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Abstract

A major focus within the field of magnonics involves the manipulation and control of spin wave modes. This is

usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic

modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the

ferromagnetic resonance spectrum. To demonstrate this technique we have performed in-plane, broad-band, fer-

romagnetic resonance studies on a 100 nm thick Permalloy film sputtered unto a colloidal crystal with individual

sphere diameters of 200 nm. Effects resulting from the, ideally, six-fold symmetric underlying colloidal crystal were

studied as a function of the in plane field angle through experiment and micromagnetic modeling. Experimentally,

we find two primary modes; the ratio of the intensities of these two modes exhibits a six-fold dependence. Detailed

micromagnetic modeling shows that both modes are quasi-uniform and nodeless in the unit cell but that they

reside in different demagnetized regions of the unit cell. Our results demonstrate that topographic modification

of magnetic thin films opens new directions for manipulating ferromagnetic resonant excitations.
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The phenomenon of ferromagnetic resonance (FMR) has been widely used to study the dynamic prop-

erties of magnetic nanostructures. The fabrication technique most commonly used is lithography, which

can be expensive, and is limited by the available lithographic resolution; furthermore, producing topogra-

phy introduces additional difficulties, even though some very intricate and complex structures – with very

complex dynamics – have been produced1. Nevertheless, tailoring of magnetic films through lithographic

means has revealed a host of interesting effects associated with the dynamic properties of these structures.

In periodically patterned continuous structures spin wave control is realizable and has been paramount in

the field of magnonics; this has been recently reviewed2. In contrast, isolated structures, like discs, harbor

unique magnetic modes from single magnetic domain confinement3. An example of a confined mode is

a vortex mode within an individual magnetic disc. The excitation of associated vortex modes have been

exploited to change the vortex state of the disc4 . More recently, FMR has been proposed as a tool to

study geometric frustration in periodically patterned artificial spin ice structures5. The varying scope in

these works is owed to the fact that much of the physics arises from geometrical demagnetization defined

by the sample fabrication.

In this work we have studied how topography can modify the FMR spectrum of a permalloy (Py) film

deposited on a colloidal crystal. To create this sample we have sputtered a Py film directly on top of a

colloidal crystal, a self-assembled hexagonal close packed (HCP) array of polystyrene spheres. Compared to

lithographically defined samples, far less work has been done using this approach. The geometrical details

of these structures are not easily reproduced through lithography and, depending on the colloid diameter,

small distance scales are readily achievable. Thus far the magneto-optical properties of magnetic films on

colloidal crystals have been investigated6. Following this initial work there has been interest in geometrical

frustration being built into such nanostructures7–9. In those works the frustration originated from the

remanent state vortex on a given dome being unable to satisfy all it’s nearest-neighbor interactions with

other vortices within the HCP lattice. In lithographically defined samples there is a precedent to investigate,

via FMR, structures that support vortices as they are a hotbed for new modes of excitation. Yet, for our

topographically modified system no ferromagnetic resonance study has been performed. We do note that

work has been done on inverse-opal structures that utilize colloidal crystals as a template of sorts10.

The colloidal crystals serving as templates for our magnetic films are made from 200 nm diameter

polystyrene spheres. Synthesis was accomplished using the well-known vertical deposition method11. Here,

the lower part of a glass slide is immersed in a vial containing a solution of spheres in deionized water.

The vial is placed within an oven and the water is allowed to evaporate. Crystal growth occurs at the

evaporation line where the water meniscus contacts the glass slide. Our samples are single crystal over

approximately a 1 × 1 cm2 area. The colloidal crystal orientation has been verified to be preserved across

this entire area by imaging different regions across the sample to check for rotations of the lattice vectors.
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Figure 1. (a) is an AFM image of the colloidal crystal after Py sputtering; (b) shows the topographical uniformity

of the resulting structure and commonly observed crystal defects; (c) is the height variation of the structure along

one of the lattice vectors. The grey slab in the top inset of (d) is a representation of the sample. The black winding

wire indicates, schematically the meanderline through which r passes; the turn spacing is close to 2 mm. The

meanderline and sample lie in the XY plane and the field angle is measured off of the x-axis. The (100) crystal

lattice direction lies along the x-axis.

After the crystals are fabricated, 40 nm of Ag followed by 100 nm of Py is sputtered onto the sample.

The resulting structure can be seen in Fig. 1. In Fig. 1 (a) a top down AFM image clearly shows the

HCP structure and six-fold symmetry. Some crystal defects, vacancies, and line defects are also seen.

