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Motivated by experiments on ultracold atoms which have realized the Haldane model for a Chern
insulator, we consider its strongly correlated Mott limit with spin-1/2 fermions. We find that slave
rotor mean field theory yields gapped or gapless chiral spin liquid Mott insulators. To study com-
peting magnetic orders, we consider the strong coupling effective spin Hamiltonian which includes
chiral three-spin exchange. We obtain its classical phase diagram, uncovering various chiral magnetic
orders including tetrahedral, cone, and noncoplanar spiral states which can compete with putative
chiral quantum spin liquids. We study the effect of thermal fluctuations on these states, identifying
crossovers in the spin chirality, and phase transitions associated with lattice symmetry breaking.
We also discuss analogous effective spin Hamiltonians for correlated spin-1/2 bosons. Finally, we
point out possible experimental implications of our results for cold atom experiments.

I. INTRODUCTION

Momentum space topology is key to our understand-
ing of phases such as topological insulators1,2 or quantum
anomalous Hall insulators.3,4 The interplay of momen-
tum space topology and local real space interactions is
expected to lead to a rich variety of correlated insulating
phases.5–12 This has motivated an extensive investiga-
tion of the time-reversal invariant Kane-Mele-Hubbard
model or more realistic variants,13–19 which provide the
simplest examples of interacting quantum spin Hall insu-
lators. Recently, cold atoms in a shaken optical lattice20

or laser-induced tunneling or transitions21,22 have been
proposed for realizing topological states of matter, and
employed to realize the Haldane honeycomb model of a
Chern insulator (CI),23 and Chern bands in the square
lattice Hofstadter model with flux π/2 per plaquette.24

Preliminary experiments suggest that interactions in the
Haldane model may not lead to excessive heating.23 Mo-
tivated by this, we explore strong correlation effects in
the Haldane model for spin-1/2 fermions and bosons.

The Haldane model is defined on the two-dimensional
(2D) honeycomb lattice in Fig. 1(a), with a real near-
est neighbor hopping amplitude t1, and a complex
next-neighbor hopping t2eiφ which breaks time-reversal
symmetry.3 For t2 = 0, the energy dispersion is identical
to graphene, supporting two inequivalent massless Dirac
fermion modes. For small t2 6=0, and φ 6= 0, π, the Dirac
fermions acquire a mass, leading to a quantized Hall ef-
fect σxy = ±e2/h at half-filling. For spin-1/2 fermions,
with each species at half-filling, σ↑xy=σ↓xy=±e2/h. What
is the fate of this quantum Hall insulator when interac-
tions lead to Mott localization? Does the Mott insulator
support unusual magnetism or spin liquid ground states?

For spinless fermions, nearest-neighbor repulsion
induces a topologically trivial charge density wave
insulator,25,26 while spinless bosons with a local Hub-
bard repulsion form a plaquette Mott insulator with
loop currents.27 A slave-spin approach to the Haldane-

Hubbard model suggests the appearance of topological
Néel order at moderate coupling with a staggered sub-
lattice potential.32 An alternative slave rotor mean field
theory of spin-1/2 fermions, in which Hubbard repul-
sion localizes only the charge degree of freedom, led to
a mean field description of a gapped chiral spin liquid
(CSL).28,29 Gutzwiller projected wave function studies
show that such a CSL would be in the same phase as
the ν = 1/2 bosonic Laughlin state.30,31 More generally,
such CSLs have also been shown to be induced by chiral
3-spin interactions,33,34 or appear naturally for SU(N)
fermions35 at large N .

However, previous work has not considered the var-
ious types of magnetic orders which can compete with
quantum spin liquid phases. Indeed, even the type of
short-range spin correlations in the correlated Mott in-
sulator, which could potentially be probed in cold atom
experiments, have not been explored. Finally, since the
topological order associated with such chiral spin liquids
will not persist at nonzero temperature, it is important to
gain an understanding of the thermal fluctuation effects
on the Mott insulating state if we are to make connec-
tion with experiments. However, previous studies of this
model have all been restricted to the T = 0 limit.

