polariton condensates are sustained by
laser pumping of photons in a two-dimensional quantum
well. In a mean-field approximation, their wavefunctions
produce a rich variety of localised quantum states in the
micrometer scale: dark solitons [5–8, 10], bright solitons
[5, 11–13], vortices [14, 15]. Solitons in polaritonic con-
densates have potential for applications in ultrafast infor-
mation processing [16] due to picosecond response times
and strong nonlinearities [11, 12].

In this work, we report a frequency band of dark po-
lariton solitons whose exciton wave function develops a
discontinuity as the frequency is increased beyond the
exciton frequency (Fig. 1). At the point of discontinuity,
the photon field vanishes while the exciton field experi-
ences a phase jump of π.

We investigate a one-dimensional condensate of polari-
tons in a strongly coupled exciton and photon system.
Our derivation depends crucially on the use of the clas-
sic model that retains separate wave functions for the
excitons and the photon modes, and thus illuminates
phenomena outside the regime described by the Gross-
Pitaevskii model. Exciton interactions are modelled by
a nonlinear term, while photons are dispersive. Neglect-
ing both pumping and losses (which are due to radiation
and thermalization) and thus focusing on the synergy of
exciton interaction (nonlinearity) and photon dispersion
allows us to produce analytical formulae for polariton
solitons. A remarkable property of the solitons we derive
is that the operating frequency can be tuned to produce
a far-field baseline amplitude ranging from 0 to an arbi-
trarily large value.

We use the term “soliton” (instead of solitary wave or
localized structure) in the spirit of conforming to the pre-
vailing language. The term “soliton” was coined in the

1960s to describe nonlinear solitary waves that interact
cleanly (without radiating). Since then, the use of the
term has been broadened, especially in the physics liter-
ature, to encompass more general localized wave forms.

Sec. II presents the derivation of dark solitons for
the conservative polariton equations, Sec. III draws a
comparison with the standard Gross-Pitaevskii model,
Sec. IV contains a description of soliton solutions as
bound states in a potential well, and Sec. V contains
concluding remarks.

II. POLARITON SOLITONS

We consider a one-dimensional semiconductor micro-
cavity in which a photon field ψC(x, t) interacts with
an exciton field ψX(x, t). One dimensional or nearly
one dimensional polariton structures have been observed
in [6, 10, 17] and in [18] (for radial fields). The pair
(ψX , ψC) is a polariton field and ts dynamics are mod-
eled by the system [1, 19–21]

i∂tψX =
(
ωX + g|ψX |2

)
ψX + γψC (1a)

i∂tψC =
(
ωC − 1

2∂xx
)
ψC + γψX . (1b)

The coupling constant is half the Rabi frequency γ =
ΩR/2; ωX is the frequency of a free exciton, and ωC is the
photon frequency at zero wavenumber. All these are nor-
malized to a reference frequency γ0. One could set γ0 =γ,
however, we prefer to keep γ as an explicit parameter.
The spatial variable x is normalized to `0 =

√
~/(γ0mC) ,

where mC is the effective photon mass. The system of
Eqs. (1) is conservative (it conserves energy and total
number of particles: excitons and photons) as we have
neglected losses. Losses are typically included by adding
imaginary part to ωX and ωC .

The wavefunctions ψX , ψC are normalized to
√
N0/`0,

where N0 is a reference number of particles. The non-
linearity parameter g is normalised to N0/(`

2
0γ0). We

consider only the case g > 0 in this paper.



2

-4 -2 0 2 4-4

-2

0

2

4

x

�X(x)

�C(x)

! = �0.5

x

�X(x)

�C(x)

-4 -2 0 2 4-4

-2

0

2

4 ! = �0.1

x

�X(x)

�C(x)

-4 -2 0 2 4-4

-2

0

2

4 ! = 0.3

x

�X(x)

�C(x)

-4 -2 0 2 4-4

-2

0

2

4 ! = 0.6

FIG. 1: Dark polariton soliton envelopes (φX(x), φC(x)) for
exciton frequency ωX = 0 and photon frequency ωC = 1,
which gives a threshold frequency ωLP ≈ −0.618 for the onset
of the soliton, a transition frequency ωX = 0 at which φX

becomes discontinuous, and a blowup frequency ωC = 1 at
which the far-field values of φX and φC become unbounded
as shown in Fig. 3 (right). These graphs demonstrate the in-
creasing soliton amplitude as ω increases through four values.
When ω < ωX , φX is continuous, and when ω > ωX , φX is
discontinuous. The values of φX and φC are related by (4b).