Additionally, the absolute height can change because the number of stacked spheres beneath the Py film

can vary. An AFM-extracted topographical map (of the same region) is shown in Fig. 1 (b); part (c) shows

a one dimensional cut with the height variation along a lattice vector.

To excite ferromagnetic resonance over a large area of the sample we utilize a meanderline technique12.

Here we press a serpentine Cu wire over the surface of the Py film as shown in Fig. 1 (d). The microwaves

pass through the meanderline and a ground plane lies beneath the sample. The output signal from the

meanderline is rectified by a microwave diode and sent to a lock-in amplifier. During experiments we fix an

excitation frequency of 10 GHz at 10 dBm (not including line losses) and sweep the magnetic field looking

for microwave absorption as we modulate the magnetic field with a 40 Hz, 20 G RMS, AC magnetic field.

For the experiments presented here we keep the magnetic field in the plane of the sample and rotate the

in-plane field angle. The in-plane field angle with reference to the colloidal crystal crystalline axes is shown

in Fig. 1 (d). When the in-plane field angle is 0◦ we expect the meanderline to have the weakest coupling

to FMR because a significant portion of the exciting field will be parallel to the applied field. At this

angle we expect the sample area that is near the turns of the meanderline to be excited. By the same

argument, when the in-plane angle is ±90◦ we expect the greatest coupling to FMR because a larger area
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Figure 2. (a) - (d) show the integrated FMR spectrum at -45◦, -50◦, -55◦ and -60◦ as a red line each. The blue

green and pink curves are the fitted contributions of the A, B and C peaks. The sum of the fits, which is essentially

indistinguishable from the data, denoted as a dashed black line. Notice how the amplitude of the B peak rises

relative to the A peak at -60◦.

of the sample is excited. Because the sample’s physical properties and geometry are uniform over a area

much larger than the footprint of the meanderline we do not expect the meanderline to excite different

types of modes if the orientation relative to the sample is changed; only the surface area excited should

change. Additionally, the microwave field generated by the meanderline is periodic on a one millimeter

length scale, which is much longer than the colloidal crystal periodicity. Therefore, we expect to excite

modes with a wave vector near k = 0. As the periodic topography of our system will endow magnetization

dynamics with a spin wave band strucure, any modes that we excite should be k = 0 modes at the Γ point

in the first Brillouin zone.

Fig. 2 depicts integrated spectra obtained experimentally at a microwave frequency of 10 GHz. We

resolve three distinct modes centered around 1050, 1200, and 1750 G that we respectively name A, B, and

C. For a uniform film the resonance field would be expected to lie just below 1100 G. This suggests that the

modes are modifications of the uniform precession mode (the Kittel mode) caused by topography-induced

demagnetization. We also rotate the in-plane field angle to study the influence of the underlying six-fold

symmetry. Some examples of FMR spectra for in-plane field angles between -45◦ and -60◦ that represent

the observed are shown in Fig. 2 (a) - (d). The A, B, and C modes are extracted by fitting the spectra

to a superposition of Lorentzian functions. We will focus our current discussion on the A and B modes.
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The field positions of these modes over a 180◦ range are shown in Fig. 3 (a) as blue circles. The individual

branches are clearly independent from one another but there is an observed two-fold symmetry in the

field angles. We believe this two-fold dependence to be artificially induced from shrinking that occurs in

the spheres during drying following deposition. From SEM results (see supplemental) an approximate 5 %

variation is measured in the diameter of the spheres. To remove this artificial effect we fit a cos2(θ) function

to the field positions, shown as red solid lines in Fig. 3 (a). Subtracting this from the field positions yields

the result in Fig. 3 (b). It is important to note that these two branches appear to be independent. In

Fig. 3 (c) we plot the ratio of the intensities of the A and B modes to illustrate a very strong effect that

is seen in Fig. 2. The effect is a six-fold dependence in the ratio of the intensity of B to the intensity of A

with maxima in this ratio at −60◦, 0◦, and +60◦; a mechanism behind this observation, a suppression of

the intensity of A, is described in the simulation results. Note that the maximum of the B to A ratio at

0◦ is attenuated compared to the ratio at ±60◦; we believe this to be caused by the sphere asymmetry that

attenuates the amplitudes of both the A and B mode at 0◦. The origin of the C mode may be caused by

demagnetized regions at defect edges. The high field and broad linewidth of the resonance is suggestive of

a rough “edge” like boundary mode; this is further corroborated by the numerical simulations of defect-free

systems where such a mode cannot easily be detected, although for some field angles there is a hint of a

shoulder at about 8 GHz (in a field of 1000 G), which may indicate the existence of a mode localized to

small regions in the unit cell. It should be mentioned that when fitting the spectra a constrained parameter

search is used to avoid unphysical fitting situations. The error bands shown in Fig. 3 (c) are based on

varying the limits of the upper and lower field range where the A mode and B mode are allowed to exist.