This motivates us to revisit the effect of strong corre-
lations on the Haldane-Hubbard model. Our key results
are the following. (i) We extend the slave rotor mean field
theory of the fermionic Haldane-Hubbard model to larger
t2. We show that this parton construction leads to CSLs
with gapped or gapless bulk spinon excitations which de-
scend from CI or Chern metal (CM) phases. The gap-
less spin liquids display multiple spinon Fermi pockets.
Both types of spin liquids are expected to support gap-
less spinon edge states. Realizing the Haldane-Hubbard
model with a broad range of t2 would thus allow one
to explore the physics of gapped as well as gapless chiral
spin liquid phases. (ii) The gapped or gapless spin liquids
uncovered in the slave rotor parton description may be
unstable to magnetic ordering due to fluctuation effects
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beyond mean field theory. To study magnetic instabilities
in the strongly correlated limit, we consider the strong
coupling limit of the Haldane-Hubbard model, and derive
and study the effective spin Hamiltonian which has chiral
3-spin interactions. This leads us to uncover a rich vari-
ety of competing chiral magnetic states such as tetrahe-
dral, cone, and noncoplanar spirals which could compete
with spin liquid phases. Quantum melting such phases
will typically lead to broken symmetry states. However,
unlike other states, we find that the tetrahedral state has
completely uniform spin correlations and a large uniform
chirality. We tentatively identify this state as the clas-
sical parent state for a chiral quantum spin liquid. (iii)
Turning to physics at nonzero temperature, we discuss
thermal fluctuation effects and lattice symmetry break-
ing thermal phase transitions associated with many of
these states using a combination of analytic Landau the-
ory arguments supplemented by classical Monte Carlo
simulations. Such thermal transitions may be observable
in experiments. (iv) Finally, we highlight some analogous
results for spin-1/2 bosons which can also be studied in
cold atom experiments, but which have not been theo-
retically explored.

II. FERMI HALDANE-HUBBARD MODEL

For fermions with spin-1/2, the Haldane Hubbard
model is described by the Hamiltonian

HHH = −t1
∑
〈ij〉σ

(c†iσcjσ+h.c.)−t2
∑
〈〈ij〉〉σ

(eiνijφc†iσcjσ+h.c.)

+ U
∑
i

ni↑ni↓ (1)

where 〈.〉 and 〈〈.〉〉 denote, respectively, first and second
neighbors, and νij = ±1, depending on whether we hop
along or opposite to the arrows shown in Fig. 1(a), and
U is the local Hubbard repulsion.

For U = 0, diagonalizing the Hamiltonian leads to
Chern bands with Chern numbers C=±1. Depending on
t2/t1 and φ, these bands may overlap in energy, leading
to a CM with a non-quantized Hall effect, or be well sep-
arated in energy leading to a CI (equivalently, a quantum
Hall insulator) with a Hall conductivity σxy = ±e2/h per
spin. This phase diagram is shown in Fig. 1(b), along
with σxy which is quantized in the CI but non-quantized
in the CM. (Note that the t2 =0 axis is a Dirac semimetal;
on this singular line, the flux plays no role.)

III. MEAN FIELD CHIRAL SPIN LIQUIDS

Upon increasing the Hubbard repulsion, this topolog-
ical band metal or band insulator will transition into a
correlated Mott insulator once interactions exceed the
bandwidth. The critical repulsion Uc = 8η|K|, where

FIG. 1: (a) Honeycomb lattice showing the two sublattices
with hoppings t1, t2 and phase φ defining the noninteracting
Haldane model, with large and small triangles enclosing fluxes
±3φ and −φ respectively. (b) Phase diagram at half-filling for
each spin species showing Chern band metal and Chern band
insulator, and their Hall conductance σxy in units of e2/h.

K ≡ K(t1, t2, φ) is the kinetic energy per site per spin
of the noninteracting bands at half-filling.

