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perturbation limit 

A. A. Maznev* 

Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 02139, USA 

 

Scattering of normally incident longitudinal and transverse acoustic waves by a randomly rough 

surface of an elastically isotropic solid is analyzed within the small perturbation approach. In the 

limiting case of a large correlation length L compared with the acoustic wavelength, the 

specularity reduction is given by 4η2k2, where η is the RMS roughness and k is the acoustic 

wavevector, which is in agreement with the well-known Kirchhoff approximation result often 

referred to as Ziman’s equation [J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 

1960)]. In the opposite limiting case of a small correlation length, the specularity reduction is 

found to be proportional to η2k4L2, with the fourth power dependence on frequency as in 

Rayleigh scattering. Numerical calculations for a Gaussian autocorrelation function of surface 

roughness connect these limiting cases and reveal a maximum of diffuse scattering at an 

intermediate value of L. This maximum becomes increasingly pronounced for the incident 

longitudinal wave as the Poisson’s ratio of the medium approaches 1/2 as a result of increased 

scattering into transverse and Rayleigh surface waves. The results indicate that thermal transport 

models using Ziman’s formula are likely to overestimate the heat flux dissipation due to 

boundary scattering, whereas modeling interface roughness as atomic disorder is likely to 

underestimate scattering.   
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I. INTRODUCTION 

Boundary scattering of phonons has a profound effect on thermal transport in nanostructures [1]. 

In the simplest model of a perfectly diffuse surface proposed by Casimir [2], a phonon totally 

“forgets” where it came from and gets scattered with equal probability into any direction. 

However, any surface tends to become specular for long wavelengths or at grazing incidence 

angles. The importance of surface specularity was realized early on in studies of thermal 

conductivity of single crystal rods at low temperatures [3,4]. Subsequently, the specularity 

parameter, i.e., the probability for a phonon to undergo a specular reflection rather than get 

diffusely scattered by the surface, became ubiquitous in the analysis of boundary-limited thermal 

transport [5-7]. More recently, surface specularity at sub-THz frequencies has been studied 

directly with laser-generated coherent phonons [8,9]. Despite extensive literature on wave 

scattering from rough surfaces [10-12], a comprehensive analysis of phonon scattering by a 

randomly rough surface appears to be still lacking. Many researches [13-20] rely on an analytical 

equation, often ascribed to Ziman [5,20] albeit known earlier [21], that relates the specularity 

parameter p to the RMS roughness η, phonon wavevector k, and the angle of incidence θ, 

( )2 2 2exp 4 cosp kη θ= − .      (1) 

Equation (1) reduces the hard problem of wave scattering from a rough surface to a very simple 

result [22], which, conveniently, does not contain the correlation length of surface roughness L. 

Moreover, it is surmised [5,23] that Eq. (1) is valid for any L as far as specular reflection 

probability is concerned, with the correlation length only affecting the angular distribution of 

diffusely scattered phonons. However, in the theory of wave scattering from rough surfaces [8-

10] it is well established that Eq. (1) is only valid in the Kirchhoff approximation which assumes 

that the correlation length is much greater than the wavelength, kL>>1.   Indeed, in the opposite 

limiting case of deeply subwavelength scatterers, kL<<1, one would expect the probability of 

diffuse scattering to scale as k4 similarly to Rayleigh scattering, in contrast to the k2 dependence 

according to Eq. (1).  

In recent years, a number of advanced and sophisticated models of boundary scattering 

have been applied to the analysis of thermal transport in nanostructures [25-35]. Many of these 

studies involve detailed models of a rough surface or interface at the atomic level and use either 

lattice dynamics calculations based on Green’s functions analysis [25-29] or molecular dynamics 

simulations [32-35]. These advanced studies heavily rely on numerical computations; hence it is 
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difficult to generalize their results beyond specific systems considered in each particular paper.  

Despite recent advances in atomistic-level modeling, the question of the specularity of a rough 

surface as a function of the roughness height and correlation length still remains open, and 

researchers not possessing a sophisticated modeling apparatus still have no tools beyond Eq. (1) 

at their disposal.  

