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Abstract

We consider near-field heat transfer with non-zero chemical potential for photons, as can occur

between two semiconductor bodies, held at different temperatures with at least one of the bodies

under external bias. We show that the dependence of radiative heat flux on chemical potential

enables electronic control of both the direction and magnitude of near-field heat transfer between

the two bodies. Moreover such a configuration can operate as a solid-state cooling device whose

efficiency can approach the Carnot limit in the ideal case. Significant cooling can also be achieved

in the presence of inherent non-idealities including Auger recombination and parasitic phonon-

polariton heat transfer.
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I. INTRODUCTION

Near-field electromagnetic heat transfer through vacuum has been of fundamental im-

portance because the power density of the energy flow can be enhanced beyond Planck’s

law of blackbody radiation.1–3 In recent years, such enhancement has been demonstrated

experimentally.4–8 Theoretical explorations of increasingly complex geometries are widely

discussed.9–18 Moreover, there has been growing interest in active control of near-field heat

transfer.19–29

In all previous works on near-field heat transfer between two bodies, one assumes a zero

chemical potential for the objects involved. However, photons can have a chemical potential

when they are in quasi-equilibrium with a semiconductor under external bias.30 Yet the

consequences of such non-zero chemical potential for near-field heat transfer have not been

explored previously. In this paper, based on the fluctuational electrodynamics formalism,

we provide a direct calculation of near-field heat transfer between two bodies, each taken to

be in quasi-equilibrium, in the presence of a non-zero chemical potential. We show that the

use of such chemical potential enables electronic control of near-field heat transfer.

Furthermore, when considering heat transfer between cold and hot objects, applying a

chemical potential on the cold object can result in a net heat flow from the cold to the

hot object, and hence the resulting structure can be used for cooling purposes. Therefore,

near-field heat transfer in the presence of non-zero chemical potential provides an important,

previously unexplored mechanism for solid-state cooling. We show that in the ideal limit,

such a cooling device can have an efficiency that approaches the Carnot efficiency. We also

consider the effect of intrinsic non-idealities, including non-radiative Auger recombination

and parasitic heat transfer through surface phonon-polaritons. We show that the structure

can still provide cooling with reasonable efficiency, in spite of these non-idealities, with a

heterostructure design consisting of two different semiconductors.

The paper is organized as follows. In section II, we present the configuration and the

formalism. In section III, we discuss the ideal case and show that the numerical results

can be well explained by a simple analytical model. In section IV, we consider the effect of

non-idealities. We summarize and conclude in Section V.
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II. THE CONFIGURATION AND FORMALISM

II.1. The Configuration

Throughout the paper, we consider the configuration in Fig. 1, where two intrinsic semi-

conductors, labelled bodies 1 and 2, with thickness t1 and t2 respectively, are brought into

close proximity with a vacuum gap separation d. The temperatures of the two bodies are

labelled T1 and T2 (T1 < T2), respectively. To control the chemical potential of each semicon-

ductor, we assume that the back side of each intrinsic semiconductor region forms a junction

with small heavily doped p+ or n+ region, which then connects to external contacts. For

each body, assuming perfect contacts, the quasi-Fermi level of the electrons in the intrinsic

region is set by the potential at the n-type contact while that of the holes is set by the

p-type contact. Taking the body to be optically thick for photons with frequencies above

the band gap energy, the resulting non-equilibrium state of the electron-hole system gives

rise to an outgoing photon field from interband transitions with a chemical potential qV .30–32

For simplicity, we apply zero voltage to body 2, i.e. we short body 2 for the calculations in

this paper.

Intuitively, when compared to the case without applied voltage, one should expect in-

creased photon emission from body 1 as one applies a forward-bias voltage on it. Thus, the

near-field heat transfer between the two bodies can be influenced by the applied voltage.

Moreover, in the case where body 1 is colder than body 2, such an increased photon emission

may nevertheless result in a net heat flow from body 1 to body 2. Hence by using electrical

work as delivered by an applied voltage, one could pump heat from a cold body to a hot

body. The objective of this paper is to study such electronically controlled heat transfer in

detail, and to evaluate its performance as a solid-state cooling device.