Slave rotor mean field theory36,37, provides a concrete
realization of the Mott phase and the Mott transition;
it is a parton construction in which the spin and charge
degrees of freedom are carried by two partons, a neutral
spin-1/2 fermion and a charged spinless rotor. The local-
ization of the rotor angular momentum corresponds to
the transition into the Mott insulator phase. A single-
site slave rotor mean field theory36,37 yields η=1. How-
ever, a comparison with quantum Monte Carlo studies
of the honeycomb lattice Hubbard model38,39 at t2 = 0,
and variational numerical studies of the triangular lat-
tice Hubbard model40 with t1 = φ = 0 show that the
single site slave rotor theory overestimates η; the Mott
transition occurs at a smaller renormalized η≈0.6-0.7.

Fig. 2 shows the phase boundaries which delineate the
topological CM or CI from the correlated Mott insula-
tor (assuming Uc = 8η|K| with η = 0.65) at an interac-
tion strength U/t1 = 10. Within slave rotor mean field
theory, the spinon band structure in the Mott insulator
resembles the CI or CM band structure from which the
Mott insulator descends. Thus, depending on t2, φ, one
could have gapped or gapless spinon excitations in the
bulk, accompanied by gapless chiral edge modes; we in-
dicate these mean field states as ‘gapped CSL’ and ‘gap-
less CSL’. The spinon band structure mean field theory is
simply inherited from the parent noninteracting fermion
dispersion. Since the parent Chern metal phase exhibits
multiple Fermi pockets, as shown in Fig. 2, the gapless
CSL will inherit these as spinon Fermi pockets. Gapless
chiral spin liquids have also been recently discussed in
kagome antiferromagnets.43

Going beyond mean field theory, we expect the ‘gapped
CSL’ to become a genuine spin liquid with semion excita-
tions and topological degeneracy.30,31 While these CSLs
are expected to be stable for weak gauge fluctuations,
strong gauge fluctuations might drive magnetic ordering
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FIG. 2: Slave rotor mean field theory of the Haldane-Hubbard
model showing the topological Chern metal (CM, green),
Chern insulator (CI, brown), and topological spin liquid Mott
insulators (black) at U/t1 = 10. The topological Mott insula-
tor could have gapless or gapped spinon excitations depend-
ing on whether it descends from a CM or CI phase, leading
to gapless or gapped chiral spin liquids. An example of the
parent Fermi surface of the non-interacting model, which is
inherited by the spinons at mean-field level, is shown at a
particular point. The slave rotor result has been rescaled by
η = 0.65 (see text).

instablilties, or, spinon pairing instabilities in the case
of the gapless CSL.41,42 Since slave rotor theory does
not capture competing magnetic ordering tendencies of
the Mott insulator, we address such potential competing
phases using a strong coupling expansion.44

IV. COMPETING MAGNETIC ORDERS

At large U , a standard derivation44,45 leads to an ef-
fective spin Hamiltonian

Hspin=
4t21
U

∑
〈ij〉

Si · Sj +
4t22
U

∑
〈〈ij〉〉

Si · Sj

− 24t21t2
U2

∑
small−4

χ̂4 sin Φ4 −
24t32
U2

∑
big−4

χ̂4 sin Φ4(2)

where χ̂4 ≡ Si ·Sj ×Sk is the scalar spin chirality oper-
ator defined around triangular plaquettes, with the sites
{ijk} being labelled going anticlockwise around the tri-
angles. Φ4 being the flux enclosed by the correspond-
ing triangle. As shown in Fig. 1(a), the set of triangles
includes small triangles that enclose flux Φ4 = −φ, big
triangles within a hexagon which enclose a flux Φ4 = 3φ,
and big triangles defined around a site which enclose a
flux Φ4 = −3φ.