This report aims to address the issue of the surface specularity for a weakly rough 

surface, i.e. within the small perturbation approach. The latter assumes that the height of surface 

roughness is small compared to the wavelength, and that the slopes of the surface are small [12], 

but puts no restrictions on kL. In the perturbation approach, the reduction of specularity from 

unity is assumed to be small, which limits its practical applicability; however it allows one to 

make progress in the analytical analysis and helps in understanding the main trends, which 

oftentimes hold even beyond the domain of applicability of the small perturbation 

approximation.  

The perturbation approach has been extensively used to study scattering of scalar waves 

(such as sound waves in liquid) and electromagnetic waves [10-12,22] as well as to scattering of 

elastic waves from surfaces with a known profile [36] and attenuation of Rayleigh surface waves 

on a randomly rough surface [37]. However, very little has been done for the case of elastic wave 

reflection from a randomly rough surface [12]. A recent study [27] presented perturbation 

analysis of acoustic wave scattering at rough solid-solid interfaces, but numerical results 

presented therein hardly allow to draw conclusions beyond the specific cases considered in the 

study, and the role of the correlation length remained unexplored. Here, we consider the simplest 

case of a normal incidence of a longitudinal or transverse wave on a weakly rough surface of an 

elastically isotropic solid which allows us to elucidate general trends and obtain analytical results 

in limiting cases. We start with a detailed analysis for a longitudinal incident wave, which is 

compared to the case of a longitudinal wave in liquid, and then extend the analysis to incorporate 

transverse waves and provide a discussion of oblique incidence.   

 

II. FORMULATION OF THE PROBLEM 

The geometry of the problem is shown in Fig. 1. In the case of a smooth surface the 

elastic medium occupies the half-space z>0. A normally incident longitudinal wave reflecting 

from the flat surface z=0 results in a displacement field given by   
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( )(0) 1 2
l li t ik z i t ik z

z
l

u e e
c

ω ω

ω ρ
+ −= + ,    (2) 

where ω is the angular frequency, cl is the longitudinal speed of sound, and /l lk cω= is the 

wavevector. The first term in parentheses corresponds to the incident and the second term to the 

reflected wave. The amplitude factor here is chosen to make the incident acoustic power per unit 

surface area equal to unity. 

 

 

FIG. 1. (Color online) Geometry of the problem. 

 

Let us now consider a rough surface described by a surface profile ζ(x,y) = ζ(r) 

describing a small deviation from z=0. The perturbation approximation [12] requires that 

1lk ζ <<  and  1ζ∇ << . To simplify subsequent calculations, we assume that roughness occupies 

a unit area, the surface being flat outside this area. The Fourier transform (FT) of ζ(r) is given by 

( ) ( ) ie dζ ζ= ∫ krk r r% .      (3) 

The RMS roughness η is given by  

2 2
2

1( ) *( ) ( )
4

dη ζ ζ ζ
π

= = ∫r k k k% % ,    (4) 

where * stands for complex conjugate. We introduce a normalized autocorrelation function 

1 12
1( ) ( ) ( )C ζ ζ

η
= −r r r r ,     (5) 

whose FT is given by   

2
1( ) *( ) ( )C ζ ζ

η
=k k k% %% .     (6) 

Normally incident 
longitudinal wave

z=0

( )x, yζ
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A “well-behaved” autocorrelation function ( )C r  is characterized by a correlation length L such 

that ( )C r is significantly nonzero at r L≤ and vanishes at r L . The spectral autocorrelation 

function ( )C k% is significantly nonzero at 1 /q L≤ and vanishes at 1 /q L . In numerical 

examples below we will be using a Gaussian autocorrelation function, 
2 2 2 2/ 2 /4( ) , ( )r L k LC e C L eπ− −= =r k% .    (7) 

The surface roughness results in diffusely scattered waves (i.e. waves, propagating in other 

directions than surface normal) as well as in a reduction in the amplitude (and possibly, a phase 

shift) of the specularly reflected wave. Our goal is finding the specularity parameter, equal to the 

power of the specularly reflected wave per unit area (considering that the power of the incident 

wave is unity). However, finding the diffusely scattered waves in the first-order perturbation 

approximation is easier than finding a correction to the specularly reflected field which 

corresponds to the 2nd order in the perturbation [10]. Therefore we adopt the following approach: 

we will find the total power of diffusely scattered waves f, which has been referred to as the 

roughness parameter [4], i.e. the probability that an incident phonon is scattered diffusely. The 

specularity parameter is then found as 1p f= − .  