We seek stationary harmonic polariton fields

ψX(x, t) = φX(x)e−iωt

ψC(x, t) = φC(x)e−iωt
(2)

with operating frequency ω and wavenumber zero. Let-
ting

$X = ω − ωX , $C = ω − ωC , (3)

and inserting (2) into (1) yields

− 1
2φ
′′
C −$CφC + γφX = 0 , (4a)

φC = 1
γ

(
$X − gφ2X

)
φX . (4b)

Multiplying Eq. (4a) by φ′C and Eq. (4b) by γφ′X and
adding the two integrates the system (4) exactly. The
cubic algebraic relation (4b) allows one to eliminate φC
in favor of φX to obtain a first-order ODE for φX(x). It
is then convenient to use the scaled exciton density

ζ(x) := g φX(x)2 (5)

which eliminates g from the equation and results in

1
2ζ
′2 =

4 ζQ(ζ)

(3ζ −$X)2
, (6)

whereQ(ζ) = −$C

[
ζ3 − 1

2 (3ζ∞ +$X)ζ2 + ζ∞$Xζ +K
]
,

K is an arbitrary real constant of integration, and

ζ∞ = $X −
γ2

$C
(7)
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FIG. 2: The cubic relation (4b) giving the photon field enve-
lope value φC vs. the exciton field envelope value φX . Left.
The pair (φX(x), φC(x)) travels continuously along the graph
of the monotonic cubic between its far-field values as x in-
creases from −∞ to ∞. Right. The pair jumps discon-
tinuously between the points (−φ0, 0) and (+φ0, 0), with

φ0 =
√
$X/g . The transition from continuous to discon-

tinuous φX occurs when ω = ωX . Graphs of the fields φC(x)
and φX(x) are shown in Fig. 1. The singularity of the ODE
(6) occurs at the critical points ±φ1.

corresponds to the nonzero equilibrium solution of (4).
Eq. (6) has the structure of an energy equation of a con-
servative system and admits a rich set of solitons and
periodic structures. In this work, we focus on continuous
and discontinuous dark solitons for g > 0.

For a dark soliton ζ(x) to exist, the cubic polynomial
Q(ζ) must have a double root that serves as the soliton’s
far-field value. The value of the constant of integration
K that provides such a nonzero double root equals

K = − γ6

2$3
C

(η − 1)2, (8)

where η is a convenient dimensionless parameter

η =
$X$C

γ2
. (9)

We calculate the double root to be equal to ζ∞, given
in (7). The fact that this is also the value of the far-
field justifies the notation. As x is varied, ζ(x) varies
continuously down to its minimal value (nadir) ζ = 0,
which is a simple root of the potential in (6). We may
assume that the nadir occurs at x = 0.

The soliton field (φX(x), φC(x)) traces the graph of
the cubic relation (4b) as x increases. Fig. 2 shows the
graph of this relation for the two cases ω < ωX and ω >
ωX . The equilibrium points (φX , φC)−∞ and (φX , φC)∞
correspond to the calculated value ζ∞.