Treating the spin as a classical vector, we have ob-
tained the magnetically ordered ground states of Hspin

using numerical simulated annealing and variational spin
configurations. This approximation may be formally set
up by scaling the 2-spin exchange couplings by 1/(4S2)
and the 3-spin exchange couplings by 1/(8S3) and then

taking S →∞ which leads to a classical spin model with
quantum fluctuations suppressed by O(1/S). Below we
will use this classical approximation for S = 1/2 as an
uncontrolled approximation, which is nevertheless known
to work well in many cases in predicting the correct mag-
netic order in 2D quantum spin models. For plotting the
ground state spin configurations and structure factors, we
view the honeycomb lattice as a square lattice with 1/4
deleted bonds (‘brickwall’ lattice), similar to the geome-
try realized in optical lattice experiments.23 The resulting
phase diagram, shown in Fig. 3 for U/t = 10, contains
six phases: Néel, Tetrahedral, Cantellated Tetrahedral,
Spiral, Cone-I and Cone-II, with a line indicating the
regime below which this strong coupling description is
appropriate.

Our main finding, atleast for t2/t1 . 1.5, as discussed
below, is that the gapped spin liquid phase found in the
slave rotor mean field theory in Section III may be poten-
tially unstable to commensurate magnetic orders such as
Neel or Tetrahedral order. On the other hand, the regime
we identify as a gapless spin liquid with Fermi pockets
in the slave rotor mean field theory appears to be domi-
nantly unstable to various incommensurate spiral phases
such as Spiral or Cone phases. Since the phase diagrams
obtained in Fig. 2 and Fig. 3 involve different approxima-
tions, neither one is fully reliable; further numerical work
is necessary to definitely identify whether the spin liquid
phases are indeed stable or give way to magnetic or other
symmetry breaking orders. However, the true phase di-
agram is expected to display phases shown in the phase
diagrams in Fig. 2 and Fig. 3.

We describe these various competing magnetic ground
states below. In the Appendix, we include “Common
origin” plots46 for these states for further insights.
(i) Néel: The Néel state is collinear with spins pointing
opposite to each other on the two sublattices of the brick-
wall lattice, with 〈χ̂4〉 = 0 on all triangular plaquettes.

Its structure factor S(q) = 1
N

∑
i,j〈Si · Sj〉eiq·(ri−rj) ex-

hibits a Bragg peak at q = (π, π).
(ii) Tetrahedral: In this state, the spins point from the
origin towards the four corners of a tetrahedron, and are
tiled on the lattice as shown in Fig. 3. This noncoplanar
state has a uniform chirality 〈χ̂4〉 = −1/6

√
3 on each

small-4. The tetrahedral state is a triple-q state, with
the structure factor S(q) exhibiting Bragg peaks at q =
±(π/2,±π/2) and q = (0, π).
(iii) Cantellated Tetrahedral: The Cantellated Tetrahe-
dral (CT) state descends from a parent tetrahedral state.
It is reminiscent of the cuboctahedral state in frustrated
kagome antiferromagnets.47–49 In the parent tetrahedral
configuration, the spins marked A (or B,C,D) in Fig. 3
form a honeycomb (or brickwall) lattice, with a larger
unit cell. We can deform these ferromagnetically aligned
spins by dividing the larger honeycomb lattice into two
sublattices, and then allowing for a

√
3×
√

3 canting on
each sublattice; this splits each vertex of the tetrahedron
into six vertices (forming a small hexagon) leading to the
CT state with a 24-site unit cell. Here, the CT state ex-
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FIG. 3: Top: Phase diagram of Hspin showing various classical
magnetically ordered ground states at U/t = 10: Néel, Spi-
ral, Tetrahedral, Cantellated Tetrahedral (CT), Cone-I, and
Cone-II. Below the dashed (white) line, the slave rotor re-
sult shows that we are in the Mott insulator, so the strong
coupling expansion is expected to be valid. Stars indicate
points where we numerically study the effect of thermal fluc-
tuations. Bottom: Spin configurations in the Tetrahedral and
Cone states (viewing the honeycomb lattice as a ‘brickwall’
for visual convenience). The indicated Triad states act as
parent states for Cone-I and Cone-II, which are obtained by
spiralling the Triads about the indicated n̂s axis. The CT
descends from the Tetrahedral by a

√
3×
√

3 canting pattern.

ists over an extremely narrow window between the Néel
and Tetrahedral states. Third-neighbor Si · Sj terms,
which favor the cuboctahedral state on the kagome lat-
tice, could enhance the regime of CT order.

