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In this paper we systematically classify and describe bosonic symmetry protected topological
(SPT) phases in all physical spatial dimensions using semiclassical nonlinear Sigma model (NLSM)
field theories. All the SPT phases on a d−dimensional lattice discussed in this paper can be described
by the same NLSM, which is an O(d+2) NLSM in (d+1)−dimensional space-time, with a topological
Θ−term. The field in the NLSM is a semiclassical Landau order parameter with a unit length
constraint. The classification of SPT phases discussed in this paper based on their NLSMs is
Completely Identical to the more mathematical classification based on group cohomology given in
Ref. 1,2. Besides the classification, the formalism used in this paper also allows us to explicitly discuss
the physics at the boundary of the SPT phases, and it reveals the relation between SPT phases with
different symmetries. For example, it gives many of these SPT states a natural “decorated defect”
construction.

PACS numbers:

I. INTRODUCTION

Symmetry protected topological (SPT) phase is a new
type of quantum disordered phase. It is intrinsically
different from a trivial direct product state, when and
only when the system has certain symmetry G. In terms
of its phenomena, a SPT phase on a d−dimensional
lattice should satisfy at least the following three criteria:
(i). On a d−dimensional lattice without boundary, this

phase is fully gapped, and nondegenerate;
(ii). On a d−dimensional lattice with a (d −

1)−dimensional boundary, if the Hamiltonian of the
entire system (including both bulk and boundary Hamil-
tonian) preserves certain symmetryG, this phase is either
gapless, or gapped but degenerate.
(iii). The boundary state of this d−dimensional

system cannot be realized as a (d−1)-dimensional lattice
system with the same symmetry G.
Both the 2d quantum spin Hall insulator3–5 and 3d

Topological insulator6–8 are perfect examples of SPT
phases protected by time-reversal symmetry and charge
U(1) symmetry. In this paper we will focus on bosonic
SPT phases. Unlike fermion systems, bosonic SPT
phases are always strongly interacting phases of boson
systems.
Notice that the second criterion (ii) implies the fol-

lowing two possibilities: On a lattice with a boundary,
the system is either gapless, or gapped but degenerate.
For example, without interaction, the boundaries of 2d
QSH insulator and 3d TBI are both gapless; but with
interaction, the edge states of 2d QSH insulator, and
3d TBI can both be gapped out through spontaneous
time-reversal symmetry breaking at the boundary, and
this spontaneous time-reversal symmetry breaking can
occur through a boundary transition, without destroying
the bulk state9–11. When d ≥ 3, the degeneracy of the
boundary can correspond to either spontaneous breaking
of G, or correspond to certain topological degeneracy

at the boundary. Which case occurs in the system will
depend on the detailed Hamiltonian at the boundary of
the system. For example, with strong interaction, the
boundary of a 3d TBI can be driven into a nontrivial
topological phase12–15.
The concept of SPT phase was pioneered by Wen and

his colleagues. A mathematical paradigm was developed
in Ref. 1,2 that systematically classified SPT phases
based on the group cohomology of their symmetry G.
But this approach was unable to reveal all the physical
properties of the SPT phases. In the last few years, SPT
phase has rapidly developed into a very active and excit-
ing field1,2,16–31, and besides the general mathematical
classification, other approaches of understanding SPT
phases were also taken. In 2d, it was demonstrated
that the SPT phases can be thoroughly classified by the
Chern-Simons field theory20, although it is unclear how
to generalize this approach to 3d. Nonlinear Sigma model
field theories were also used to describe some SPT phases
in 3d and 2d21–23, but a complete classification based on
this field theory is still demanded.
The goal of this paper is to systematically classify and

describe bosonic SPT phases with various continuous and
discrete symmetries in all dimensions, using semiclassical
nonlinear Sigma model (NLSM) field theories. At least
in one dimensional systems, semiclassical NLSMs have
been proved successful in describing SPT phases. The
O(3) NLSM plus a topological Θ−term describes a spin-
1 Heisenberg chain when Θ = 2π:

S1d =

∫

dxdτ
1

g
(∂µ~n)

2 +
i2π

8π
ǫabcǫµνn

a∂µn
b∂νn

c, (1)

and it is well-known that the spin-1 antiferromagnetic
Heisenberg model is a SPT phase with 2-fold degeneracy
at each boundary32–37.
In this paper we will discuss SPT phases with sym-

metry ZT
2 , Z2, Z2 × Z2, Z2 × ZT

2 , U(1), U(1) × Z2,
U(1)⋊Z2, U(1)×ZT

2 , U(1)⋊ZT
2 , Zm, Zm×Z2, Zm⋊Z2,
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Zm × ZT
2 , Zm ⋊ ZT

2 , SO(3), SO(3)× ZT
2 , Z2 × Z2 × Z2.

Here we use the standard notation: ZT
2 stands for time-

reversal symmetry, G× ZT
2 and G⋊ ZT

2 stand for direct
and semidirect product between unitary group G and
time-reversal symmetry. A semidirect product between
two groups means that these two group actions do not
commute with each other. More details will be explained
when we discuss the classification of these states. We will
demonstrate that a d−dimensional SPT phase with any
symmetry mentioned above can always be described by
an O(d + 2) NLSM in (d + 1)−dimensional space-time,
namely all the 1d SPT phases discussed in this paper can
be described by Eq. 1, all the 2d and 3d SPT phases can
be described by the following two field theories:

S2d =

∫

d2xdτ
1

g
(∂µ~n)

2

+
i2πk

Ω3
ǫabcdn

a∂τn
b∂xn

c∂yn
d, (2)

S3d =

∫

d3xdτ
1

g
(∂µ~n)

2

+
i2π

Ω4
ǫabcden

a∂τn
b∂xn

c∂yn
d∂zn

e, (3)

The O(d+2) vector is a Landau order parameter with a
unit length constraint: (~n)2 = 1. Ωd is the surface area
of a d−dimensional unit sphere. The 2d action Eq. 2
has a level−k in front of its Θ−term, whose reason will
be explained later. Different SPT phases in the same
dimension are distinguished by the transformation of the
O(d + 2) vector under the symmetry. The classification
of SPT phases on a d−dimensional lattice is given by all
the independent symmetry transformations of ~n that keep
the entire Lagrangian (including the Θ−term) invariant.
This classification rule will be further clarified in the next
section.
An O(d + 2) NLSM can support maximally O(d + 2)

symmetry and other discrete symmetries such as time-
reversal. We choose the 17 symmetries listed above,
because they can all be embedded into the maximal
symmetry of the field theory, and they are the most
physically relevant symmetries. Of course, if we want
to study an SPT phase with a large Lie group such as
SU(N), the above field theories need to be generalized
to NLSM defined with a symmetric space of that Lie
group. But for all these physically relevant symmetries,
our NLSM is already sufficient.
In principle, a NLSM describes a system with a long

correlation length. Thus a NLSM plus a Θ−term most
precisely describes a SPT phase tuned close to a critical
point (but still in the SPT phase). When a SPT phase
is tuned close to a critical point, the NLSM not only
describes its topological properties (e.g. edge states etc.),
but also describes its dynamics, for example excitation
spectrum above the energy gap (much smaller than the
ultraviolet cut-off). When the system is tuned deep
inside the SPT phase, namely the correlation length

is comparable with the lattice constant, this NLSM
can no longer describe its dynamics accurately, but
since the topological properties of this SPT phase is
unchanged while tuning, these topological properties
(like edge states) can still be described by the NLSM.
The NLSM is an effective method of describing the
universal topological properties, as long as we ignore the
extra nonuniversal information about dynamics, such as
the exact dispersion of excitations, which depends on
the details of the lattice Hamiltonian and hence is not
universal.

Besides the classification, our NLSMs in all dimensions
can tell us explicit physical information about this SPT
phase. For example, the boundary states of 1d SPT
phases can be obtained by explicitly solving the field
theory reduced to the 0d boundary. The boundary of
a 3d SPT phase could be a 2d topological phase, and the
NLSMs can tell us the quantum number of the anyons
of the boundary topological phases. The boundary
topological phases of 3d SPT phases with U(1) and time-
reversal symmetry were discussed in Ref. 21. We will
analyze the boundary topological phases for some other
3d SPT phases in the current paper.

Our formalism not only can study each individual SPT
phase, it also reveals the relation between different SPT
phases. For example, using our formalism we are able
to show that there is a very intriguing relation between
SPT phases with U(1)×(⋊)G symmetry and SPT phases
with Zm × (⋊)G symmetry, where G is another discrete
group such as Z2, ZT

2 . Our formalism demonstrates
that after breaking U(1) to Zm, whether the SPT phase
survives or not depends on the parity of integer m. We
also demonstrate that when m is an even number, we
can construct some extra SPT phases with Zm × (⋊)G
symmetry that cannot be deduced from SPT phases with
U(1) × (⋊)G symmetry by breaking U(1) down to Zm.
Our field theory also gives many of these SPT states a
natural “decorated defect” construction, which will be
discussed in more detail in the next section.