 

III. PERTURBATION ANALYSIS FOR LONGITUDINAL WAVE 

We represent the displacement field as the sum of the zeroth-order solution given by Eq. 

(2) and the scattered field whose amplitude is proportional to the amplitude of the surface 

roughness, (0) (1)= +u u u . The boundary conditions require that normal and tangential stress 

components at the free surface z=ζ(r) vanish. We follow Gilbert and Knopoff [36] by expanding 

stresses in a Taylor series at z=0 and retaining only terms of the first order in the perturbation, 

which leads to the following boundary conditions for stress components at z=0, 
(0)

(1)

(0)
(1) (0) (0)

(0)
(1) (0) (0)

,

,

.

zz
zz

xz
xz xx xy

yz
yz yy xy

z

z x y

z y x

σσ ζ

σ ζ ζσ ζ σ σ

σ ζ ζσ ζ σ σ

∂= −
∂

∂ ∂ ∂= − − −
∂ ∂ ∂

∂ ∂ ∂= − − −
∂ ∂ ∂

     (8) 
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For the zero-order solution given by Eq. (2), shear stresses (0)
xzσ  and (0)

xyσ are identically zero, and 

all stress components (0)
ijσ are zero at z=0, which eliminates the right-hand sides in two bottom 

lines of Eq. (8), leading to the following boundary condition at z=0, 
(0)

(1)

(1) (1)

,

0 .

zz
zz

xz yz

z
σσ ζ

σ σ

∂= −
∂

= =
     (9) 

From Eq. (2),  we find  

( )(0) 2 l li t ik z i t ik z
zz li c e eω ωσ ρ + −= − ,    (10) 

which leads to 
(1) 3/2

0| 2 ( ) i t
zz z l lk c e ωσ ρ ζ= = r .     (11) 

Thus the problem of finding the scattered field is reduced to finding waves produced by a 

harmonic vertical force acting on the flat surface. In order to find the total power of scattered 

waves we only need to find the displacement field at z=0. The spatial Fourier transform of the 

surface displacement can be expressed in terms of the spectral surface Green’s function as 

follows, 
(1) 3/2

0 33| 2 ( )G ( , ) i t
z z l lu k c e ωρ ζ ω= = − k k% %%  ,    (12) 

where 33G ( , )ωk% is the Fourier transform of the surface Green’s function 33G ( , t)r% expressing the 

vertical surface displacement response to an instantaneous vertical point force acting on the 

surface. For an elastically isotropic half-space, spectral surface Green’s functions G ( , )ij ωk%  have 

been obtained in closed form [37,39]. 

The total power f radiated into scattered waves is given by the product of the effective 

force acting on the surface and the surface velocity ( )(1) (1) /zz zu tσ− ∂ ∂ , taken at z=0,  averaged over 

t and integrated over r,  

1 23 2
33 1 1 2 1 24

1 Re G ( , ) ( ) *( )
4

i i
l lf k c i e e d d dρ ω ζ ζ

π
−= ∫ ∫ ∫ k r k rk k k k k r% %% .   (13) 

Integrating over r yields a delta-function δ(k1-k2), which leads to the following result 

2 3 2
332

1 ( ) ImG ( , )l lf k c C dη ρ ω
π

= ∫ k k k% % .    (14) 

Here we have assumed that the autocorrelation function possesses an inversion symmetry (a 
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natural assumption for random roughness), therefore its Fourier-transform is a real function.   

Thus the specularity parameter 1p f= − can be found from the spectral autocorrelation function

( )C k% . Note that Eq. (14) is equally applicable to random surfaces and surfaces of known shape. 

For example, a single Gaussian bump will yield the same scattered power as a randomly rough 

surface with the same Gaussian autocorrelation function.  