(iv) Cone-I: This state descends from a Triad-I state
in which spins on the large-4 tend to form a triad on
each sublattice, leading to a nonzero chirality. The or-
ganization of the spins is shown in Fig. 3. In Cone-I,
which occurs for φ < π/3, we start with triads on the
two sublattices that are lined up with a common axis
n̂, with spins making an angle θ with n̂. Forming an or-
thonormal basis {n̂, n̂⊥1, n̂⊥2}, we parameterize the three
spins of the triad on sublattice-A, SAj (j = 0, 1, 2), as

SAj = cos θn̂+ sin θ cos(2πj/3)n̂⊥1 + sin θ sin(2πj/3)n̂⊥2,
while the triad on sublattice-B is rotated by χ about n̂,
with SBj = cos θn̂+sin θ cos(ϕ+2πj/3)n̂⊥1+sin θ sin(ϕ+
2πj/3)n̂⊥2. This state has a nonzero net magnetization.
The ground state energy is independent of ϕ. The triad
angle θ varies with t2, φ; at large t2/t1, the spins on
each large-4 tend to form an orthonormal triad, with
θ = tan−1(1/

√
2). The Triad-I is a triple-q state; S(q)

exhibits Bragg peaks at q = (0,±2π/3), q = (π,±π/3),
and q = (0, 0). Let us now consider an axis n̂s which is
perpendicular to the plane formed by n̂ and any one of
the spins. The Cone-I state is obtained by rotating all
the spins about this axis by an angle θ(r) = q · r where
q is an incommensurate spiral wavevector; moving along
q, each spin of the triad again traces out a cone, and the
Bragg peaks acquire a weak incommensuration.

(v) Cone-II: The Cone-II state occurs for φ > π/3,
where the sin 3φ term in Eq. 2 changes sign. Here,
the parent state is a Triad-II state in which the spins
on sublattice-A are reordered, with SAj = cos θn̂ +
sin θ cos(4πj/3)n̂⊥1 + sin θ sin(4πj/3)n̂⊥2, while the cone
on sublattice-B is simply flipped, so that SBj = − cos θn̂+
sin θ cos(ϕ+2πj/3)n̂⊥1+sin θ sin(ϕ+2πj/3)n̂⊥2, with the
ground state energy being independent of ϕ. The Triad-
II state has a nonzero staggered magnetization, with
Bragg peaks in S(q) at q = (0,±2π/3), q = (π,±π/3),
and q = ±(π, π). The Cone-II state is obtained by ro-
tating all the spins of Triad-II about the n̂s = n̂ axis by
θ(r) = q·r where q is an incommensurate spiral wavevec-
tor, leading to weakly incommensurate Bragg peaks.
(vi) Noncoplanar Spiral: At φ = 0, the Hamiltonian
Hspin is the frustrated J1-J2 Heisenberg antiferromagnet
on the honeycomb lattice. The classical ground states
of this model consists of coplanar incommensurate spi-
rals for J2 > J1/6.50 For φ 6= 0, chiral terms in Hspin

cause spins on the A and B sublattices to cant in oppo-
site directions away from the spiral plane, leading to a
noncoplanar spiral with a uniform χ4 6= 0 on all big-4s.

V. THERMAL FLUCTUATIONS

In 2D, the Mermin-Wagner theorem51 precludes spin
SU(2) symmetry breaking at T > 0. However, discrete
orders associated with lattice symmetry breaking can sur-
vive thermal fluctuations.

The Néel and Tetrahedral orders break SU(2) symme-
try, but their SU(2) invariant spin correlations, such as
〈Si ·Sj〉 and 〈Si ·Sj×Sk〉, respect all lattice symmetries.
These states at T > 0 can thus be smoothly connected to
the high-T paramagnetic state. As shown in Fig. 4(a), for
the Tetrahedral state at U/t1 = 10, there is a crossover
temperature ∼ 0.05t1 below which the spin chirality χ4
on small triangles becomes large, saturating to 1/6

√
3 as

T → 0. The T > 0 regime here can thus be viewed as a
classical CSL. By contrast, χ4 vanishes at T = 0 in the
Néel state, but it exhibits a peak at nonzero temperature.