II.2. Dielectric Function and Current Fluctuations of Semiconductors Under Ex-

ternal Bias

We study the system shown in Fig. 1 using the the formalism of fluctuational electrodynamics.33

In this formalism, one describes the heat transfer between objects by computing the electro-

magnetic flux resulting from fluctuating current sources inside each object. The magnitude

of the current fluctuation is related to the imaginary part of the dielectric function of
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FIG. 1. Schematic of the configuration. The system consists of two bodies, i.e. body 1 and body

2, separated by a small distance d which is much smaller than their extent in the dimensions

transverse to the gap. The two-body structure is enclosed within perfect mirrors at the extreme

left and right boundaries. Depictions of the relevant bands and the corresponding quasi-Fermi

levels of the two semiconductors are also included in the figure. With an external forward bias V

applied to body 1, the quasi-Fermi levels for its electrons and holes are separated by ∆EF = qV .

Body 2 is electrically shorted so it has ∆EF = 0. Throughout the paper, we choose T1 = 290 K,

T2 = 300 K.

the object. Therefore, we start with a brief discussion of the dielectric function and the

corresponding current fluctuation of a semiconductor under external bias. Since we will pri-

marily be considering a temperature range near the room temperature, we will consider the

narrow-band gap semiconductors34,35 such as InAs and InSb whose band gaps are 0.354 eV

and 0.17 eV at room temperature, respectively.

The dielectric function of such III-V semiconductors has contributions from both inter-

band electronic transitions at frequencies above the band gap and from phonon-polariton

excitations at frequencies well below the band gap. We denote the contributions to the

dielectric function from the electronic transitions and the phonon-polariton excitations as

ǫe(ω, V ) and ǫp(ω), respectively. The overall dielectric function has contributions from these
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two processes

ǫ(ω, V ) =











ǫe(ω, V ) (ω ≥ ωc)

ǫp(ω) (ω < ωc)
, (1)

where ωc is the cut-off frequency between interband electronic transitions and phonon-

polariton excitations. In our calculations, we choose ωc to be somewhat below the electronic

band gap frequency where the imaginary part of the dielectric function is near-zero.

For narrow band gap semiconductors, a forward bias will easily shift the quasi-Fermi levels

towards the degenerate regime where the Boltzmann approximation of electron occupation

fails. This will result in a significant change in the imaginary part of ǫe(ω, V ), denoted as

ǫ′′e(ω, V ), as a function of external bias. For degenerate semiconductors, it is known that

ǫ′′e(ω, V ) is related to V only through n̄v − n̄c. Here n̄c and n̄v are the average occupation

numbers for the conduction band edge states and valence band states, respectively, that

satisfy the vertical transition condition at the frequency ω.31 Therefore

ǫ′′e(ω, V ) =
(n̄v − n̄c)

(n̄v − n̄c)|V=0

ǫ′′e(ω, 0). (2)

As we vary the voltage, the change in the real part of ǫe(ω, V ) is generally quite small, and

is therefore ignored in our calculations.

In the presence of external bias, photons emitted from interband transitions can carry a

non-zero chemical potential.30 Consider a semiconductor whose electronic degrees of freedom

(i.e. its electrons and holes) are excited by an external voltage V , maintained at a tempera-

ture T . The quasi-Fermi levels of the electrons and holes are separated by qV , where q is the

magnitude of the electron’s charge. A photon gas in equilibrium with such a semiconductor

through electronic interband transitions then satisfies the Bose-Einstein distribution

Θ(ω, T, V ) =
~ω

exp(~ω−qV

kBT
)− 1

, (3)

where Θ(ω, T, V ) is the expectation value of photon energy in a single mode at angular

frequency ω, ~ is the reduced Planck constant and kB is the Boltzmann constant. In Eq. 3,

qV plays the role of chemical potential for photons. Using the fluctuation-dissipation the-

orem, the thermal electromagnetic fields as generated by interband transitions can then

be described by random thermal current sources jα(r, ω) in the semiconductor with the
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correlation function31

〈jα(r, ω)j
∗

β(r
′, ω′)〉e =

4

π
ωΘ(ω, T, V ) δ(r − r

′) δ(ω − ω′) ǫ′′e(ω, V ) δαβ,
(4)

where α and β label the directions of polarization, r and r
′ are position vectors and δ(ω−ω′)

is the Dirac delta function. This expression is derived in Ref.31 using linear response theory

and Kubo’s formula. The derivation assumes that the electromagnetic fields are weak. In

practice, Eq. 4 is valid when Eg−qV

kBT
≫ 1, and hence the system is in the spontaneous

emission regime. Eq. 4 is no longer applicable when the applied voltage V is comparable or

even greater than Eg/q, in which case strong stimulated emission or even lasing can occur

and the weak-field assumption is no longer valid.