For an isotropic half-space, the spectral surface Green’s function is given by [37,39] 

( )1/22 2 2

33 2 2

1 (k )
( )

t l
R

t t

k k k i FG k
c R k c

π δ
ρ ρ

−
= + −% ,     (15) 

where  

( ) ( ) ( )1/2 1/2 22 2 2 2 2 2 2( ) 4 2t l tR k k k k k k k k= − − − − ,    (16) 

/ , / ,l l t tk c k cω ω= = and /R Rk cω= are the longitudinal, transverse and Rayleigh wave 

vectors, respectively, with the Rayleigh surface velocity Rc  found from the Rayleigh equation 

( ) 0RR k = ,  and F is a dimensionless parameter given by 

( )
12 2 21/22 4

2 2

8(2 )1 4
2 (2 )

F β α βα β
β

−
⎡ ⎤− −= − + −⎢ ⎥−⎣ ⎦

,    (17) 

where / , /R l R tc c c cα β= = . The imaginary branches of square roots in Eqs. (15) and (16) are 

defined by  

( ) ( )1/2 1/22 2 2 2
, , ,,l t l t l tk k i k k if k k− ≡ − − > .    (18) 

The delta-function contribution at the pole k=kR has been added to ensure the causality of the 

Green’s function [40].  Plugging Eq. (15) into Eq. (14) and assuming an isotropic autocorrelation 

function, we obtain the final result, 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1/22 2
2 4

1/2 1/2 23 2 2 2 2 2
0

1/23 2 2 21

44 2 2 2 2

2 ( )
4 1 2 1

4 1
( ) ( ) .

16 1 2 1

s

l t

t R
s

x s x
f k C xk dx

s x x s x x

x x x s
C xk dx FC k

x x x s x

η
π

π
β

⎡ −
⎢=
⎢ − − + −⎣

⎤− −
⎥+ +
⎥− − + − ⎦

∫

∫

%

% %

  (19) 
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where /t ls c c= . The first two terms in brackets represent the power scattered into bulk waves 

(with the second term involving transverse waves only), whereas the third term yields the 

contribution of Rayleigh surface waves. 

 

A. Limiting cases 

Let us consider limiting cases of large and small correlation lengths. To analyze the case of a 

large correlation length compared to the acoustic wavelength, klL >> 1, it is convenient to return 

to Eq. (14). Since ( )C k% is only nonzero at very small wavevectors compared to kl,t , we can 

replace 33G ( , )ωk%  by its value at k=0,  

33G ( 0, )
l

i
c

ω
ρ ω

= =k%  ,      (20) 

which leads to the following result, 

2 2
2

1 ( )lf k C dη
π∞ = ∫ k k% ,      (21) 

with the subscript “∞” indicating the infinite correlation length limit. According to the definition 

of the autocorrelation function, 2( ) 4C d π=∫ k k% , hence we obtain 

2 24 lf kη∞ = ,       (22) 

yielding a specularity parameter 2 21 4 lp kη= − , which perfectly agrees with Eq. (1). Thus in the 

limit of a large correlation length the perturbation approach agrees with the Kirchhoff 

approximation result, as has already been demonstrated for scalar waves and electromagnetic 

waves [12,22,41]. 

 In the opposite limiting case of a small correlation length,   klL, ktL << 1, we can replace 

( )C k%  by ( 0)C =k% , with the following result, 

[ ]2 4
0 3

2 ( 0)l bulk Rf k C k I I
s

η
π

= = +% ,     (23) 

where Ibulk and IR are dimensionless constants on the order unity determined by the velocities 

ratio s (see Fig. 2), 
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( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1/2 1/22 2 3 2 2 21

1/2 1/2 2 42 2 2 2 2 4 2 2 2 2
0

4 1
,

4 1 2 1 16 1 2 1

.

s

bulk
s

R

x s x x x x s
I dx dx

x x s x x x x x s x

I Fπ
β

− − −
= +

− − + − − − + −

=

∫ ∫
  (24) 

In the case of a Gaussian autocorrelation given by Eq. (7) we obtain 

( )2 4 2
0 3

2
l bulk Rf k L I I

s
η= + .          (25) 

Since for a well-behaved autocorrelation function ( 0)C k =%  is on the order of L2, this result is 

quite general even though the numerical factor may vary.  As expected, for a small correlation 

length we come to the Rayleigh scattering limit with the scattering power scaling as k4, as 

opposed to the k2 dependence found in the limit of a large correlation length. Compared to the 

Kirchhoff approximation limit given by Eq. (22), there is an extra factor of 2 2
lk L . Thus in the 

small klL limit the diffuse scattering probability is much smaller than the Kirchhoff 

approximation predicts. The relative values of Ibulk and IR indicate relative contributions of bulk 

and Rayleigh waves to the total scattered power, and we can see from Fig. 2 that the Rayleigh 

wave contribution is greater than that of bulk waves. We note that in the limit of a zero 

correlation length the autrocorrelation function turns into the Dirac delta-function, and the 

spectrum of the scattered waves is equivalent to the well-studied case of the radiation by a 

vertical point force [42]. In particular, it is known [42,43] that for 1 / 3s = , the fraction of 

energy radiated into Rayleigh waves amounts to about 67.4%, which is in agreement with our 

results.   