NLSMs with a Θ−term can also give us the illustrative
universal bulk ground state wave function of the SPT
phases. This was discussed in Ref. 24. These wave
functions contain important information for both the
boundary and the bulk defects introduced by coupling
the NLSM to an external gauge field24,38. It was also
demonstrated that the NLSMs are useful in classifying
and describing symmetry enriched topological (SET)
phases39, but a complete classification of SET phases
based on NLSMs will be studied in the future.

In the current paper we will only discuss SPT states
within cohomology. It is now understood that the group
cohomology classification is incomplete, and in each
dimension there are a few examples beyond cohomol-
ogy classification40–42. These beyond-cohomology states
all involve gravitational anomalies43 or mixed gauge-
gravitational anomalies40. Generalization of our field
theory to the cases beyond group cohomology can be
found in another paper 44.
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II. STRATEGY AND CLARIFICATION

A. Edge states of NLSMs with Θ−term

In d−dimensional theories Eq. 1,2 and 3 (d denotes the
spatial dimension), when Θ = 2π, their boundaries are
described by (d − 1) + 1−dimensional O(d + 2) NLSMs
with a Wess-Zumino-Witten (WZW) term at level-1.
When d = 1, the boundary of Eq. 1 with Θ = 2π is
a 0+1d O(3) NLSM with a Wess-Zumino-Witten term
at level k = 137:

Sb =

∫

dτ
1

g
(∂τ~n)

2 +

∫

dτdu
i2π

8π
ǫabcǫµνn

a∂µn
b∂νn

c. (4)

The WZW term involves an extension of ~n(τ) to ~n(τ, u):

~n(τ, 0) = (0, 0, 1), ~n(τ, 1) = ~n(τ). (5)

The boundary action Sb describes a point particle moving
on a sphere S2, with a 2π magnetic flux through the
sphere. The ground state of this single particle quantum
mechanics problem is two fold degenerate. The two
fold degenerate ground states have the following wave
functions on the unit sphere:

U = (cos(θ/2)eiφ/2, sin(θ/2)e−iφ/2)t,

~n = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) . (6)

The boundary doublet U transforms projectively under
symmetry of the SPT phase, and its transformation can
be derived explicitly from the transformation of ~n. For
example if ~n transforms as ~n → −~n under time-reversal,
then this implies that under time-reversal φ → φ, θ →
π + θ, and U → iσyU .
When d = 2, the boundary is a 1+1-dimensional O(4)

NLSM with a WZW term at level k = 1, and it is
well-known that this theory is a gapless conformal field
theory if the system has a full O(4) symmetry45,46. The
1d boundary could be gapped but still degenerate if the
symmetry of ~n is discrete (the degeneracy corresponds to
spontaneous discrete symmetry breaking); when d = 3,
the boundary is a 2+1d O(5) NLSM with a WZW at level
k = 1, which can be reduced to a 2+1d O(4) NLSM with
Θ = π after the fifth component of ~n is integrated out21.
This 2 + 1d boundary theory should either be gapless or
degenerate, and one particularly interesting possibility
is that it can become a topological order, which will be
discussed in more detail in section IIF. Starting with this
topological order, we can prove that this 2+1d boundary
system can never be gapped without degeneracy.
All components of ~n in Eq. 1,2 and 3 must have a

nontrivial transformation under the symmetry group G,
namely it is not allowed to turn on a linear “Zeeman”
term that polarizes any component of ~n. Otherwise the
edge states can be trivially gapped, and the bulk Θ−term
plays no role.

B. Phase diagram of NLSMs with a Θ−term

In our classification, the NLSM including its Θ−term
is invariant under the symmetry of the SPT phase, for
arbitrary value of Θ. For special values of Θ, such as
Θ = kπ with integer k, some extra discrete symmetry
may emerge, but these symmetries are unimportant to the
SPT phase. However, these extra symmetries guarantee
that Θ = kπ is a fixed point under renormalization group
(RG) flow. In 1+1d NLSMs, the RG flow of Θ was
calculated explicitly in Ref. 47,48 and it was shown that
Θ = 2πk are stable fixed points, while Θ = (2k+1)π are
instable fixed points, which correspond to phase transi-
tions; in higher dimensions, similar explicit calculations
are possible, but for our purposes, we just need to argue
that Θ = 2πk are stable fixed points under RG flow. The
bulk spectrum of the NLSM with Θ = 2πk is identical to
the case with Θ = 0: in the quantum disordered phase
the bulk of the system is fully gapped without degener-
acy. Now if Θ is tuned away from 2πk: Θ = 2πk ± ǫ,
this perturbation cannot close the bulk gap, and since
the essential symmetry of the SPT phase is unchanged,
the SPT phase including its edge states should be stable
against this perturbation. Thus a SPT phase corresponds
to a finite phase Θ ∈ (2πk − δ1, 2πk + δ2) in the phase
diagram.
There is a major difference between Θ−term in NLSM

and the Θ−term in the response action of the external
gauge field. In our description, a SPT phase corresponds
to the entire phase whose stable fixed point is at Θ = 2π
(or 2πk with integer k). Tuning slightly away from these
stable fixed points will not break any essential symmetry
that protects the SPT state, and hence it does not change
the main physics. The theory will always flow back to
these stable fixed points under RG (this RG flow was
computed explicitly in 1+1d in Ref. 47,48, and a similar
RG flow was proposed for higher dimensional cases49).
The Θ−term of the external gauge field after integrating
out the matter fields is protected by the symmetry of
the SPT phase to be certain discrete value. For example
Θ = π for the ordinary 3d topological insulator50,51 is
protected by time-reversal symmetry. Tuning Θ away
from π will necessarily break the time-reversal symmetry.

C. Zk or Z classification?

In the classification table in Ref. 1,2, one can see that in
even dimensions, there are many SPT states with Z clas-
sifications, but in odd dimensions, Z classification never
appears. This fact was a consequence of mathematical
calculations in Ref. 1,2, but in this section we will give a
very simple explanation based on our field theories.
The manifold of O(d + 2) NLSM is Sd+1, which

has a Θ−term in (d + 1)−dimensional space-time due
to homotopy group πd+1[S

d+1] = Z. However, this
does not mean that the Θ−term will always give us
Z classification, because more often than not we can
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show that Θ = 0 and Θ = 2πk with certain nonzero
integer k can be connected to each other without any
bulk transition.
For example, let us couple two Haldane phases to each

other:

L =
1

g
(∂µ~n

(1))2 +
i2π

8π
ǫabcǫµνn

(1)
a ∂µn

(1)
b ∂νn

(1)
c

+ 1 → 2 +A(~n(1) · ~n(2)). (7)

When A < 0, effectively ~n(1) = ~n(2) = ~n, then the system
is effectively described by one O(3) NLSM with Θ =
4π; while when A > 0, effectively ~n(1) = −~n(2) = ~n,
the effective NLSM for the system has Θ = 0. When
parameter A is tuned from negative to positive, the bulk
gap does not close. The reason is that, since Θ = 2π
in both Haldane phases, the Θ−term does not affect the
bulk spectrum at all. To analyze the bulk spectrum (and
bulk phase transition) while tuning A, we can just ignore
the Θ−term. Without the Θ−term, both theories are
just trivial gapped phases, and an inter-chain coupling
can not qualitatively change the bulk spectrum unless it
is strong enough to overcome the bulk gap in each chain.
We have explicitly checked this phase diagram using a
Monte Carlo simulation of two coupled O(3) NLSMs, and
the result is exactly the same to what we would expect
from the argument above. Thus the theory with Θ = 4π
and Θ = 0 are equivalent.
By contrast, if we couple two chains with Θ = π each,

then the cases A > 0 and < 0 correspond to effective
Θ = 0 and 2π respectively, and these two limits are
separated by a bulk phase transition point A = 0, when
the system becomes two decoupled chains with Θ = π
each. And it is well-known that a 1 + 1d O(3) NLSM
with Θ = π is the effective field theory that describes
a spin-1/2 chain32,33, and according to the Lieb-Shultz-
Matthis theorem, this theory must be either gapless or
degenerate52. This conclusion is consistent with the RG
calculation in Ref. 47,48, and a general nonperturbative
argument in Ref. 49.
In fact when Θ = 4π the boundary state of Eq. 1 is a

spin-1 triplet, and by tuning A, at the boundary there is
a level crossing between triplet and singlet, while there is
no bulk transition. This analysis implies that with SO(3)
symmetry, 1d spin systems have two different classes:
there is a trivial class with Θ = 4πk, and a nontrivial
Haldane class with Θ = (4k + 2)π.
If we cannot connect Θ = 4π to Θ = 0 without closing

the bulk gap, then the classification would be bigger
than Z2. For example, let us consider the 2d SPT phase
with U(1) symmetry which was first studied in Ref. 17.
This phase is described by Eq. 2. B ∼ n1 + in2 and
B′ ∼ n3 + in4 (n1 · · ·n4 are the four components of
O(4) vector ~n in Eq. 2) are two complex boson (rotor)
fields that transform identically under the global U(1)
symmetry. Now suppose we couple two copies of this
systems together through symmetry allowed interactions:

S = S1 + S2 +A1B1B
†
2 +A2B1B

′†
2

+ A3B
′
1B

†
2 +A4B

′
1B

′†
2 +H.c. (8)

No matter how we tune the parameters Ai, the resulting
effective NLSM always has Θ = 4π instead of Θ = 0 (this
is simply because (−1)2 = (−1)4 = +1). This implies
that we cannot smoothly connect Θ = 4π to 0 without
any bulk transition. Thus the classification of 2d SPT
phases with U(1) symmetry is Z instead of Z2. This is
why in 2d (and all even dimensions), many SPT states
have Z classification, while in odd dimensions there is
no Z classification at all, namely all the nontrivial SPT
phases in odd dimensions correspond to Θ = 2π. Thus
in Eq. 2 we added a level−k in the Θ−term.

D. NLSM and “decorated defect” construction of

SPT states

Ref. 27 has given us a physical construction of some
of the SPT states in terms of the “decorated domain
wall” picture. For example, one of the 3d ZA

2 × ZB
2

SPT state can be constructed as follows: we first break
the ZB

2 symmetry, then restore the ZB
2 symmetry by

proliferating the domain wall of ZB
2 , and each ZB

2 domain
wall is decorated with a 2d SPT state with ZA

2 symmetry.
This state is described by Eq. 3 with transformation

ZB
2 : n1,2 → −n1,2, na → na(a = 3, 4, 5);

ZA
2 : n1,→ n1, na → −na(a = 2, · · · 5). (9)

Here ni is the ith component of vector ~n. To
visualize the “decorated domain” wall picture, we
can literally make a domain wall of n1, and
consider the following configuration of vector ~n:

~n = (cos θ, sin θN2, sin θN3, sin θN4, sin θN5), where ~N is
a O(4) vector with unit length, and θ is a function of
coordinate z only:

θ(z = +∞) = π, θ(z = −∞) = 0. (10)

Plug this parametrization of ~n into Eq. 3, and integrate
along z direction, the Θ−term in Eq. 3 precisely reduces
to the Θ−term in Eq. 2 with k = 1, and the O(4) vector

~n = ~N . This is precisely the 2d SPT with Z2 symmetry.
This implies that the ZB

2 domain wall is decorated with
a 2d SPT state with ZA

2 symmetry.
Many SPT states can be constructed with this dec-

orated domain wall picture. Some 3d SPT states can
also be understood as “decorated vortex”, which was first
discussed in 21. This state has U(1)×ZT

2 symmetry, and
the vector ~n transforms as

U(1) : (n1 + in2) → (n1 + in2)e
iθ, n3,4,5 → n3,4,5,

ZT
2 : ~n → −~n. (11)

If we make a vortex of the U(1) order parameter (n1, n2),
Eq. 3 reduces to Eq. 1 with O(3) order parameter
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(n3, n4, n5). Thus this SPT can be viewed as decorating
the U(1) vortex with a 1d Haldane phase, and then
proliferating the vortices.

E. Independent NLSMs

Let us take the example of 1d SPT phases with Z2×ZT
2

symmetry. As we claimed, all 1d SPT phases in this
paper are described by the same NLSM Eq. 1. With
Z2×ZT

2 symmetry, there seems to be three different ways
of assigning transformations to ~n that make the entire
Lagrangian invariant:

(1) : Z2 : ~n → ~n, ZT
2 : ~n → −~n.

(2) : Z2 : n1,2 → −n1,2, n3 → n3

ZT
2 : ~n → −~n

(3) : Z2 : n1,2 → −n1,2, n3 → n3

ZT
2 : n3 → −n3, n1,2 → n1,2. (12)

However the NLSMs defined with these three different
transformations are not totally independent from each
other, which means that if all three theories exist in
one system, although each theory is a nontrivial SPT
phase individually, we can turn on some symmetry
allowed couplings between these NLSMs and cancel the
bulk topological terms completely, and drive the entire
coupled system to a trivial state. For example, let us
take O(3) vectors ~n(i) with transformations (1), (2) and
(3) respectively:

~n(i)(~r) = (n
(i)
1 , n

(i)
2 , n

(i)
3 ) =

(

sin(θ
(i)
~r ) cos(φ

(i)
~r ), sin(θ

(i)
~r ) sin(φ

(i)
~r ), cos(θ

(i)
~r )

)

, (13)

φ
(i)
~r and θ

(i)
~r are functions of space-time. Under Z2 and

ZT
2 symmetry, θ(i) and φ(i) transform as

Z2 : θ(i) → θ(i),

φ(1) → φ(1), φ(i) → φ(i) + π, (i = 2, 3);

ZT
2 : θ(i) → π − θ(i),

φ(i) → φ(i) + π, (i = 1, 2), φ(3) → φ(3). (14)

First of all, since θ(i) have the same transformation for
all i, we can turn on strong coupling between the three
NLSMs to make θ(1) = θ(2) = θ(3) = θ. We can also
turn on couplings to make φ(3) = φ(1) + φ(2). Now ~n(3)

becomes

n
(3)
1 = sin(θ) cos(φ(1) + φ(2)),

n
(3)
2 = sin(θ) sin(φ(1) + φ(2)),

n
(3)
3 = cos(θ). (15)

It is straightforward to prove that the topological number
of ~n(3) in 1+1d space-time is the sum of topological num-
bers of ~n(1) and ~n(2). More explicitly, an instanton of ~n(a)

is a domain wall of n
(a)
3 decorated with a vortex of φ(a).

As we explained above, with appropriate coupling be-
tween these vectors, we can make θ(1) = θ(2) = θ(3) = θ,

and φ(3) = φ(1)+φ(2). Thus a domain wall of n
(3)
3 is also

a domain wall of n
(1)
3 and n

(2)
3 , while the vortex number

of φ(3) is the sum of vortex number of φ(1) and φ(2). Thus
the Θ−term of ~n(3) reduces to the sum of Θ−terms of ~n(1)

and ~n(2). In this example we have shown that NLSMs (1)
and (2) in Eq. 12 can “merge” into NLSM (3). Thus the
three NLSMs defined with transformations (1), (2) and
(3) are not independent from each other.
Also, for either NLSM (1) or (2) in Eq. 12, we can

show that Θ(i) = 0 and 4π can be connected to each
other without a bulk transition (using the same method
as the previous subsection). Then eventually the 1d
SPT phase with Z2 × ZT

2 symmetry is parametrized
by two independent Θ−terms, the fixed point values
of Θ(1) and Θ(2) can be either 0 or 2π, thus this SPT
phase has a (Z2)

2 classification, which is consistent with
the classification using group cohomology. NLSMs with
transformations (1), (2) are two “root phases” of 1d SPT
phases with Z2×ZT

2 symmetry. All the other SPT phases
can be constructed with these two root phases.
For most SPT phases, we can construct the NLSMs

using the smallest representation (fundamental repre-
sentation) of the symmetry groups G, because usually
(but not always!) NLSMs constructed using higher
representations can reduce to constructions with the
fundamental representation with a different Θ. For
example, the 1d SPT phase with U(1)⋊Z2 symmetry can
be described by Eq. 1 with the following transformation

U(1) : (n1 + in2) → eiθ(n1 + in2), n3 → n3,

Z2 : n1 → n1, n2,3 → −n2,3, (16)

namely B ∼ (n1+in2) is a charge-1 boson under the U(1)
rotation, and the edge state of this SPT phase carries
charge-1/2 of boson B. We can also construct an O(3)
NLSM using charge-2 boson B′ ∼ (n′

1+in′
2) ∼ (n1+in2)

2

that transforms as B′ → B′e2iα, then mathematically we
can demonstrate that the NLSM with Θ = 2π for order
parameter ~n′ = (n′

1, n
′
2, n3) reduces to a NLSM of ~n with

Θ = 4π, hence it is a trivial phase.
More explicitly, let us take unit vector ~n =

(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)), and vector ~n′ =
(sin(θ) cos(2φ), sin(θ) sin(2φ), cos(θ)), then we can show
that when ~n has topological number 1 in 1+1d space-
time, ~n′ would have topological number 2. This means
that if there is a Θ−term for ~n′ with Θ = 2π, it is
equivalent to a Θ−term for ~n with Θ = 4π.
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Physically, the edge state of NLSM of ~n′ with Θ = 2π
carries a half-charge of B′, which is still a charge-1 object,
so it can be screened by another charge-1 boson B. Hence
in this case NLSM constructed using charge-2 boson B′

would be trivial.
However, later we will also show that when the sym-

metry group involves Zm with even integer m > 2, then
using higher representations of Zm we can construct SPT
phases that cannot be obtained from the fundamental
representation of Zm.