Previous work has shown that at φ = 0, the spiral
ground states of the frustrated J1-J2 Heisenberg anti-
ferromagnet have nematic order associated with broken
C3 honeycomb lattice symmetry which survives up to
a thermal Z3-clock transition.50 The noncoplanar spiral
does not involve any additional symmetry breaking, so it
undergoes a similar Z3-clock transition at φ 6= 0.

In the Cone states, the choice of the common axis
n̂ represents a spontaneously broken SU(2) symmetry;



5

FIG. 4: (a) Temperature dependence of the spin chirality χ4
on small triangles for U/t= 10 and φ= π/3, showing its low
temperature saturation in the Tetrahedral phase (t2/t1 = 1)
and its vanishing in the T = 0 Néel phase (t2/t1 = 0.4). We
have plotted 5 × χ4 in the Néel state for clarity. (b) Log
plot of finite size scaling of critical susceptibility for the Z3-
clock ordering transition in the Cone-II state at U/t1 = 10,

φ=9π/20, t2/t1 =1.5 showing χ3∼Lγ/ν , with γ/ν=1.80(8).

long wavelength fluctuations will disorder n̂ at arbitrar-
ily small T > 0, restoring SU(2) symmetry. Using Monte
Carlo simulations, we find that the nearest neighbor spin
correlations 〈Si · Sj〉 are modulated in the Cone states,
leading to energy modulations on the bonds of the lattice.
In the Cone-I state, these energy modulations resemble
a
√

3×
√

3 columnar valence-bond solid pattern, while in
the Cone-II state the energy modulations on the bonds
resemble a staggered valence-bond solid bond pattern.
This leads to a Z3 symmetry breaking in both states.
We thus expect the Cone states to undergo a thermal
Z3-clock transition into the high temperature paramag-
netic state. In the Cone-II state at U/t1 =10, φ=9π/20,
t2/t1 = 1.5, the computed peak susceptibility χ3(L) for
this transition is plotted in Fig. 4(b); its finite size scaling
shows Tc ≈ 0.17t1, with χ3(L)∼Lγ/ν , with γ/ν=1.80(8),
consistent with the exact Z3-clock result52 for the expo-
nent ratio γ/ν = 26/15.

VI. MOTT INSULATOR OF SPINOR BOSONS
IN THE HALDANE HUBBARD MODEL

Cold atom experiments can also study interacting
bosons in the Haldane-Hubbard model. Previous work on
spinless bosons has shown the emergence of chiral super-
fluids and plaquette Mott insulators with loop currents.27

For pseudospin-1/2 bosons, the Haldane-Hubbard model
is

HBose
HH = −t1

∑
〈ij〉σ

(b†iσbjσ+h.c.)−t2
∑
〈〈ij〉〉σ

(eiνijφb†iσbjσ+h.c.)

+
1

2

∑
iσσ′

Uσσ′niσniσ′ (3)

For atoms such as 87Rb, the background scattering
lengths are nearly isotropic, so we set Uσσ′ = U .

Here, we focus on the strong coupling limit
U/t1, U/t2 � 1. The spin Hamiltonian in the result-
ing Mott insulator can be derived in a manner similar to

the fermion case, although it is more tedious to calculate
the terms to O(t3/U2). We find

HBose
spin =J1(φ)

∑
〈ij〉

Si · Sj + J2(φ)
∑
〈〈ij〉〉

Si · Sj

+
24t21t2
U2

∑
small−4

χ̂4 sin Φ4 +
24t32
U2

∑
big−4

χ̂4 sin Φ4(4)

with J1(φ) = −4
t21
U − 24

t21t2
U2 cosφ and J2(φ) = − 4t22

U −
6
t21t2
U2 cosφ−12

t32
U2 cos 3φ. Similar to the fermion case, the

set of triangles includes small triangles that enclose flux
Φ4 = −φ, big triangles within a hexagon which enclose
a flux Φ4 = 3φ, and big triangles defined around a site
which enclose a flux Φ4 = −3φ. As expected, the two-
spin exchanges are ferromagnetic at φ=0, and the chiral
terms also change sign relative to the fermions.