 
FIG. 2. (Color online) Dependence of dimensionless parameters Ibulk and IR on the transverse-to-

longitudinal velocities ratio s.  
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B. Numerical results for the general case 

 Let us now consider the general case which requires a numerical evaluation of 

integrals in Eq. (19). Figure 3 shows the behavior of the diffuse scattering probability f 

normalized on the infinite correlation length limit f∞ for the Gaussian autocorrelation function. 

One might expect the numerical calculations to smoothly connect the limiting cases, with f a 

monotonically increasing function of klL. However, the results reveal a maximum at an 

intermediate value of klL, which becomes increasingly pronounced at small values of s (for an 

elastically isotropic medium s can vary between zero and 1 / 2  which corresponds to Poisson’s 

ratio range from 0.5 to 0). This maximum results from scattering into transverse and Rayleigh 

waves, which is absent in the limit of large klL (i.e., in the Kirchhoff approximation). Indeed, if s 

is small, the wavelengths of transverse and Rayleigh waves are much smaller than the 

longitudinal wavelength; consequently, even if the roughness height is very small compared to 

the wavelength of the incident longitudinal wave, it may be not so small compared to the 

wavelengths of the scattered transverse and Rayleigh waves.   

 

FIG. 3. (Color online) Normalized diffuse scattering probability vs. the product of the acoustic 

wavevector and the correlation length for different values of the velocities ratio s. Contributions 

of scattering into bulk and Rayleigh surface waves are shown as indicated in the upper left panel.  

 

Even though for typical “hard” solids the velocities ratio s normally exceeds 0.3, there are 

many examples of soft materials with very low s (such as rubber), for which the maximum of f 

will occur at small values of klL and will greatly exceed the value predicted by Ziman’s formula. 
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In particular, soft soils may have a very low transverse velocity close to the surface [44], hence 

the issue of increased scattering at small klL may be relevant for seismic surveying.  

 

C. Comparison with the case of a liquid medium  

It is instructive to consider, for comparison, the case of a liquid medium in which 

transverse and Rayleigh waves are absent [45]. The surface Green’s function for a liquid half-

space is easily obtained from Eq. (15),  

( )1/22 2
33 2

1
lG k k

ρω
= −% ,      (26) 

which yields a known result [46] for a Gaussian autocorrelation function,   

( )
2 21

1/22 4 2 4

0

1
lk L t

lf k L e t dtη
−

= −∫ .     (27) 

In the limiting case klL >> 1 we get the same result as for a solid medium given by Eq. (22),  

whereas in the limit klL << 1 we get 2 4 2
0 (2 / 3) lf k Lη= . Numerical calculations for the general 

case are shown in Fig. 4.  In contrast to the case of a solid medium, the maximum of diffuse 

scattering in the liquid case occurs in the Kirchhoff approximation limit klL→∞. The comparison 

drives home the point that it is only in the Kirchhoff approximation that the specularity, for a 

given roughness and acoustic wavelength, is the same for waves of any nature.  In the opposite 

limiting case of a small correlation length, the scaling of f as 2 4 2k Lη is also universal, but the 

numerical factor depends on the physical system. In fact, for a solid with 0.5s =  the numerical 

factor is almost 20 times larger than for a liquid and will be larger yet for a smaller s.  

 

FIG. 4. (Color online) Normalized diffuse scattering probability for a solid with s=0.5 vs. a 

liquid as a function of klL.   
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IV. TRANSVERSE INCIDENT WAVE 

The analysis for a normally incident transverse wave parallels the analysis for a 

longitudinal wave in Sec. III. We consider an incident transverse wave polarized along x, in 

which case the only non-zero stress component produced by the flat-surface solution is (0)
xzσ . 