In addition to the electronic transition, III-V semiconductors also can couple electro-

magnetically via polaritons with angular frequencies corresponding to their polar optical

phonon bands. The bulk phonon-polariton energies for InAs and InSb are 0.0276 eV36 and

0.025 eV,37 respectively. As we will see, the presence of these phonon polaritons also con-

tributes significantly to the energy transfer between the semiconductors. The imaginary

part of the dielectric function in this frequency range is denoted as ǫ′′p(ω) and is independent

of external bias. Using the fluctuation-dissipation theorem, the correlation function of the

random sources due to phonon-polariton excitations is then

〈jα(r, ω)j
∗

β(r
′, ω′)〉p =

4

π
ωΘ(ω, T, 0) δ(r − r

′) δ(ω − ω′) ǫ′′p(ω) δαβ.
(5)

Unlike the random current sources corresponding to electronic interband transition in Eq. 4,

here the magnitude of the fluctuation is independent of the external voltage. Combing Eqs. 4

and 5 allows us to treat the electromagnetic near-field heat transfer between semiconduc-

tors under external bias, taking into account the intrinsic dissipation mechanisms of these

materials. Note that the phonon-polariton frequencies are far below the bandgap frequen-

cies, which justifies the separate treatment of electronic transitions and phonon-polariton

excitations in Eq. 1.
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II.3. Electromagnetic Formalism

We use the standard dyadic Green’s function12,13 technique to compute the transferred

power density from the current fluctuation1 presented in Section II.2. Details on the dyadic

Green’s function can be found in Ref.38 We compute separately the two non-overlapping

emitted photon energy flux spectra Φe(ω) and Φp(ω)
39 associated with photons emitted

from above-bandgap electronic transitions and phonon-polariton excitations, respectively.

The energy fluxes Ee and Ep, for above and below band gap photons, respectively, are then

obtained by integration over the appropriate frequency ranges

Ee
a→b =

∫ +∞

ωc

Θ(ω, Ta, Va)Φe(ω) dω, (6)

Ep
a→b =

∫ ωc

0

Θ(ω, Ta, 0)Φp(ω) dω. (7)

The subscripts (a, b) in Eqs. 6 and 7 can be either (1, 2) or (2, 1) depending on the flux

direction (Fig. 1). In Eqs. 6 and 7, ωc is as defined in Eq. 1. We attribute the transfer at

frequencies above this frequency to interband electronic transition and below it to phonon-

polariton excitations, respectively. The overall heat transfer between the two bodies is

Ea→b = Ee
a→b + Ep

a→b. (8)

A similar calculation also yields the above-bandgap photon flux between the two bodies as

Fa→b =

∫ +∞

ωc

Θ(ω, Ta, Va)

~ω
Φe(ω) dω. (9)

For later use, we define

F 0
a→b = Fa→b|Va=0. (10)

II.4. Detailed Balance Relations

The formalism described in Section II.3 enables us to compute the dependence of heat

power transfer rate as a function of applied voltage. In order to further evaluate the perfor-

mance of such a configuration for cooling purposes, we need to calculate the injected electric

power density into body 1. This electric power density is just the product of the external

bias V and the injected current density J to body 1. By detailed balance, the current density

J must be related to the total recombination rate as

J = q (F1→2 − F2→1 +R) , (11)
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where F1→2 and F2→1 are defined in Eq. 9. (F1→2−F2→1) and R represent the net radiative

recombination rate and non-radiative rate, respectively, per unit area in body 1. In this

paper, for non-radiative recombination, we consider only the Auger process, which is intrinsic

and dominates in high-quality materials. Because of our short circuit condition on Body

2, the computations in this paper will require considering the Auger process only in InAs.