The intrinsic error on the data points for a given constraint range is smaller than the data points.

To understand the microscopic origin of these resonances we performed micromagnetic simulations13.

The simulation space consists of a 400 × 346.4 nm2 area (XY plane) containing four unit cells of the

underlying HCP polystyrene lattice. The total thickness of the simulated structure is 100 nm but with a

topography approximating that of the Py film on the polystyrene colloidal crystal. The maximum height of

the film at a given (x, y) coordinate is given by the height the Py film would have on top of the underlying

spheres; in this way we create the topographically modified film having a centered hexagonal structure.

The simulated 400 × 346.4 × 100 nm3 space including the Py film is discretized into 5 × 3.4641 × 5 nm3

tetragonal mesh with a magnetization director in each cell. Periodic boundary conditions were applied in

the (x, y)-plane with 6 × 6 images included in the calculation of the magnetostatic fields. The static and

dynamic magnetization is described by the Landau-Lifshitz-Gilbert equation

dm̂(r, t)

dt
= −|γe|m̂(r, t)×Heff(r, t)− |γe|α

1 + α2
m̂(r, t)× [m̂(r, t)×Heff(r, t)] . (1)

Here, m̂(r, t) is a unit vector along the local magnetization direction, γe is the electron gyromagnetic ratio,
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Figure 3. (a) shows the field dependence of both the A and B modes extracted from fitting. Aside from both

branches being independent of one another there is an artificial two-fold angular dependence shown as the red line

that is thought to arise from anisotropic sphere shrinkage. The remaining dependence after the anistropic part is

removed is shown in (b). The six-fold dependent ratio of the B peak intensity to the A peak intensity is shown in

(c).

here set to 2.95 GHz/kOe, α is the dimensionless damping set to 0.1 for static equilibration and 0.01 for

the dynamic time-integration. The effective field Heff includes near-neighbor exchange (calculated using

a six-point stencil in the parallel-epiped lattice), external field, and magnetostatic (demagnetizing) fields.

An exchange coupling typical for Py of about 1.3 µerg/cm was used (the modes at or near the Γ point

are rather insensitive to the exact value of the exchange coupling), and a zero-temperature saturation

magnetization of 800 emu/cm3. The system was first equilibrated with the larger damping for a given

direction of the external field, using time steps of up to 2 ps. This equilibrium structure was then subjected

to a uniform magnetic field for a duration of up to 0.5 ns after which the magnetization dynamics was

integrated for 10 ns in timesteps of 250 fs using a modified Bulirsch-Stoer algorithm with error checking and

adjustable timestep. The magnetostatic fields were calculated at each time step by multiplying the Fourier

transformed instantaneous magnetization with the (stored) Fourier transformed demagnetizing tensor, and

back-transforming to the space domain. We confirmed that our results were not dependent on the used

mesh with a tetragonal symmety and that they obey a six-fold symmetry in the plane by performing similar

numerical simulations with a 2.5 × 3.4641 × 2.5 nm3 tetragonal mesh on a numerical unit cell containing
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Figure 4. The simulated static configuration of magnetization is shown at 0◦ and 30◦ at (a) and (b) respectiviely.

Specifically, we plot the fraction of the magnetization that is pointing out-of-plane. The largest tipping occurs

where the magnetic field lines enter or exit an underlying colloid as indicated by the drawn in arrows. Here 30%

of the magnetization can tip out of the plane.

two primitive unit cells of the system but with 7 × 7 periodic images for field angles of 15◦, 25◦, 30◦, 40◦

50◦, and 60◦ degrees. In order to obtain results that can be directly compared to experimental spectra

we average the entire magnetization of the nanostructure at each time step. This time-sequence can then

be Fourier transformed to obtain a spectrum for each component of the magnetization. Additionally, in

order to obtain spatially resolved information of the modes, we also collect the magnetization at a given

(x, y) coordinate for each time step to create a time-sequence of 2D magnetization maps. This sequence

is then Fourier transformed with respect to time to obtain a spatial map of the magnetization amplitude

and phase at each frequency14.