Following the same sequence of steps as in Sec. III, we arrive to the following result for the 

scattered power,  

2 3 2
112

1 ( ) ImG ( , )t tf k c C dη ρ ω
π

= ∫ k k k% % .    (28) 

which parallels Eq.(14), with the replacement of Green’s function G33, describing the surface 

displacement response to a vertical force, by G11,which describes the horizontal displacement 

response to a horizontal force.  The final result that parallels Eq. (19) is presented in Appendix.   

 In the limiting case of a large correlation length ktL >> 1, we get the familiar Kirchhoff 

approximation result 
2 24 tf kη∞ = ,       (29) 

whereas in the opposite limiting case of a small correlation length ktL << 1, we obtain a result 

that parallels Eq. (23) but has a different numerical factor,   

[ ]2 4
0

1 ( 0)t bulk Rf k C k J Jη
π

= = +%  .    (30) 

 

 
FIG. 5. (Color online) Dependence of dimensionless parameters Jbulk and JR from Eq. (30) on the 

transverse-to-longitudinal velocities ratio s.  
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  The expressions for dimensionless factors Jbulk and JR are presented in Appendix and their 

dependence on the velocities ratio s is shown in Fig. 5. This time the relative contribution of 

scattering into Rayleigh waves small.  The overall value of the numerical factor in Eq. (30) is 

also smaller than that in Eq. (23) for the longitudinal wave (for example, at 0.5s =  the 

difference amounts to almost an order of magnitude). This may appear to indicate that a surface 

with a small correlation length is more specular for transverse than for longitudinal waves. It 

should be noted, however, that this comparison is made at an equal wavelength. A comparison 

made at an equal frequency, on the other hand, yields a larger scattering power for the transverse 

incident wave since its wavelength is smaller and we have to account for a factor (kt/kl)4, equal to 

16 in the example with s=0.5.    

 

 
FIG. 6. (Color online) Normalized diffuse scattering probability for the normally incident 

transverse wave vs. the product of the acoustic wavevector and the correlation length for 

different values of the velocities ratio s. Contributions of scattering into bulk and Rayleigh 

surface waves are shown as indicated in the upper left panel.  
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wavelengths than the incident longitudinal wave. This phenomenon is unique to the case of the 

incident longitudinal wave and does not arise in the case of the incident transverse wave whose 

wavelength is always smaller than that of the longitudinal wave and just a bit larger than that of 

the Rayleigh wave at the same frequency.  

 

 

V. OBLIQUE INCIDENCE 

It would be straightforward to extend the method described in Sec. III onto the more 

general case of an obliquely incident longitudinal or transverse wave. However, the calculations 

become much more tedious because the flat surface solution will generally contain both 

transverse and longitudinal reflected waves and involve multiple non-zero components of the 

stress tensor. Even for the simplest case of an horizontally polarized transverse incident wave, 

where specular reflection is not accompanied by mode conversion, the equation analogous to Eq. 

(28) will contain multiple terms involving products of real and imaginary components of 11G% , 

22G% , 12G%  and a Fourier-component of the autocorrelation function 0( )C −k k% , where 0k is the 

in-plane wavevector component of the incident wave. The oblique incidence breaks the 

symmetry that made it possible to reduce the final result to one-dimensional integrals; in the 

general case, two-dimensional numerical integration will be necessary.      

In order to avoid tedious mathematics, we will limit the discussion of the oblique 

incidence to the case of a liquid medium. Even though we have seen that beyond the Kirchhoff 

approximation there are significant differences between the cases of liquid and solid media, this 

discussion will still be instructive in terms of looking into the effect of the oblique incidence on 

the general trends discussed in previous sections. We consider an acoustic wave incident on a 

rough surface of a liquid half space at an angle θ to the normal and follow the sequence of steps 

described in Sec. III, which is made easy by the absence of shear stresses in liquid. The result 

obtained for the scattered power  

2 3 2
332

1 ˆcos ( sin ) ImG ( , )l l lf k c C k dη ρ θ θ ω
π

= −∫ k j k k% % ,   (31) 
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where ĵ  is the unit vector along y,  differs from Eq. (14) only by a factor of cosθ and by a shift in 

the argument of the spectral autocorrelation function by the in-plane component of the incident 

wavevector. Using Green’s function from Eq. (26) we get a known result [41], 

( )1/22 2 2
2

1 ˆcos ( sin )
l

l l l
k k

f k C k k k dη θ θ
π <

= − −∫ k j k% ,   (32) 