Here we set R in Eq. 11 to40

R = (Cnn+ Cpp) (np− n2
i ) t1, (12)

where n and p are the electron and hole concentrations, respectively, and t1 is the thickness of

body 1. At 290 K, for InAs, C0 = Cp+Cn = 2.26×10−27 cm6s−1 is the Auger recombination

coefficient (the value of C0 is computed from its value at 300 K as shown in,41 taking into

account the temperature dependence of C0
42). ni = 6.06× 1014 cm−3 is the intrinsic carrier

concentration at 290 K. Having computed the injected current into body 1, we then obtain

the net outflow power density from body 1

P = (E1→2 −E2→1)− JV. (13)

III. IDEAL CASE

Using the formalism in Section II, we now consider the heat transfer in the configuration

shown in Fig. 1, when an external bias voltage is applied to body 1. In this section, we first

consider the ideal case, where we ignore the contributions from non-radiative recombination

(R = 0 in Eq. 11) and phonon-polariton excitations (Ep
a→b = 0 in Eq. 8). In such an ideal

case, we introduce an analytical model for heat transfer, first in Section III.1 for the homo-

junction structure where the two semiconductors are the same, and then in Section III.2 for

the heterojunction structure where the two semiconductors are different. For both struc-

tures, the analytical model predicts an exponential dependence of the heat transfer power

as a function of voltage. The model also predicts that in the ideal case the efficiency of this

configuration as a cooling device can approach the Carnot limit. We show in Section III.3

that the prediction of such an analytical model agrees very well with direct computations

based on the fluctuational electrodynamics formalism.
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III.1. Analytical Model for Homojunction Structure

We consider the homojunction structure first. In our model, we assume

exp

(

~ωg − qV

kBT

)

≫ 1. (14)

Under this condition, the emission spectra of the semiconductors are strongly peaked near

the band gap frequency ωg of the semiconductor. Thus from Eq. 9 we have the photon flux

F1→2 = exp

(

qV

kBT1

)

F 0
1→2. (15)

Furthermore, Eq. 6 can be simplified as

Ee
1→2 = exp

(

qV

kBT1

)

~ωgF
0
1→2, (16)

Ee
2→1 = ~ωgF

0
2→1. (17)

Therefore, we see that the transferred power has an exponential dependency on the applied

voltage.

We now consider the cooling performance of this configuration. From Eqs. 9 and 11, the

current density in body 1 in the presence of external voltage V is

J = q(e
qV

kBT1 F 0
1→2 − F 0

2→1). (18)

Using Eq. 13 and combining it with Eqs. 16–18, the net outflow power density from body 1

is then

P =
(

e
qV

kBT1 F 0
1→2 − F 0

2→1

)

(~ωg − qV ) . (19)

For cooling purpose, one sets T1 < T2. In the absence of external voltage, F 0
1→2 < F 0

2→1,

i.e. there is a net inflow of power to the cold body 1, as required by the Second Law of

Thermodynamics. With the application of voltage, however, there is an exponential increase

of the radiative power from body 1. As a result, P in Eq. 19 may change sign, indicating a

net outflow of power from the cold body 1 to the hot body 2 and hence the possibility of

cooling.

The voltage where P = 0 defines the threshold voltage Vt. In this model, the condition

of P = 0 coincides with J = 0 at the threshold voltage Vt. Therefore, based on Eqs. 6 and

13 we have

Θ(ωg, T1, Vt) = Θ(ωg, T2, 0), (20)
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from which we obtain

Vt =
~ωg

q

T2 − T1

T2

. (21)

For a cooling device, the standard metric for its efficiency is the cooling coefficient of

performance (COP)43 defined as

COP =
P

JV
, (22)

where P (in Eq. 13) measures the net outflow of heat from the cold body, and JV is the

injected electric power into body 1. Substituting Eqs. 18 and 19 into Eq. 22 results in

COP =

(

e
qV

kBT1 F 0
1→2 − F 0

2→1

)

(~ωg − qV )
(

e
qV

kBT1 F 0
1→2 − F 0

2→1

)

qV
=

~ωg

qV
− 1. (23)

According to the Second Law of Thermodynamics, the COP should be bounded by the

Carnot limit, i.e.