We also performed direct numerical diagonalization of the linearized LLG equation at field angles from

0◦ to 30◦ in steps of 5 degrees, and at 40◦, 50◦, and 60◦ degrees using a numerical unit cell containing

two primitive unit cells of the system and with 7 × 7 periodic images, and a tetragonal mesh of size

5×3.4641×5 nm3 and a damping of zero. This alternative way to obtain resonant modes of ferromagnetic

micro/nanostructures has been well described and implemented before15,16. For smaller field angles, the

agreement between the numerical diagonalization and the time-integration is very good (we confirmed the

slightly lower frequencies obtained from the time-integration is because of the finite damping; diagonalizing

the linearized LLG equations with a finite damping of 0.01 pushed the frequencies down to the ones

obtained by time-integration). For larger field angles & 20◦, the tetragonal lattice affects the numerical

diagonalization and breaks the six-fold symmetry.

To illustrate the static configuration, we plot the out-of-plane fraction of the magnetization at a 0◦ and

30◦ in-plane field direction in Fig. 4. The in-plane component of the magnetization largely follows the

applied field direction so that the only variation in the static configuration is an out-of-plane tipping that

follows the curvature of the underlying colloid. The out-of-plane tipping is greatest in regions where the

field is normal to a vector that is tangent to the circular perimeter of an underlying colloid. Unsurprisingly,

when the field is parallel to this type of vector there is little out-of-plane tipping.
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Figure 5. Modeled resonant frequencies obtained through numerical diagonalization (empty symbols) and numer-

ical integration and Fourier transform (filled squares and dashed lines). Only the range 0◦ ≤ θ ≤ 30◦ is displayed

as the frequencies are symmetric about θ = 30◦.
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Figure 6. The simulated FMR spectra is shown at 0◦, 10◦, 20◦, and 30◦ in (a)-(d) respectively. The features that

lie close in field-frequency space to the A and B mode are denoted. At 0◦ and 10◦ the A mode is weakly coupled

to but higher energy non-spatially uniform modes are seen to exist.

The numerically obtained frequencies are shown as a function of field angle in Fig. 5, where the solid

squares connected by dashed lines are the frequencies obtained from numerical time-integration, and the

open symbols (squares, triangles, circles, and diamonds) are from numerical diagonalization (these latter

are displayed only for field angles θ ≤ 15◦ as the tetragonal lattice skewed the results for larger angles,

as explained earlier). The numerical diagonalization yields a number of modes with odd symmetry in

the unit cell along the field direction; these modes do not couple to the uniform field pulse. There is a

band of three modes near 9.5 GHz that includes the Kittel-like nearly uniform mode that is excited by

the uniform field pulse and obtained through numerical time-integration at about 9 GHz. There is also a

band of higher-order modes with frequencies between 10 GHz and 11 GHz. One of the modes in this band
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has has an even symmetry and couples to the uniform field pulse. Finally, there is a third band of modes

close to 12 GHz, with a few of those coupling visibly to the uniform field pulse. The simulated spectra

obtained thorugh numerical time-integration for field angles between 0◦ and 30◦ are shown in Fig. 6. It

is clear that the higher-frequency peak couples very weakly to the uniform field pulse for field angles at

10◦ or smaller. The large peak found at all angles close to 9.0 GHz compares in field-frequency space to

the experimentally observed B mode. We therefore identify the B mode as the Kittel-like near-uniform

mode, and the higher-frequency band of modes as the A mode. We do not directly try to match the

modes obtained from diagonalization with those obtained through time-integration; for the remainder of

our discussion we shall focus on the two primary modes coupled to through the time integrated method.

To ascertain the topographical mode distributions of the A and B modes we plot amplitude and phase

maps of each in Fig. 7 at an in-plane field angle of 30◦. The lower energy B mode has large precession in the

more heavily demagnetized regions of the spheres that lie along stripes passing midway between lattice sites

(betwen the spherical caps), as seen in Fig. 7 (a). This region overlaps closely with where the out-of-plane

tipping of the static configuration is nearly 30%. The precessional phase, shown in Fig. 7 (b), is seen to be

uniform for this mode where the amplitude is large. In contrast, the A mode map depicted in Fig. 7 (c)

has regions of large precession along stripes passing through the lattice sites (through the tops of spherical

caps). Here the region of precession overlaps with regions of the sphere where the static configuration does

not tip out-of-plane; this is consistent with the higher resonant frequency. The precessional phase for this

running mode is also seen to be uniform [Fig. 7 (d)]. Furthermore, a mechanism for amplitude anisotropy

and control can be surmised from analysis of the modes in Fig 7. The A mode amplitude is dramatically

reduced at 0◦ and 10◦ where a continuous path that connects the precession amplitude from sphere to

sphere is broken; we believe this is the mechanism responsible for the maxima in the ratio of amplitudes of

modes B and A described earlier. Figure 8 shows precession and phase maps for the two main resonances

predicted by simulations when the applied field is at 0◦. Figure 8 (a) and (b), show the B mode profile,and

Fig. 8 (c) and (d) show the precession and phase maps for the higher-frequency (at fixed field) A mode.