The parameter η is convenient for expressing the soli-
ton nonlinear dispersion relation at zero wavenumber,
that relates the soliton amplitude ζ∞ to the operating
frequency ω, which is embodied in η and $C ,

ζ∞ = $X
η − 1

η
=

γ2

$C
(η − 1). (10)

We restrict our attention to $C < 0, which also implies
η < 1, given the fact that ζ∞ > 0. Under these condi-
tions, one can show that Q(ζ) > 0, a necessary condition
for Eq. (6) to have real solutions.
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FIG. 3: The threshold frequency ωLP marks the onset of a
dark polariton soliton, and the photon frequency ωC is the
blowup frequency, at which the far-field amplitude of the soli-
ton becomes unbounded. Left. (ωC < ωX). As the operating
frequency ω traverses the soliton band (ωLP, ωC), the far-field
amplitude of the exciton field φX goes from 0 to ∞ accord-
ing to (7). The nadir (low point) is zero. Right. (ωX < ωC)
The free exciton frequency ωX is the transition frequency from
continuous to discontinuous solitons. The nadir of the discon-
tinuous soliton is pushed upwards to the value $X .

A dark soliton appears at η = 1 (ζ∞ = 0) correspond-
ing to a threshold frequency ωLP. This constitutes the
linear limit of the soliton that emerges as the frequency
increases; it is thus no surprise that the frequency ωLP co-
incides with the lower endpoint of the well-known lower
band (ωLP, ωX) of homogeneous linear (g = 0) polari-
tons of the form (φX , φC)ei(kx−ωt), with φX and φC con-
stant [14]; ωLP corresponds to k = 0. As the frequency is
increased from its threshold, the amplitude of the soliton
increases until it blows up at the photon frequency ωC
(η = 0, ζ∞ =∞). Fig. 3 displays the far-field and nadir
values of the soliton vs. the frequency in the band from
threshold to blowup, in the cases of negative detuning
and positive detuning.

In the case of positive detuning, ωX < ωC , (i.e.
$C < $X), the frequency ωX lies within the soliton
frequency band (ωLP, ωC). This marks the transition
frequency above which the soliton field φX becomes dis-
continuous when the obstructing singularity ζ = $X/3
in (6) becomes positive, breaking into the soliton range
[0, ζ∞). The nadir of the soliton is pushed upward from
ζ = 0 to the value ζ = $X , which is now positive, lead-
ing to a jump of the exciton field between the values
±φ0 = ±

√
$X/g. Fig. 2 traces the path of the pair

(φX(x), φC(x)) along the graph of the relation (4b) both
for negative detuning and positive detuning. The system
equations (4) remain valid, as the jump in φX is bal-
anced by a jump in φ′′C . Physically, the photon field φC
which mediates the coupling between neighboring exci-
tons through the term γφC in (1a), vanishes when ζ takes

the special value $X (corresponding to φ0 =
√
$X/g in

Fig. 2b). The vanishing of the photon field turns off the
coupling between neighboring excitons thus making the
jump permissible. The formulae (7) and (10) for the far-
field value ζ∞ remain the same.

Fig. 1 presents four instances of the soliton profile that
show the progress towards the discontinuity (top) and the
progress past the discontinuity of the exciton field (bot-
tom). The photon field remains continuous. Its second

derivative has a discontinuity at x = 0, as discussed ear-
lier, although this is too subtle to observe in the figure.
Notice the monotonic increase of the far-field amplitude
as the frequency ω increases.

It is interesting to visualize the mechanism of the for-
mation of the discontinuity of the exciton field φX(x) by
following the slope of this field at x = 0, as one lowers
the dimensionless parameter η from its value η = 1 at
which the dark soliton is born. In order to calculate this
slope, we express |φ′X(0)| in terms of ζ and ζ ′ from the
relation ζ = gφ2X . We then insert the value for ζ ′ from
the differential equation (6) and, finally, set ζ = 0. We
obtain

[φ′X(0)]
2

=
γ2(η − 1)2

g η2
. (11)

For positive detuning and as ω ↗ ωX , the parameter
η ↘ 0 and thus, the slope φ′X(0) tends to infinity, while
φX remains finite. The jump discontinuity of the exciton
envelope profile sets on as η becomes negative.