The limiting case of a large correlation length is well documented in the literature [10,41]. In this 

case, C% is a narrow function compared to the square root in the integrand.  If the latter is 

changing slowly within ~1/L from 0
ˆ sinlk θ=k j , then we can then replace k in the square root by 

sinlk θ , which leads to a result that 

2 2 24 coslf kη θ∞ = ,      (33) 

which, again, perfectly agrees with Ziman’s equation. The condition for the square root to be a 

slowly varying function within ~1/L from 0k is 1 / (1 sin )lk L θ>> − , which becomes increasingly 

stringent for large incidence angles and necessitates a special treatment of grazing incidence [10, 

41]. In the opposite limiting case of a small correlation length, 1lk L << , the autocorrelation 

function in the integrand of Eq. (32) can be replaced by its value at k=0, yielding  

2 4
0

2 cos ( 0)
3 lf k C kθη
π

= =% .     (34) 

 This simple result does not appear to have been reported in the literature even though it would 

be straightforward to obtain it within the framework developed in Refs. [10,11,41]. For the 

Gaussian correlation function we get 

 2 4 2
0

2 cos
3 lf k Lη θ= .      (35) 

Thus the observation that in the limit of a small correlation length the scattered power scales as 
2 4 2

lk Lη remains valid for oblique incidence. However, the presence of cosθ will make scattering 

vanish at grazing angles, consistent with the intuitive notion that surfaces tend to become 

specular for grazing incidence.   

 

VI. DISCUSSION 

As we have seen, Ziman’s formula is only accurate in the Kirchhoff approximation limit 

of a large kL. However, in this limit there is a caveat pertaining to using Eq. (1) in thermal 
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transport models [5]: if the correlation length is large, the diffusely scattered field will form a 

narrow forward lobe around the specular direction; as a result, calculations based on the 

assumption that scattered field is isotropic will overestimate dissipation of the heat flux due to 

the boundary scattering. On the other hand, modeling interfacial roughness as atomic disorder 

[26,27], which implies a small correlation length, will typically underestimate boundary 

scattering. A case in point is the attenuation of sub-THz coherent phonons is GaAs-AlAs 

superlattices [47]: experimentally measured extrinsic scattering rates (i.e., scattering by interface 

roughness and defects) were orders of magnitude greater than the atomic disorder model 

predicted. Incidentally, the experimental scattering rate scaled with frequency as 2.7ω , indicating 

an intermediate case between the limits of 2ω and 4ω scaling. It should be noted that scattering of 

sub-THz phonons by interface roughness in a superlattice is one case where the small 

perturbation approach would be well justified as losses in a single scattering event are typically 

small: for example, one can see ~0.3 THz coherent phonon wavepackets cross over 400 

interfaces without much loss at 79 K [47]. An rigorous analysis of phonon scattering by 

interfacial roughness in a superlattice will require a separate treatment as the problem is different 

from scattering by a free surface of a bulk material; however, general trends are expected to be 

similar to the ones discussed here.  

Another point that has been made clear by our analysis is that one should be very careful 

with using models for scalar waves (essentially acoustic waves in liquid) [30,48] or borrowing 

results from optics [49] when analyzing boundary scattering of phonons. It is only in the 

Kirchhoff approximation that the specularity is the same for waves of any nature. Beyond the 

Kirchhoff approximation the specularity depends on whether we are dealing with a longitudinal 

or transverse wave, or a scalar wave in liquid; in particular, we have seen that at small 

correlation lengths the scalar wave model yields a diffuse scattering probability which is by more 

than an order of magnitude smaller than for a longitudinal wave in a solid.  

A much harder question is what happens beyond the small perturbation approximation. 

While models going beyond the Born approximation have been developed in the context of 

thermal conductivity of nanowires [25,30], with analysis conducted in terms of eigenmodes of 

nanowire waveguides, the issue of the specularity of a rough surface for an incident plane wave 

beyond the Born approximation remains open.  An intriguing issue is the so-called “diffuse 

mismatch” model of the thermal boundary resistance [50] based on the conjecture that a phonon 
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arriving to a very rough interface forgets which side it came from and gets scattered with 

probabilities proportional to the densities of states in the materials to either side of the boundary. 