As the field is rotated from 30◦ to 0◦, the lines of maximum amplitude of the A mode, which connect the

top of the spherical caps at 30◦, now connect the top of one cap to the region between to neighboring caps,

where the amplitude has broadened into three bands. This higher spatial variation in the magnetization

distribution of the mode leads to a blue-shift in the frequency and pushes it up to 11.1 GHz.

Before concluding we must point out that the angular dispersion obtained by the numerical simulation

is relatively flat for the B mode, while that of the A mode exhibits a more pronounced angular variation

(Fig. 5). This is in contrast with the experimentally obtained angular dispersions, where that of the A is

relative flat, while that of the B mode shows more angular variation. We believe that discrepancy originates

in defects and imperfections of the colloidal crystal, which is underscored by the apparent lack of six-fold
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0.3

0.24

0.18

0.12

0.06

0

y precession
amplitude

3

2

1

0

-1

-2

y precession
phase

-3

11.1 GHz 11.1 GHz(c) (d)

3

2

1

0

-1

-2

y precession
phase

-3

9.3 GHz(a) (b)

0.3

0.24

0.18

0.12

0.06

0

y precession
amplitude

3

2

1

0

-1

-2

y precession
phase

-3

11.1 GHz 11.1 GHz(c) (d)

(a) (b)

2.5

2.2

1.9

1.6

1.3

9.3 GHz
z precession 

amplitude

1

z z

z

Figure 8. Here we show the A and B modes at 0◦. (a) and (b) show the amplitude and phase map for the B

mode, which is a type of fundamental Kittel-like mode; (c) and (d) show the amplitude and phase information for

the A mode.

symmetry in the experimental angular dispersions for the modes [Fig. 3 (b)]. Nevertheless, we are confident

that we have correctly identified the modes based on the following three agreements between experimental

and numerical results: 1) Both the A and B mode do not cross. 2) The separation in field/frequency space

between the modes is in good qualitative agreement. 3) Most importantly, the sudden drop in coupling to

the A mode relative to the B mode at 0◦ and ±60◦ is seen in both experiment and simulation.
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In this work we have demonstrated the excitation of multiple k = 0 ferromagnetic resonance modes in

a thin ferromagnetic film over a large area nanostructure that has a periodically modulated topography.

The presence of multiple Γ point k = 0 modes indicates the existence of a spin wave band structure. We

were able to continuously vary the topography due to an underlying six-fold symmetric colloidal crystal.

Our method of generating new ferromagnet resonance modes is an alternative to traditional lithographical

means. Experimental evidence through FMR spectra yields spectra that have a superposition of many

modes. Through simulation, we have offered visualizations on the microscopic details that reveal two

distinct fundamental modes residing in our system along with higher energy. From an exploratory viewpoint

we find that our system underscores both the robustness and fragility of spin wave modes in nanostructures.

Simulations show that A mode is highly anisotropic and hence fragile, while the B mode is considerably

more robust. Experimental observations support the details of this conjecture.

I. ACKNOWLEDGMENTS

Experimental work received support by the Air Force Office of Scientific Research and utilized facilities

maintained by the National Science Foundation supported Northwestern Materials Research Center under

contract number DMR-1121262; it was equally supported by the National Science Foundation under

NSF award number EEC-1062784. We would like to thank Varada Bal for her assistance in obtaining

AFM images. Work by O.H. was supported by the Department of Energy, Office of Science, Basic En-

ergy Sciences, Division of Materials Science and Engineering. We gratefully acknowledge the computing

resources provided on Blues, high-performance computing cluster operated by the Laboratory Computing

Resource Center at Argonne National Laboratory. Any opinions, findings, conclusions, or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect those of the National

Science Foundation.

1 V. S. Bhat, J. Sklenar, B. Farmer, J. Woods, J. T. Hastings, S. J. Lee, J. B. Ketterson, and L. E. De Long,

Phys. Rev. Lett. 111, 077201 (2013).

2 M. Krawczyk, D. Grundler, J. Phys.: Condens. Matter 26, 123202 (2014).

3 V. Novosad, F. Y. Fradin, P. E. Roy, K. S. Buchanan, K. Yu. Guslienko, and S. D. Bader, Phys. Rev. B 72,

024455 (2005).

4 B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott,
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