III. HEALING LENGTH AND COMPARISON
WITH GROSS-PITAEVSKII EQUATION

Adopting the slope of the profile at the origin x = 0
as an indicator of the scale of the slope of the profile we
define the healing length of a exciton field profile by

ξX = 2

∣∣∣∣φX(x = ±∞)

φ′X(0)

∣∣∣∣ , (12)

with a similar equation for the photon field. From the
field envelope Eq. (4a), and the far-field Eq. (10), we ob-
tain φC(∞)/φX(∞) = γ/$C and φ′C(0)/φ′X(0) = $X/γ.
Thus, the healing lengths ξC and ξX are related by

ξ2C =
ξ2X
η2
. (13)

Combining Eqs. (10), (11) and ζ∞ = gφ2∞, we obtain for
the continuous soliton the healing lengths

ξ2X =
4η2

$C(η − 1)
, ξ2C =

4

$C(η − 1)
. (14)

When ωC < ωX , near the blow-up frequency $C =
0 (η = 0) the healing length of the excitons approaches
zero, while the photon healing length diverges to infinity.
At the same time the far-field value goes to infinity. At
the transition frequency $X = 0 (η = 0) (obtained only
for positive detuning) ξX goes to zero linearly in η which
one can view as a precursor to the discontinuity. The
photon healing length converges to ξ2C = 4/(ωC − ωX).
Fig. 1 exemplifies these observations.

In the region near the value η = 1, at which the con-
tinuous soliton begins its life, the exciton and the photon
fields are nearly proportional to each other and ξC ≈ ξX .
The photon field is described well by a Gross-Pitaevskii



4

(GP) model that is derived as a simplification of the two-
equation model (4). We solve Eq. (4b) for φX as a power
series in φC up to the third degree term and we insert
this value of φX into Eq. (4a). There seems to be no
analogous way to derive a GP equation for the exciton
field. The GP model derived for the photon field is

1
2φ
′′ − ε$C φ− g̃φ3 = 0. (15)

The notation φ is a convenient abbreviation of the more
descriptive notation φGP,C. The parameter ε > 0 mea-
sures the deviation from the linear problem and equals

ε =
1− η
η

, (16)

while g̃ = ($C

$X
)2g.

Multiply by 2φ′ and integrate to obtain

1
2φ
′2 − ε$C φ

2 − 1
2 g̃φ

4 = E0 (17)

where E0 is a constant of integration. Like Eq. (6), this
has the structure of a conservative system. The left side
can be considered as the sum of a kinetic and a potential
energy. It produces the GP approximation of the photon
profile of the soliton we are investigating. The potential
has two equal maxima at ±φ∞ where

φ2∞ = −ε$C

g̃
. (18)

These are the far-field values (φ′ = 0) for soliton solutions
obtained from Eq. (17) at the peak of the potential

E0 = −ε$Cφ
2
∞ − 1

2 g̃φ
4
∞ = −1

2
ε$Cφ

2
∞. (19)

We obtain from Eq. (17) φ′(0)2 = 2E0 = −ε$Cφ
2
∞.

Taking, as before, the slope |φ′(0)| as an indicator of the
slope of the profile, the healing length for the photons is

(ξGP
C )2 =

4φ(±∞)2

φ′(0)2
=

4φ2∞
φ′(0)2

=
4η

$C(η − 1)
. (20)

The photon healing length for the approximate equation
(GP) underestimates the healing length derived for the
full system in (14) by a factor of η. The two agree at the
linear limit η = 1.

IV. SOLITON AS A PHOTON FIELD IN A
POTENTIAL WELL

Returning to the system involving both the photon and
the exciton fields, one can write Eqs. (4) as a Schrödinger
equation for the photon field envelope φC ,

− 1
2φ
′′
C + V (x)φC = $CφC , (21)

in which the effective potential V (x) depends on the ex-
citon field:

V (x) =
γ2

$X − gφX(x)2
. (22)
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FIG. 4: The effective potential well V (x) that confines the
photon field of an exciton-polariton soliton. Left. When the
exciton field is continuous (ω < ωX), V (x) has a finite min-
imal value. Right. When the exciton field is discontinuous
(ω > ωX), V (x) is unbounded at the point of discontinuity
x = 0. (ωX = 0, ωC = 1, and ωLP ≈ −0.618, as in Fig. 1.)