F. Boundary topological order of 3d SPT phases

The (d−1)−dimensional boundary of a d−dimensional
SPT phase must be either degenerate or gapless. When
d = 3, its 2d boundary can spontaneously break the
symmetry, or have a topological order21. We can use the
bulk field theory Eq. 3 to derive the quantum numbers
of the anyons at the boundary.
Let us take the 3d SPT phase with Z2×ZT

2 symmetry
as an example. One of the SPT phases has the following
transformations:

Z2 : na → −na(a = 1, · · · 4), n5 → n5;

ZT
2 : ~n → −~n. (17)

The 2+1d boundary of the system is described by a 2+1d
O(5) NLSM with a Wess-Zumino-Witten (WZW) term
at level k = 1:

S =

∫

d2xdτ
1

g
(∂µ~n)

2

+

∫ 1

0

du
i2π

Ω4
ǫabcden

a∂xn
b∂yn

c∂zn
d∂τn

e, (18)

where ~n(x, τ, u) satisfies ~n(x, τ, 0) = (0, 0, 0, 0, 1) and
~n(x, τ, 1) = ~n(x, τ). If the time-reversal symmetry is
preserved, namely 〈n5〉 = 0, we can integrate out n5,
and Eq. 18 reduces to a 2+1d O(4) NLSM with Θ = π:

S =

∫

d2xdτ
1

g
(∂µ~n)

2 +
iπ

Ω3
ǫabcdn

a∂τn
b∂xn

c∂yn
d. (19)

In Eq. 19 Θ = π is protected by time-reversal symmetry.
In the following we will argue that the topological

terms in Eq. 18 and Eq. 19 guarantee that the 2d
boundary cannot be gapped without degeneracy. One
particularly interesting possibility of the boundary is
a phase with 2d Z2 topological order21. A 2d Z2

topological phase has e and m excitations that have
mutual semion statistics53. The semion statistics can be
directly read off from Eq. 19: if we define complex boson
fields z1 = n1 + in2 and z2 = n3 + in4, then the Θ−term
in Eq. 19 implies that a vortex of (n3, n4) carries half
charge of z1, while a vortex of (n1, n2) carries half charge
of z2, thus vortices of z1 and z2 are bosons with mutual
semion statistics. This statistics survives after z1 and z2

are disordered by condensing the double vortex (vortex
with vorticity 4π) of either z1 or z2 at the boundary,
then the disordered phase must inherit the statistics and
become a Z2 topological phase

21. The vortices of (n1, n2)
and (n3, n4) become the e and m excitations respectively.
Normally a vortex defect is discussed in systems with
a U(1) global symmetry. We do not assume such U(1)
global symmetry in our case, this symmetry reduction is
unimportant in the Z2 topological phase.
At the vortex core of (n3, n4), namely them excitation,

Eq. 18 reduces to a 0+1d O(3) NLSM with a WZW term
at level 154:

Sm =

∫

dτ
1

g
(∂τ ~N)2 +

∫ 1

0

du
i2π

8π
ǫabcǫµνN

a∂µN
b∂νN

c,(20)

where ~N ∼ (n1, n2, n5). This 0+1d field theory describes
a single particle moving on a 2d sphere with a magnetic
monopole at the origin. It is well known that if there is

a SO(3) symmetry for ~N , then the ground state of this
0d problem has two fold degeneracy, with two orthogonal
solutions

um = cos(θ/2)eiφ/2, vm = sin(θ/2)e−iφ/2,

~N = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) . (21)

Likewise, the vortex of (n1, n2) (e excitation) also carries
a doublet (ue, ve). Under the Z2 transformation, φ →
φ + π, thus ue,m and ve,m carry charge ±1/2 of the Z2

symmetry, namely under the Z2 transformation:

Z2 : Ue,m → iσzUe,m, (22)

where Ue,m = (ue,m, ve,m)t.

Under time-reversal transformation T , ~N → − ~N , θ →
θ + π. Thus the e and m doublets transform as

ZT
2 : Ue,m → iσyUe,m, (23)

thus the e andm anyons at the boundary carry projective
representation of ZT

2 which satisfies T 2 = −1.
Based on this Z2 topological order, we can derive the

phase diagram around the Z2 topological order, and show
that this boundary cannot be gapped without degener-
acy. For example, starting with a 2d Z2 topological order,
one can condense either e or m excitation and kill the
topological degeneracy. However, because Ue,m trans-
form nontrivially under the symmetry group, condensate
of either e or m will always spontaneously break certain
symmetry and lead to degeneracy. For example, the
condensate of e excitation has nonzero expectation value
of (n3, n4, n5) ∼ U †

e~σUe, which necessarily spontaneously
breaks the Z2 or ZT

2 symmetry.
We also note that one bulk BSPT state can have

different boundary states, which depends on the details
of the boundary Hamiltonian. Recently a different
boundary topological order of BSPT state was derived
in Ref. 55, but the bulk state is the same as ours.
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G. Rule of classification

With all these preparations, we are ready to lay out
the rules of our classification:

1. In d−dimensional space, all the SPT phases
discussed in this paper are described by a (d +
1)−dimensional O(d + 2) NLSM with a Θ−term. The
O(d + 2) vector field ~n is an order parameter, namely
it must carry a nontrivial representation of the given
symmetry. In other words, no component of the vector
field transforms completely trivially under the symmetry,
because otherwise it is allowed to turn on a strong linear
“Zeeman” term to the trivial component, and then the
system will become a trivial direct product state.

2. The classification is given by all the possible
independent symmetry transformations on vector order
parameter ~n that keep the Θ−term invariant, for arbi-

trary value of Θ. Independent transformations mean that
any NLSM defined with one transformation cannot be ob-
tained by “merging” two (or more) other NLSMs defined
with other transformations. SPT phases constructed
using independent NLSMs are called “root phases”. All
the other SPT phases can be constructed with these root
phases.

3. With a given symmetry, and given transformation
of ~n, if Θ = 2πk and Θ = 0 can be connected without a
bulk transition, this transformation will contribute classi-
fication Zk; otherwise the transformation will contribute
classification Z.

Using the rule and strategy discussed in this section,
we can obtain the classification of all SPT phases in all
dimensions. In this paper we will systematically study
SPT phases in one, two and three spatial dimensions with
symmetries ZT

2 , Z2, Z2 ×Z2, Z2 ×ZT
2 , U(1), U(1)×Z2,

U(1)⋊Z2, U(1)×ZT
2 , U(1)⋊ZT

2 , Zm, Zm×Z2, Zm⋊Z2,
Zm × ZT

2 , Zm ⋊ ZT
2 , SO(3), SO(3)× ZT

2 , Z2 × Z2 × Z2.
The final classification of the SPT phases we study in this
paper is completely identical to the classification based on
group cohomology1,2.

III. 1D SPT PHASE WITH Z2 × Z2 × Z
T

2

SYMMETRY

Before we discuss our full classification, let us carefully
discuss 1d SPT phases with Z2 × Z2 × ZT

2 symmetry
as an example. These SPT phases were discussed very
thoroughly in Ref. 56. There are in total 16 different
phases (including the trivial phase). The goal of this
section is to show that all these phases can be described
by the same equation Eq. 1 with certain transformation
of ~n, and the projective representation of the boundary
states given in Ref. 56 can be derived explicitly using
Eq. 6.