COP ≤
T1

T2 − T1

. (24)

From Eqs. 21 and 23, we see that the COP reaches the Carnot limit at V = Vt, and falls

below the Carnot limit when V > Vt. At Carnot limit, the net cooling power density

approaches zero. Thus, for most practical applications one would not operate at the Carnot

limit even if the device is capable of achieving this limit.

III.2. Analytical Model for Heterojunction Structure

The simple analytical model in Section III.1 for the homojunction structure can be

straightforwardly generalized to the heterojunction structure where the two semiconductors

have different band gaps. Without loss of generality, we assume that the two semiconductors

have band gap frequencies ωg1 and ωg2, respectively, with ωg1 > ωg2. The thermal exchange

between the semiconductors will only occur in the frequency range above ωg1. Thus, from

the results in Section III.1, we can replace ωg by ωg1 to obtain the corresponding results for

the heterojunction case, which reaches the Carnot limit at V = Vt as well.

For cooling purposes, the semiconductor on the cold side should have a band gap that

is larger as compared to the semiconductor on the hot side to ensure that all the emission

from the cold side can be absorbed by the hot side.
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III.3. Numerical Results

To directly check the analytical model, we performed exact calculations based on fluctua-

tional electrodynamics. We consider the configuration in Fig. 1 and set the temperatures for

the hot and cold bodies to be T1 = 290 K and T2 = 300 K, respectively. In the calculations,

we use the formalism discussed in Section II, except that we set Ep
1→2 = Ep

2→1 = 0 and

R = 0, i.e. we ignore contributions from phonon-polariton excitations and non-radiative

recombination.

We perform these exact calculations for both the homojunction and heterojunction struc-

tures. In the homojunction case, we choose InAs as the semiconductor for both bodies. On

the hot side (body 2), we set t2 = 4 µm to ensure that it has significant absorption for our

wavelengths of operation. On the cold side (body 1), we choose a thickness to be t1 = 1 µm

to facilitate the comparison with the non-ideal case as discussed in the next section. In the

heterojunction case, we choose InSb for the hot body and InAs for the cold body. In our

calculations, the data for ǫe(ω, 0) and ǫp(ω) for InAs and InSb are obtained from37,44 and,36,45

respectively. Eq. 2 is then used to determine the appropriate above-bandgap dielectric func-

tion in Eq. 4 when a non-zero voltage is applied. In Eq. 6, we choose ~ωc = 0.31 eV, below

which the contribution to photo emission from inter-band processes for InAs is negligible.

We consider the homojunction case first. Fig. 2 (a) shows the net outflow power density

Pideal as a function of the external bias V for various gap separations d. For every d at V = 0,

there is net power flow from the hot body (body 2) to the cold body (body 1) and P < 0, as

expected. As V increases, the outflow from body 1 also increases. As V increases beyond a

threshold voltage Vt, P becomes positive and body 1 experiences a net outflow of energy and

hence cooling. For this system, Eq. 21 gives a Vt of 0.0122 V, which agrees quite well with

the Vt = 0.0129 V obtained from the exact calculations. At a large V , the net power density

P increases approximately exponentially as a function of V , in agreement with Eq. 19. For

a fixed V , the power density increases significantly as one reduces d. This effect is typical of

near-field heat transfer where the transferred power increases as the separation d between

the two bodies decreases.2

For the homojunction structure, the numerically obtained COP as a function of V is

plotted in Fig. 2 (c) for several separations d, and compared to the analytical model of Eq. 23.

The analytical model predicts that in the ideal case, the COP should be independent of the
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FIG. 2. Top row contains plots of Pideal as a function of V of (a) the homojunction and (b) the

heterojunction structures for different d (indicated in the legend). The horizontal dashed lines in

(a) and (b) represent the zero power densities. Bottom row shows the corresponding COP as a

function of V of (c) the homojunction and (d) the heterojunction structures (assuming no non-

idealities) for the same values of d as in (a) and (b). The decreasing dashed curves in (c) and

(d) are obtained from Eq. 23. The horizontal dashed lines in (c) and (d) represent the Carnot

efficiency limit. Vt in (c) and (d) indicates the threshold voltage.