For the dark soliton derived above, V (x) exhibits a
single symmetric well with far-field value V∞ = $C < 0,
as shown in Fig. 4. For the continuous soliton, V has a
minimal value of Vmin = γ2/$X . For the discontinuous
soliton, the well becomes infinitely deep at the point of
discontinuity.

In an experimental setup, one expects that losses will
allow some photons to be trapped by the potential well
(22) in the form of bound states at discrete energy levels
which lie below $C . As long as a small enough fraction
of the energy of the photon field of the coherent polari-
ton structure is transferred into lower energy states, the
exciton field φX(x) and therefore also the potential V (x)
will not be significantly altered and can be considered a
fixed potential.

This scenario is consistent with experimental obser-
vations [17], in which a polariton field is sustained by
continuously injecting photons at two pump spots, one
on each side of the potential well. A fraction of the po-
lariton population descends to lower energy states of the
well.

V. CONCLUDING DISCUSSION

The present study offers an analytic approach to the
understanding of exciton-polariton condensates, which
we believe is a welcome complement to experiment and
numerical simulations. Our computations analytically
demonstrate stationary solitons, and the prediction of a
discontinuous band of dark solitons demonstrates a lim-
itation of the single-field Gross-Pitaevskii model.

We have presented a detailed study of dark polariton
soliton solutions of a system of equations for strongly
coupled excitons and photons in the lossless case. One
type of dark soliton studied is of the standard type where
the fields vanish at the soliton center. This corresponds
to complete depletion of the condensate at that point.
In the positive detuning case, we have also reported a
discontinuous soliton where the exciton field exhibits a
jump at the soliton center, so the exciton density does not
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vanish. We have shown that these two types of soliton
can be unified in one branch, joined at the frequency
where the discontinuity in the exciton density smoothly
increases from zero.

The discontinuity of the soliton profile should not be
considered unnatural. It is the result of neglecting the
small excitonic dispersion, an approximation that pro-
vides a lot of calculational simplicity without compro-
mising the phenomenology. If the excitonic dispersion is
taken into account the jump discontinuity is replaced by
a steep front. Integrability persists in this more precise
calculation.

The solitons that we derive apply for a time interval
after the pumping is removed and while the losses have
not yet been significantly manifested or the solitons lie
outside the pump spot. For example, in Refs. [6, 10]
quasi-one-dimensional structures are observed outside
the pump spots. This suggests that the rate of at-
tenuation can be slow enough to allow for the forma-
tion of solitons, thus making the zero-loss assumption
reasonable. The possibility to emulate lossless exciton-
polaritons with a photonic system has been proposed [9],
and a dark soliton is computed analytically for that sys-
tem. In a different realization, polariton condensates can
be created at two pump spots [17] and localized struc-
tures can be sustained in the region between the two
spots where there is no pumping.

Coupled systems with nonlinearities serve as models
for systems with two kinds of interacting particles when
at least one of them is treated in a mean field description.
They elucidate phenomena such as conservative soliton
structures in an atomic condensate interacting with light
[22] or vortex patterns in condensates with two atomic
species [23]. The analysis in this article elucidates a non-
linear phenomenon that relies crucially on the coupling of

two systems: While one field is continuous and vanishes
at a point of symmetry, the other may develop a discon-
tinuous phase, thus allowing the associated density to
remain strictly positive everywhere.

The solitons that we calculate are standing structures;
they have zero velocity. They arise from the model equa-
tions by an exact calculation which is possible because
the system can be integrated. Apparently they are the
static members of families of traveling solitons. The cal-
culation of traveling solitons would provide information
on the dynamical behavior of polaritonic systems, par-
ticularly on the survival of discontinuous solitons. These
calculations entail a significant broadening of the scope
of the present work. The analytical challenge is to ex-
tract such solitons from a system of ordinary differential
equations that is considerably more complicated than the
integrable system that describes stationary solitons.

Polariton condensates emerge as a fertile ground for
solitonic structures. Our results provide an analytic un-
derstanding of these structures and can lead to more ac-
curate methods to describe dynamical behavior in po-
laritonic systems. For example, losses could be included
within the framework of a perturbation theory on the
conservative model.
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