For the consistency of notation in this paper, Rz and
Rx in Ref. 56 will be labelled ZA

2 and ZB
2 here. Let us

consider one example, namely Eq. 1 with the following

transformation:

ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n2 → −n2, n1,3 → n1,3. (24)

Now let us parametrize ~n as

~n = (sin θ cosφ, sin θ sinφ, cos θ) , (25)

then θ and φ transform as

ZA
2 : θ → θ, φ → φ+ π,

ZB
2 : θ → π − θ, φ → −φ,

ZT
2 : θ → θ, φ → −φ. (26)

These transformations lead to the following projective
transformation of edge state Eq. 6:

ZA
2 : U → iσzU,

ZB
2 : U → σxU,

ZT
2 : U → U. (27)

Thus this NLSM corresponds to phase E5 in Ref. 56.
The 16 phases in Ref. 56 correspond to the following

transformations of O(3) vector ~n:

E0 : Trivial phase, Θ = 0;

E′
0 : ZA

2 , ZB
2 : ~n → ~n, ZT

2 : ~n → −~n;

E1 : ZA
2 : ~n → ~n,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : ~n → −~n,

E′
1 : ZA

2 : ~n → ~n,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n1,2 → n1,2, n3 → −n3;

E3 : ZB
2 : ~n → ~n,

ZA
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : ~n → −~n,

E′
3 : ZB

2 : ~n → ~n,

ZA
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n1,2 → n1,2, n3 → −n3;
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E5 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n2 → −n2, n1,3 → n1,3;

E′
5 : E5 ⊕ E′

0;

E7 : ZA
2 : n1,2 → −n1,2, n3 → n3,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n1,2 → n1,2, n3 → −n3;

E′
7 : ZA

2 : n1,2 → −n1,2, n3 → n3,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : ~n → −~n;

E9 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n3 → −n3, n1,2 → n1,2;

E′
9 : E9 ⊕ E′

0,

E11 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n1 → −n1, n2,3 → n2,3;

E′
11 : E11 ⊕ E′

0;

E13 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : ~n → −~n;

E′
13 : E13 ⊕ E′

0. (28)

All the phases except for the trivial phase E0 have
Θ = 2π in Eq. 1. Here E5 ⊕E′

0 means it is a spin ladder
with symmetry allowed weak interchain couplings, and
the two chains are E5 phase and E′

0 phase respectively.
For all the 16 phases above, we can compute the projec-
tive representations of the boundary states using Eq. 6,
and they all precisely match with the results in Ref. 56.

IV. FULL CLASSIFICATION OF SPT PHASES

A. SPT phases with Z2 symmetry

In 1d and 3d, there is no Z2 symmetry transformation
that we can assign vector ~n that makes the actions Eq. 1
and Eq. 3 invariant, thus there is no SPT phase in 1d and
3d with Z2 symmetry. However, in 2d there is obviously
one and only one way to assign the Z2 symmetry:

Z2 : (n1, n2, n3, n4) → −(n1, n2, n3, n4). (29)

Then when Θ = 2π this 2+1d O(4) NLSM describes the
Z2 SPT phase studied in Ref. 16. Using the method in
section IIC, one can show that with the transformation
Eq. 29, the 2+1d O(4) NLSM Eq. 2 with Θ = 4π is
equivalent to Θ = 0, thus the classification in 2d is Z2.
In Ref. 24, the authors also used this NLSM to derive

the ground state wave function of the SPT phase:

|Ψ〉 =
∑

(−1)dw|C〉, (30)

where |C〉 standards for an arbitrary Ising field configu-
ration, while dw is the number of Ising domain walls of
this configuration. This wave function was also derived
in Ref. 16 with an exactly soluble model for this SPT
phase.
The classification of SPT phases with Z2 symmetry is:

1d : Z1, 2d : Z2, 3d : Z1. (31)

Here Z1 means there is only one trivial state, and Z2

means there is one trivial state and one nontrivial SPT
state.

B. SPT phases with Z
T

2 symmetry

In 2d, there is no way to assign ZT
2 symmetry to

the O(4) NLSM order parameter in Eq. 2 to make the
Θ−term invariant, thus there is no bosonic SPT phase in
2d with ZT

2 symmetry. In 1d and 3d, there is only one
way to assign the ZT

2 symmetry to vector ~n:

ZT
2 : ~n → −~n, (32)

and Θ = 0 and Θ = 4π are equivalent. Thus in both 1d
and 3d, the classification is Z2. Notice that time-reversal
is an antiunitary transformation, thus i → −i under ZT

2 ;
also since our NLSMs are defined in Euclidean space-
time, the Euclidean time τ = it is invariant under ZT

2 .
Using the method in section II.F, one can demonstrate

that the boundary of the 3d SPT state with ZT
2 symmetry

is a 2d Z2 topological order, whose both e and m
excitations are Kramers doublet, i.e. the so called eTmT
state.
The classification of SPT phases with ZT

2 symmetry is:

1d : Z2, 2d : Z1, 3d : Z2. (33)
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Now it is understood that in 3d there is bosonic
SPT state with ZT

2 symmetry that is beyond the group
cohomology classification21, and there is a explicit lattice
construction for such state57. This state is also beyond
our current NLSM description. However, a generalized
field theory which involves both the NLSM and Chern-
Simons theory can describe at least a large class of BSPT
states beyond group cohomology. This will be discussed
in a different paper44.

C. SPT phases with U(1) symmetry

In 1d and 3d, there is no way to assign U(1) symmetry
to vector ~n that keeps the entire Lagrangian invariant.
But in 2d, bosonic SPT phase with U(1) symmetry was
discussed in Ref. 17, and its field theory is given by Eq. 2.
And since in this case we cannot connect Θ = 2πk and
Θ = 0 without a bulk transition, the classification is Z.
The classification of SPT phases with U(1) symmetry

is:

1d : Z1, 2d : Z, 3d : Z1. (34)

D. SPT phases with U(1)⋊ Z2 symmetry

U(1)⋊Z2 is a subgroup of SO(3). In 1d, there is only
one way of assigning the symmetry to vector ~n that keeps
the entire Lagrangian invariant:

U(1) : (n1 + in2) → eiθ(n1 + in2), n3 → n3,

Z2 : n1 → n1, n2,3 → −n2,3. (35)

Here Z2 is a particle-hole transformation of rotor/boson
field b ∼ n1+ in2. n3 can be viewed as the boson density,
which changes sign under particle-hole transformation.
One can check that the U(1) and Z2 symmetry defined
above do not commute with each other. The boundary
state of this 1d SPT phase is given in Eq. 6. Under
U(1) and Z2 transformation, the boundary doublet U
transforms as

U(1) : U → eiθσ
z/2U, Z2 : U → σxU. (36)

In 3d, there is also only one way of assigning the
symmetry to the O(5) vector:

U(1) : (n1 + in2) → eiθ(n1 + in2), nb → nb, b = 3, 4, 5;

Z2 : n1 → n1, nb,→ −nb, b = 2, · · · 5. (37)

In both 1d and 3d, Θ = 4π is equivalent to Θ = 0, thus
in both 1d and 3d the classification is Z2.
In 2d, there are two independent ways of assigning

U(1)⋊ Z2 transformations to the O(4) vector ~n:

(1) : U(1) : (n1 + in2) → eiθ(n1 + in2),

(n3 + in4) → eiθ(n3 + in4);

Z2 : n1, n3 → n1, n3, n2, n4 → −n2,−n4;

(2) : U(1) : ~n → ~n, Z2 : ~n → −~n. (38)

The transformation (1) contributes Z classification, while
transformation (2) contributes Z2 classification, i.e. in 2d
the classification is Z×Z2. The final classification of SPT

phases with U(1)⋊ Z2 symmetry is:

1d : Z2, 2d : Z× Z2, 3d : Z2. (39)

E. SPT phases with U(1) × Z2 symmetry

In both 1d and 3d, there is no way of assigning U(1)×
Z2 transformations to vector ~n that keeps the Θ term
invariant. But in 2d, we can construct three root phases:

(1) : U(1) : (n1 + in2) → eiθ(n1 + in2),

(n3 + in4) → eiθ(n3 + in4);

Z2 : ~n → ~n;

(2) : U(1) : ~n → ~n, Z2 : ~n → −~n;

(3) : U(1) : (n1 + in2) → eiθ(n1 + in2),

n3,4 → n3,4;

Z2 : n1,2 → n1,2, n3,4 → −n3,4. (40)

The first transformation contributes classification Z,
while transformations (2) and (3) both contribute clas-
sification Z2, thus the final classification of SPT phases

with U(1)× Z2 symmetry is:

1d : Z1, 2d : Z× (Z2)
2, 3d : Z1. (41)

F. SPT phases with U(1)⋊ Z
T

2 symmetry

A boson operator b with U(1) ⋊ ZT
2 symmetry trans-

forms as b → b under ZT
2 . In 1d, the only U(1) ⋊ ZT

2

symmetry transformation that keeps Eq. 1 invariant is
the same transformation as ZT

2 SPT phase, namely
vector ~n does not transform under U(1), but changes
sign under ZT

2 .
In 2d, the only transformation that keeps Eq. 2

invariant is

U(1) : (n1 + in2) → eiθ(n1 + in2), n3,4 → n3,4;

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4), (42)

and this NLSM gives classification Z2.
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The NLSMs for U(1) ⋊ ZT
2 SPT phases in 3d have

been discussed in Ref. 21, and in 3d the classification is
(Z2)

2. Thus the final classification of SPT phases with

U(1)⋊ ZT
2 symmetry is:

1d : Z2, 2d : Z2, 3d : (Z2)
2. (43)

G. SPT phases with U(1) × Z
T

2 symmetry

In 1d, there are two independent transformations that
keep Eq. 1 invariant:

(1) : U(1) : (n1 + in2) → eiθ(n1 + in2), n3 → n3;

ZT
2 : n1,2 → n1,2, n3 → −n3,

(2) : U(1) : ~n → ~n,

ZT
2 : ~n → −~n. (44)

In 2d there is no U(1) × ZT
2 transformation that keeps

Eq. 2 invariant. In 3d the NLSMs for U(1) × ZT
2 SPT

phases were discussed in Ref. 21. The final classification

of SPT phases with U(1)× ZT
2 symmetry is:

1d : (Z2)
2, 2d : Z1, 3d : (Z2)

3. (45)

H. SPT phases with Z2 × Z2 symmetry

In 1d, there is only one Z2 × Z2 transformation that
keeps Eq. 1 invariant:

ZA
2 : n1,2 → −n1,2, n3 → n3,

ZB
2 : n1 → n1, n2,3 → −n2,3. (46)

The boundary state U defined in Eq. 6 transforms as

ZA
2 : U → iσzU, ZB

2 : U → σxU. (47)

Thus ZA
2 and ZB

2 no longer commute with each other at
the boundary.
In 2d, there are three independent Z2 × Z2 transfor-

mations (three different root phases):

(1) : ZA
2 : ~n → −~n, ZB

2 : ~n → ~n;

(2) : ZA
2 : ~n → ~n, ZB

2 : ~n → −~n;

(3) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n1,2 → n1,2, n3,4 → −n3,4. (48)

In 3d, there are also two independent Z2 × Z2 trans-
formations that keep Eq. 3 invariant (two root phases):

(1) : ZA
2 : n1,2 → −n1,2, na → na(a = 3, 4, 5);

ZB
2 : n1,→ n1, na → −na(a = 2, · · · 5);

(2) : ZB
2 : n1,2 → −n1,2, na → na(a = 3, 4, 5);

ZA
2 : n1,→ n1, na → −na(a = 2, · · · 5). (49)

As we discussed in section II.F, the boundary of these
3d SPT phases can have 2d Z2 topological order. A
2d Z2 topological phase has e and m anyon excita-
tions, and these anyons correspond to vortices of certain
components of order parameter ~n. If the e and m
anyons correspond to vortices of (n3, n4) and (n1, n2)
respectively, then according to Eq. 20, the e excitation
corresponds to a 0 + 1d O(3) WZW model for vector
(n1, n2, n5), and the m excitation corresponds to a 0+1d
WZW model for vector (n3, n4, n5). The boundary
anyons of phase (1) transform as:

(1) : ZA
2 : Ue → iσzUe, Um → Um;

ZB
2 : Ue → σxUe, Um → iσyU∗

m. (50)

Notice that under ZB
2 , a vortex of (n1, n2) becomes an

antivortex, thus the transformation of Um under ZB
2

involves a complex conjugation. The transformation of
boundary anyons of phase (2) is the same as Eq. 50 after
interchanging ZA

2 and ZB
2 .

The final classification of SPT phases with Z2 × Z2

symmetry is:

1d : Z2, 2d : (Z2)
3, 3d : (Z2)

2. (51)

I. SPT phases with Z2 × Z
T

2 symmetry

In 1d and 3d, the SPT phases with Z2×ZT
2 symmetry

are simply SPT phases with U(1) × ZT
2 symmetry after

reducing U(1) to its subgroup Z2. The classification is
the same as the U(1)× ZT

2 SPT phases discussed in the
previous subsection. In 2d, there are two different root
phases that correspond to the following transformations:

(1) : Z2 : n1,2 → −n1,2, n3,4 → n3,4,

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

(2) : Z2 : ~n → −~n,

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4). (52)

The final classification of SPT phases with Z2 × ZT
2

symmetry is:

1d : (Z2)
2, 2d : (Z2)

2, 3d : (Z2)
3. (53)

J. SPT phases with Zm symmetry

In 1d and 3d, there are no nontrivial Zm transforma-
tions that can keep Eq. 1 and Eq. 3 invariant. In 2d, we
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can construct the following root phase:

Zm : (n1 + in2) → ei2πk/m(n1 + in2);

(n3 + in4) → ei2πk/m(n3 + in4),

k = 0, · · ·m− 1 (54)

Using the method in section II, we can demonstrate that
with these transformations, Eq. 2 with Θ = 2πm and
Θ = 0 are equivalent to each other, thus the classification
is Zm in 2d.
The final classification of SPT phases with Zm sym-

metry is:

1d : Z1, 2d : Zm, 3d : Z1. (55)

K. SPT phases with Zm ⋊ Z2 symmetry

In 1d, there is one SPT phase with U(1)⋊Z2 symmetry.
Naively one would expect that when U(1) is broken down
to Zm, this SPT phase survives and becomes a SPT phase
with Zm⋊Z2 symmetry. However, this statement is only
true for even m, and when m is odd the U(1)⋊ Z2 SPT
phase becomes trivial once U(1) is broken down to Zm.
The 1d U(1)⋊Z2 SPT phase is described by a 1d O(3)

NLSM of vector ~n with Θ = 2π, and B ∼ (n1 + in2) is
a charge-1 boson under the U(1) rotation. Because the
classification of 1d U(1) ⋊ Z2 SPT phase is Z2, Θ = 2π
is equivalent to Θ = 2πm for odd m. As we discussed
in section IID, this NLSM with Θ = 2πm is equivalent
to another NLSM defined with ~n′ and Θ = 2π, where
B′ ∼ (n′

1 + in′
2) ∼ (n1 + in2)

m is a charge-m boson.
Under Z2 transformation, n′

1 → n′
1, n

′
2 → −n′

2.
Now let us break U(1) down to its subgroup Zm. B′

transforms trivially under Zm, thus we are allowed to
turn on a Zeeman term Re[B′] ∼ n′

1 which fully polarizes
n′
1 and kills the SPT phase. Thus the original U(1)⋊Z2

SPT phase is instable under U(1) to Zm breaking with
odd m.
The discussion above is very abstract, let us under-

stand this result physically, and we will take m = 3 as
an example. With a full SO(3) symmetry and Θ = 2π
in the bulk, the ground state of the boundary is a spin-
1/2 doublet in Eq. 6. The excited states of the boundary
include a spin-3/2 quartet. When Θ = 6π in the bulk, the
boundary ground state is a spin-3/2 quartet. The spin-
3/2 and spin-1/2 states can have a boundary transition
(level crossing at the boundary) without closing the bulk
gap, thus Θ = 2π and 6π are equivalent in the bulk. Now
let us take Θ = 6π in the bulk, and break the SO(3) down
to Z3⋊Z2. Then we are allowed to turn on a perturbation
cos(3φ) at the boundary (which precisely corresponds
to the Zeeman coupling Re[B′] ∼ n′

1 discussed in the
previous paragraph), which will mix and split the two
states Sz = ±3/2 at the boundary, and the boundary
ground state can become nondegenerate. Thus when m

is odd, the U(1) ⋊ Z2 SPT phase does not survive the
symmetry breaking from U(1) to Zm.
The same situation occurs in 2d and 3d. There is a 3d

SPT phase with U(1)⋊Z2 symmetry, but once we break
the U(1) down to Zm, this SPT phase does not survive
when m is odd. When m is even, besides the phase
deduced from U(1) ⋊ Z2 SPT phase, one can construct
another root phase:

Z2 : n1,2 → −n1,2, na → na (a = 3, 4, 5);

Zm : n1,→ n1, na → (−1)kna (a = 2, · · · 5),

k = 0, · · ·m− 1. (56)

Here na(a = 2, · · · 5) still carries a nontrivial representa-
tion of Zm for even integer m. na with a = 3, 4, 5 can
be viewed as the real parts of charge-m/2 bosons, while
n2 is the imaginary part of such charge-m/2 boson. This
construction does not apply for odd m.
In 2d, for arbitrary m > 1, the U(1)⋊ Z2 SPT phases

survive under U(1) to Zm symmetry breaking. With even
m, another root phase can be constructed

Zm : n1,2 → (−1)kn1,2, n3,4 → n3,4;

Z2 : n1,2 → n1,2, n3,4 → −n3,4,

k = 0, · · ·m− 1. (57)

Here n1 and n2 are both the real parts of the charge-m/2
bosons.
The final classification of SPT phases with Zm ⋊ Z2

symmetry is:

1d : Z(2,m), 2d : Zm × Z2 × Z(2,m), 3d : (Z(2,m))
2.(58)