In order to localize bosons, it is well known that the
required repulsive interactions are much stronger. Thus,
t/U is much smaller in the Mott insulating phase of
spinor bosons, so that the chiral terms are much weaker
in magnitude compared to the fermion case. In addition,
unlike the fermion case, both J1 and J2 are ferromag-
netic, which means these two-spin exchange couplings do
not frustrate each other. Due to both these reasons, we
find that ferromagnetic order almost completely domi-
nates the magnetic phase diagram in the Mott insulator
of spinor bosons.

In the ferromagnetic Mott insulator, the spin of the
bosons plays no role. Thus, our model should yield re-
sults identical to that for spinless bosons. Indeed, assum-
ing ferromagnetic order in our model, the chiral terms
vanish. Nevertheless, we find that the bond energies dis-
plays a flux dependence arising from the flux-dependence
of the two-spin exchange couplings. This leads to a weak
nonzero loop currents ∼ t3/U2 around triangular plaque-
ttes, consistent with weak loop currents predicted in the
plaquette Mott insulator of spinless bosons using quite
different approaches.27 This result for spinor bosons is in
striking contrast to the fermion case, where the only flux
dependence arises from the chiral terms, so loop currents
to O(t3/U2) only arise in fermion Mott insulators which
have non-coplanar spins with a nonzero scalar chirality.

VII. DISCUSSION

We have discussed spin-1/2 fermions or bosons in the
strongly correlated Haldane-Hubbard model. Our main
finding is the rich variety of competing chiral magnetic
orders with varying flux and hopping. Such orders,
even if they are short-ranged, could be probed via mag-
netic Bragg scattering,53,54 which has been shown to
be a useful probe in atomic gases. For fermions, since
∂Hspin/∂φ ∼ χ̂4, measuring the energy change upon an
adiabatic change of flux is an indirect way to measure χ4.
This relation also ties the spin chirality to (weak) charge
currents in the Mott insulator which could potentially
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be detected using quantum quenches.55–57 More direct
routes to detect the spin chirality of atoms are desirable.
Doping these magnetically ordered states leads to non-
trivial Chern bands and a nonzero charge Hall effect, sim-
ilar to that in certain frustrated metallic magnets.58–60

Quantum melting the Tetrahedral state, which is uni-
form with a large chirality, may lead to a quantum CSL
ground state with short range magnetic correlations at
the same wavevectors. Further work is needed to clar-
ify the energetic competition between CSLs and chiral
magnetic orders. Finally, although the Mott insulating
phase of spinor bosons is dominated by the ferromagnetic
phase, lowering U might lead to superfluids with exotic
magnetic orders; this will be explored elsewhere.
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FIG. 5: Common origin plots for the Neel, Tetrahedral, Cantellated Tetrahedral, Spiral, Cone-I and Cone-II states, with red
and black dots representing spins on the two sublattices of the honeycomb (or ‘brickwall’) lattice.

Appendix A: Common origin plots for the various magnetic orders

For visualizing spin configurations, we employ common origin plots46 where all spins on the lattice are plotted with
their tails at the center of a unit sphere and heads marked as dots on the surface of the sphere. We mark the spins
on the two sublattices of the honeycomb (i.e., brickwall) lattice using different colors, red and black. Doing this for
the Tetrahedral state, for instance, we see that all spins point along one of four directions, towards the vertices of
a tetrahedron. For the Cantellated Tetrahedral, the vertices split into six points, three on each sublattice. For the
Spiral state, we find that the spins on the two sublattices which support incommensurate spirals cant out of the plane
of the coplanar spiral in opposite directions. The Cone-I state, which is obtained by spinning a triad state about a
specific axis leads to one great circle and two small circles, while Cone-II leads to two parallel small circles.