The diffuse mismatch model is obviously incompatible with the Kirchhoff approximation in 

which the surface is locally flat and transmission/reflection are determined by the impedance 

mismatch. Furthermore, this model leads to a seemingly paradoxical result that an acoustic wave 

incident on a rough solid/air interface from inside the solid will be mostly scattered into the air, 

with a very small fraction of the incident power scattered back into the solid. Can this behavior 

be reproduced by any physically realistic model of interface roughness? The author hopes that 

this report will stimulate interest to this and other interesting problems of wave scattering from 

rough surfaces arising in the thermal transport context. 

  

VII. SUMMARY 

We have analyzed scattering of normally incident longitudinal and transverse waves by a 

randomly rough surface of an elastically isotropic solid within the small perturbation approach. 

For an isotropic autocorrelation function of the surface roughness, the specularity reduction (i.e. 

the diffuse scattering probability) has been expressed in the form of straightforward one-

dimensional integrals. In the limiting case of a large correlation length compared with the 

acoustic wavelength, the specularity reduction is equal to 4η2k2, in agreement with the known 

Kirchhoff approximation result given by Ziman’s formula, whereas in the opposite limiting case 

of a small correlation length, the specularity reduction has been found to be proportional to 

η2k4L2, with the fourth power dependence on frequency as in Rayleigh scattering. It has been 

found that beyond the Kirchhoff approximation the specularity depends on whether the medium 

is solid or liquid, and in the former case on whether the incident wave is longitudinal or 

transverse. In particular, scattering into Rayleigh surface waves has been found to play a large 

role in the specularity reduction for the longitudinal incident wave. In this case, scattering into 

transverse and Rayleigh waves results in a distinct maximum of the diffuse scattering probability 

at an intermediate value of L, which becomes increasingly pronounced as the Poisson’s ratio of 

the medium approaches 1/2. It is hoped that the present study will help researchers working in 

the fields of solid state acoustics, phonon physics, and thermal transport in understanding issues 

related to specularity of rough surfaces. In particular, the results have indicated that thermal 

transport models based on Ziman’s formula are likely to overestimate the heat flux dissipation 
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due to boundary scattering, whereas modeling interface roughness as atomic disorder is likely to 

underestimate scattering. 
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APPENDIX 

This Appendix presents detailed results for the transverse incident wave. For an isotropic 

half-space, the spectral surface Green’s function 11G% is given by [37,39] 

 

( )
( )

1/ 22 2 2 2 2 2

11 1/ 22 2 2 22 2 2

1 ( )t x t y x
R

t tt

k k k k k ki HG k k
c k R c kk k k

π δ
ρ ρ

⎡ ⎤−
⎢ ⎥= + + −
⎢ ⎥−⎣ ⎦

%
,  (A1) 

where 
 

( )
12 2 21/22 4

2 2

8(2 )1 4
2 (2 )

H β α ββ β
β

−
⎡ ⎤− −= − + −⎢ ⎥−⎣ ⎦

.     (A2) 

Plugging this Green’s function into Eq. (28) and assuming that the autocorrelation function is 

isotropic, we get the main result,  

 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( )

1/2 1/2 22 2 21
2 4

1/2 1/2 2 42 2 2 2 2 4 2 2 2 2
0

1

1/22
0

1 ( ) 1 2 1 ( )1

4 1 2 1 16 1 2 1

( ) ( ) .
1

s
t t

t
s

t
R

x x C xk x x x C xk
f k dx dx

x x s x x x x x s x

xC xk dx HC k
x

η
π

π
β

⎡ − − −
⎢= + +
⎢ − − + − − − + −⎣

⎤
⎥+ +
⎥− ⎦

∫ ∫

∫

% %

%
%

 

    (A3) 
 
 

 By setting the spectral autocorrelation function C%  in the above equation to its value at the zero 

argument, we find expressions for dimensionless parameters Jbulk and JR in Eq. (30), 
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( )
( ) ( ) ( )

( ) ( )
( )( ) ( )

1/ 2 1/ 2 22 2 21

1/ 2 1/ 2 2 42 2 2 2 2 4 2 2 2 2
0

1 1 2 1
1

4 1 2 1 16 1 2 1

s

bulk
s

x x x x x
J dx dx

x x s x x x x x s x

− − −
= + +

− − + − − − + −
∫ ∫ ,  

    (A4) 

R
HJ π
β

= .       
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