L. SPT phases with Zm × Z2 symmetry

The case m = 2 has already been discussed. When
m > 2, one would naively expect these SPT phases can
be interpreted as U(1) × Z2 SPT phases after breaking
U(1) to its Zm subgroup, but again this is not entirely
correct. In 1d there is no SPT phase with U(1) × Z2

symmetry, simply because we cannot find a nontrivial
transformation of ~n under U(1) × Z2 that keeps Eq. 1
invariant. But when m is an even number, we can
construct one SPT phase with Zm × Z2 symmetry using
Eq. 1:

Zm : n1,2 → (−1)kn1,2, n3 → n3,

Z2 : n1 → n1, n2,3 → −n2,3,

k = 0, · · ·m− 1. (59)

The Zm and Z2 transformations on ~n commute with each
other.
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Again this construction applies to even integer m only.
The boundary states of this 1d SPT phase have the
following transformations:

Zm : U → (iσz)kU, Z2 : U → σxU ;

k = 0, · · ·m− 1. (60)

Thus the boundary states carry projective representa-
tions of Zm ×Z2, and the transformations of Zm and Z2

do not commute.
Similar situations occur in 3d. In 3d, we can construct

two root phases for even m, even though there is no SPT
phase with U(1)× Z2 symmetry in 3d :

(1) : Zm : n1,2 → (−1)kn1,2, na → na(a = 3, 4, 5);

Z2 : n1,→ n1, na → −na (a = 2, · · · 5);

(2) : Z2 : n1,2 → −n1,2, na → na(a = 3, 4, 5);

Zm : n1,→ n1, na → (−1)kna(a = 2, · · · 5);

k = 0, · · ·m− 1. (61)

The boundary of these 3d SPT phases can have 2d Z2

topological order. If the e and m anyons correspond to
vortices of (n3, n4) and (n1, n2) respectively, then the
boundary anyons of phase (1) transform as:

(1) : Zm : Ue → (iσz)kUe, Um → Um;

Z2 : Ue → σxUe, Um → iσyU∗
m. (62)

The transformation of boundary anyons of phase (2) can
be derived in the same way.
In 2d all the Zm×Z2 SPT phases can be deduced from

U(1)×Z2 SPT phases, by breaking U(1) down to its Zm

subgroup. Thus cases (1), (2) and (3) in Eq. 40 seem
to reduce to SPT phases with Zm × Z2 symmetry after
breaking U(1) down to Zm. However, case (3) in Eq. 40
becomes the trivial phase when m is odd. In case (3) of
U(1)×Z2 SPT phase (Eq. 40), the NLSM is constructed
with a charge-1 boson B ∼ (n1 + in2), and because case
(3) contributes classification Z2, Θ = 2πm is equivalent
to Θ = 2π for odd m. Also, the NLSM with Θ = 2πm is
equivalent to the NLSM with Θ = 2π constructed using
a charge-m boson B′ ∼ (n′

1 + in′
2) ∼ (n1 + in2)

m. Now
let us break the U(1) symmetry down to Zm. Because
B′ is invariant under Zm and Z2, we can turn on a linear
Zeeman term that polarizes Re[B′] ∼ n′

1, and destroy the
boundary states. Thus the NLSM constructed with the
charge-m boson B′ is trivial once we break U(1) down to
Zm. This implies that when m is odd, case (3) in Eq. 40
becomes a trivial phase once U(1) is broken down to Zm.
The final classification of SPT phases with Zm × Z2

symmetry is:

1d : Z(2,m), 2d : Zm × Z2 × Z(2,m), 3d : (Z(2,m))
2.(63)

M. SPT phases with Zm ⋊ Z
T

2 symmetry

Again, the situation depends on the parity of m. If m
is odd, then in 1d and 3d the only SPT phase is the SPT
phase with ZT

2 only. In 2d and 3d the U(1) ⋊ ZT
2 SPT

phases (except for the one with ZT
2 symmetry only) do

not survive when U(1) is broken down to Zm with odd
m. The reason is similar to what we discussed in the
previous two subsections.
When m is even, then in 1d besides the Haldane phase

with ZT
2 symmetry, we can construct another SPT phase:

Zm : n1,2 → (−1)kn1,2, n3 → n3,

k = 0, · · ·m− 1;

ZT
2 : ~n → −~n. (64)

Here n1 and n2 are both imaginary parts of charge-m/2
bosons. The boundary state is a Kramers doublet and
transforms as

Zm : U → (iσz)kU, ZT
2 : U → iσyU ;

k = 0, · · ·m− 1. (65)

In 2d, we can construct two different root phases:

(1) Zm : (n1 + in2) → (n1 + in2)e
i2πk/m,

n3, n4 → n3, n4;

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

(2) Zm : ~n → (−1)k~n;

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

k = 0, · · ·m− 1. (66)

Phase (1) is the same phase as the 2d U(1) ⋊ ZT
2 SPT

phase, after breaking U(1) to Zm; phase (2) is a new
phase, where n1 is the real part of a charge-m/2 boson,
while n2,3,4 are the imaginary parts of such charge-m/2
bosons.
Using similar methods, we can construct three root

phases in 3d for even m. Two of the phases can be
deduced from the 3d U(1)⋊ ZT

2 SPT phases. The third
root phase has the following transformation:

Zm : n1,2 → (−1)kn1,2, na → na(a = 3, 4, 5);

ZT
2 : ~n → −~n;

k = 0, · · ·m− 1. (67)

Both n1 and n2 are imaginary parts of charge-m/2
bosons.
Just like the 3d SPT phase with U(1)⋊ZT

2 symmetry,
the 2d boundary of the 3d Zm⋊ZT

2 SPT phase described
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by Eq. 67 can have a Z2 topological order with electric
and magnetic anyons. The electric and magnetic anyons
are both Kramers doublet, and only one of them has a
nontrivial transformation under Zm: Zm : U → (iσz)kU ,
(k = 0, · · ·m− 1).
The final classification of SPT phases with Zm ⋊ ZT

2

symmetry is:

1d : Z2 × Z(2,m), 2d : (Z(2,m))
2, 3d : Z2 × (Z(2,m))

2.(68)

N. SPT phases with Zm × Z
T

2 symmetry

In 1d and 3d, the SPT phases with Zm×ZT
2 symmetry

can all be deduced from U(1)×ZT
2 symmetry by breaking

U(1) down to Zm. Again, when m is odd, some of the
SPT phases become trivial, for the same reason as what
we discussed before.
In 2d there is no SPT phase with U(1)×ZT

2 symmetry,
but when m is even we can construct two root phases,
which cannot be deduced from U(1)× ZT

2 SPT phases:

(1) : Zm : ~n → (−1)k~n;

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

(2) : Zm : n1,2 → (−1)kn1,2, n3,4 → n3,4;

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

k = 0, · · ·m− 1. (69)

The final classification of SPT phases with Zm × ZT
2

symmetry is:

1d : Z2 × Z(2,m), 2d : (Z(2,m))
2, 3d : Z2 × (Z(2,m))

2.(70)

O. SPT phases with SO(3) symmetry

In 1d, the SO(3) symmetry leads to the Haldane phase,
which is described by Eq. 1 with Θ = 2π. In 3d, there is
no way to assign SO(3) symmetry to the five-component
vector ~n which makes the Θ−term invariant, thus there
is no 3d SPT phase with SO(3) symmetry.
In 2d, Ref. 19 has given a nice way of describing SPT

phase with SO(3) symmetry, which is a principal chiral
model defined with group elements SO(3). We will argue
without proof that the SO(3) principal chiral model in
Ref. 19 can be formally rewritten as the O(4) NLSM
Eq. 2, because we can represent every group element Gab

(3× 3 orthogonal matrix) as a SU(2) matrix Z:

Gab =
1

2
tr[Z†σaZσb], (71)

and the SU(2) matrix Z is equivalent to an O(4) vector
~n with unit length: Z = n4I2×2+ i~n ·~σ. We propose that

the minimal SO(3) SPT phase discussed in Ref. 19 can
be effectively described by Eq. 2 with Θ = 8π:

S2d =

∫

d2xdτ
1

g
(∂µ~n)

2 +
i8π

12π2
ǫabcdǫµνρn

a∂µn
b∂νn

c∂ρn
d

=

∫

d2xdτ
1

g
tr[∂µZ

†∂µZ] +
i8π

24π2
tr[(Z†dZ)3]. (72)

Physically, Eq. 72 with Θ = 8π gives SU(2) Hall conduc-
tivity σSU(2) = 8, or equivalently SO(3) Hall conductivity
σSO(3) = 2, which is the same as the principal chiral
model in Ref. 19. Mathematically, when field Z has
a instanton number

∫

d3x tr[(Z†dZ)3]/(24π2) = +1
in the 2+1d space-time, the SO(3) matrix field
Gab defined in Eq. 71 will have instanton number
∫

d3x tr[(G−1dG)3]/(24π2) = +4. This factor of 4 is
precisely why Θ = 8π in Eq. 72.
In order to represent Gab as Z, we need to introduce

a Z2 gauge field that couples to Z, because Z is a
“fractional” representation of Gab, and Gab is invariant
under gauge transformation Z → −Z. In the language
of lattice gauge theory, our statement in the previous
paragraph implies that one of the possible confined
phases of this Z2 gauge field is trivial in the bulk without
any extra symmetry breaking or topological degeneracy,
which awaits further analysis.
The final classification of SPT phases with SO(3)

symmetry is:

1d : Z2, 2d : Z, 3d : Z1. (73)

P. SPT phases with SO(3) × Z
T

2 symmetry

In 1d, there are two different SPT root phases with
SO(3)×ZT

2 symmetry, which correspond to the following
transformations of O(3) vector ~n:

(1) : SO(3) : na → Gabnb, ZT
2 : ~n → −~n;

(2) : SO(3) : ~n → ~n, ZT
2 : ~n → −~n. (74)

In 2d, the SPT phases with SO(3) × ZT
2 symmetry

were discussed in Ref. 23, and it is described by Eq. 2
with transformation

SO(3) : na → Gabnb(a, b = 1, 2, 3), n4 → n4;

ZT
2 : na → na(a = 1, 2, 3), n4 → −n4. (75)

In 3d, there are three root phases for SO(3)×ZT
2 SPT

phases, two of which have the following field theory:

(1) : SO(3) : ~n → ~n, ZT
2 : ~n → −~n;

(2) : SO(3) : na → Gabnb(a, b = 1, 2, 3), n4,5 → n4,5

ZT
2 : ~n → −~n; (76)

phase (1) is simply the SPT phase with ZT
2 symmetry

only. After we break the SO(3) symmetry down to its
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inplane O(2) subgroup, phase (2) will reduce to a SPT
phase with U(1) × ZT

2 symmetry discussed in Ref. 21,
which is a phase whose bulk vortex line is a 1d Haldane
phase with ZT

2 symmetry.

Besides the two phases discussed above, there should
be another root phase (3) that will reduce to the
U(1) × ZT

2 SPT phase whose boundary is a bosonic
quantum Hall state with Hall conductivity ±1, when
time-reversal symmetry is broken at the boundary21. In
the next two paragraphs we will argue without proof that
this third root phase can be described by Eq. 3 with the
following definition and transformation of O(5) vector
order parameter ~n:

(3) : Z = n4I2×2 +
3

∑

a=1

inaσ
a,

ZT
2 : Z → iσyZ, n5 → −n5;

Θ = 8π in bulk. (77)

Here Z is still the “fractional” representation of SO(3)
matrix Gab introduced in Eq. 71. If we break the ZT

2

symmetry at the boundary of phase (3), the boundary
becomes a 2d SO(3) SPT phase with SO(3) Hall conduc-
tivity ±1 (when SO(3) is broken to U(1), the boundary
becomes a bosonic integer quantum Hall state with Hall
conductivity ±1), thus it cannot be realized in a pure 2d
bosonic system without degeneracy.

In principle Z is still coupled to a Z2 gauge field. We
propose that the confined phase of this Z2 gauge field is
the desired SO(3)×ZT

2 SPT phase. In the confined phase
of a 3d Z2 gauge field, the vison loops of the Z2 gauge
field proliferate. Since the Z2 gauge field is coupled to
the fractional field Z, a vison loop of this Z2 gauge field
is bound with a vortex loop of SO(3) matrix field Gab

58,
which is defined based on homotopy group π1[SO(3)] =
Z2, thus the confined phase of the Z2 gauge field is a
phase where the SO(3) vortex loops proliferate. If we
reduce the SO(3) symmetry down to its inplane U(1)
symmetry, the vison loop reduces to the vortex loop of
the U(1) phase. When a bulk vortex (vison) loop ends
at the boundary, it becomes a 2d vortex (vison). This
2d vortex is a fermion, because according to the previous
paragraph, once the ZT

2 is broken at the boundary, the
boundary becomes a boson quantum Hall state with Hall
conductivity ±1. This is consistent with the results for
U(1) × ZT

2 SPT phase discussed in Ref. 21,24,28. Thus
the SPT phase described by Eq. 77 is a phase where
SO(3) vortex loops proliferate, and the SO(3) vortices at
the boundary are fermions.

The final classification of SPT phases with SO(3)×ZT
2

symmetry is:

1d : (Z2)
2, 2d : Z2, 3d : (Z2)

3. (78)

Q. SPT phases with Z2 × Z2 × Z2 symmetry

In 1d, we can construct three different root phases:

(1) : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n1 → n1, n2,3 → −n2,3;

ZC
2 : ~n → ~n;

(2) : ZB
2 : n1,2 → −n1,2, n3 → n3;

ZC
2 : n1 → n1, n2,3 → −n2,3;

ZA
2 : ~n → ~n;

(3) : ZC
2 : n1,2 → −n1,2, n3 → n3;

ZA
2 : n1 → n1, n2,3 → −n2,3;

ZB
2 : ~n → ~n. (79)

In 2d there are seven different root phases:

(1) : ZA
2 : ~n → −~n, ZB

2 , ZC
2 : ~n → ~n;

(2) : ZB
2 : ~n → −~n, ZC

2 , ZA
2 : ~n → ~n;

(3) : ZC
2 : ~n → −~n, ZA

2 , ZB
2 : ~n → ~n;

(4) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n1,2 → n1,2, n3,4 → −n3,4;

ZC
2 : ~n → ~n;

(5) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZC
2 : n1,2 → n1,2, n3,4 → −n3,4;

ZB
2 : ~n → ~n;

(6) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n1,3 → −n1,3, n2,4 → n2,4;

ZC
2 : n1,4 → −n1,4, n2,3 → n2,3;

(7) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n3,4 → −n3,4, n1,2 → n1,2;

ZC
2 : n2,3 → −n2,3, n1,4 → n1,4. (80)

In 3d there are six different root phases:

(1) : ZA
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZB
2 : n1 → n1, na → −na, (a = 2, · · · 5);
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ZC
2 : ~n → ~n;

(2) : ZB
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZA
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZC
2 : ~n → ~n;

(3) : ZB
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZC
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZA
2 : ~n → ~n;

(4) : ZC
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZB
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZA
2 : ~n → ~n;

(5) : ZA
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZC
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZB
2 : ~n → ~n;

(6) : ZC
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZA
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZB
2 : ~n → ~n;

(7) : ZA
2 : n1,2 → −n1,2, n3,4,5 → n3,4,5;

ZB
2 : n2,3 → −n2,3, n1,4,5 → n1,4,5;

ZC
2 : n4,5 → −n4,5, n1,2,3 → n1,2,3;

(8) : ZA
2 : n1,2 → −n1,2, n3,4,5 → n3,4,5;

ZC
2 : n2,3 → −n2,3, n1,4,5 → n1,4,5;

ZB
2 : n4,5 → −n4,5, n1,2,3 → n1,2,3. (81)

All the other SPT phases can be constructed with these
root phases above.
The final classification of SPT phases with Z2×Z2×Z2

symmetry is:

1d : (Z2)
3, 2d : (Z2)

7, 3d : (Z2)
8. (82)

V. SUMMARY AND COMMENTS

In this work we systematically classified and described
bosonic SPT phases with a large set of physically relevant
symmetries for all physical dimensions. We have demon-
strated that all the SPT phases discussed in this paper
can be described by three universal NLSMs Eq. 1, 2 and
3, and the classification of these SPT phases based on
NLSMs is completely identical to the group cohomology
classification1,2. However, we have not built the general
connection between these two classifications, and it is
likely that SPT phases with some other symmetry groups
(for example symmetry much larger than O(d + 2)) can
no longer be described by these three NLSMs any more.
In Ref. 22,23, SPT phases that involve a large symmetry
group PSU(N)= SU(N)/ZN were discussed, and in these
systems it was necessary to introduce NLSMs with a
larger target manifold. But it is likely that all the SPT
phases with arbitrary symmetry groups (continuous or
discontinuous) can be described by a NLSM with certain
continuous target manifold.

As we already mentioned, now it is clear that there is
a series of BSPT states beyond the group cohomology
classification, and a generalized field theory description
for such states will be given in Ref. 44. Our NLSM
can also be very conveniently generalized to the cases
that involve lattice symmetry such as inversion, as
was discussed in Ref. 59, as long as we require our
order parameter ~n transform nontrivially under lattice
symmetry. We leave a thorough study of SPT states
involving lattice symmetry to future studies.

Recently it was pointed out that after the 3d SPT state
is coupled to gauge field, the gauge defects, which in 3d
can be loop excitations, can have a novel loop braiding
statistics60. In a recent work we showed that this loop
statistics can also be computed using our NLSM field
theory discussed in this work61.
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