separation d as confirmed by the numerical simulations. The only significant deviation from

the analytic model occurs near Vt. In particular, the analytic model predicts a discontinuity

in COP at Vt, while the exact numerical results show a zero COP at Vt followed by a

rapid increase of the COP towards the Carnot limit at a voltage slightly above Vt. The

discrepancies here arise since the photon flux rate and the net photon energy transfer rate

vanish at slightly different voltages in the exact calculation. This is in contrast to the

analytical model where both rates vanish at Vt. As a result, the analytic model becomes

inaccurate at V near Vt. The exact numerical results show that our structure can indeed

have a cooling performance close to the Carnot limit in the absence of non-idealities.

The numerically obtained power density and COP behaviors for the heterojunction struc-

ture are shown in Fig. 2 (b) and (d), respectively. The behaviors are almost identical to

that of the homojunction case, confirming the analysis presented in Section III.2.
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IV. EFFECTS OF NON-IDEALITIES

IV.1. Numerical Results

In the previous section we showed that in the absence of non-idealities, the configuration

shown in Fig. 1 can operate as an ideal cooling device with efficiency approaching the Carnot

limit. In this section we consider the effects of the two non-idealities that are intrinsic to

the III-V semiconductors used in the configuration of Fig. 1: (1) the Auger recombination

process, the dominant non-radiative recombination processes for high quality material, and

(2) phonon-polariton heat transfer, which results in heat flow from the hot body to the cold

body that is independent of the electronic transitions and therefore the applied voltage on

body 1. The numerical results for the power density P including these two effects are shown

in Figs. 3 (a) and (b) for the homojunction structure and the heterojunction structure,

respectively. Unlike the ideal scenario without non-idealities (Figs. 2 (a) and (b)), where

the homojunction structure and the heterojunctions structure show identical behaviors, here

the two structures behave very differently. For the homojunction case, there is no longer any

net cooling for any separation d and at any voltage. For the heterojunction case, there is

also no net cooling at the large and small d limits. On the other hand, for the heterogeneous

structure with a separation d = 36 nm, for example, net cooling can still be achieved with

a peak cooling power density of 91.23 W/m2 at 0.158 V of forward bias on body 1.
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FIG. 3. Plots showing P as a function of applied bias V for (a) a homojunction structure consisting

of InAs, and (b) a heterojunction structure consisting of InAs and InSb, for different vacuum gap

size d. The gray dashed line in (b) indicates the zero power density. Both the effects of Auger

recombination and phonon-polariton heat transfer are included.
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In the subsequent sections, we seek to elucidate the effects of non-idealities that lead to

the behaviors shown in Fig. 3. We discuss the effects of Auger recombination in Section IV.2.

The combined effects of phonon-polariton heat transfer and Auger recombination are then

considered in Section IV.3. Finally, the performance including both non-idealities is shown

in Section IV.4.

IV.2. Effects of Auger Recombination
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0
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P
 (
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2
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InAs−InAs

 

 

Without Auger

With Auger

V
t

P
max

V
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× 10
2

FIG. 4. The net outflow power density P as a function of applied voltage V for the cases without

(blue curve) and with (green curve) Auger recombination, respectively, for d = 36 nm. Phonon-

polariton heat transfer is ignored. For the case with Auger recombination, the peak power density

is denoted as Pmax = 111.31 W/m2 with an associate voltage Vmax = 0.156 V. The threshold

voltage for body 1 to reach net cooling is labelled Vt (0.013 V ), and the zero power density level is

denoted by the horizontal dashed red line.

To illustrate the effect of Auger recombination, we consider the same configurations as

shown in Fig. 1 but now with the effect of Auger recombination included. For simplicity, we

do not include the contribution from phonon-polariton heat transfer in this section. In the

following, we first consider a homogeneous InAs-InAs structure with separation d = 36 nm.

Fig. 4 plots this example structure’s net output power density crossing the vacuum gap

as a function of voltage for the cases with and without Auger recombination. We observe

from Fig. 4 that for voltages below Vt, the two power density curves almost overlap with one
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another. This similarity in power density is expected since the effect of Auger recombination

is sufficiently weak when the applied voltage is small.

However, as V increases beyond Vt in Fig. 4, the net outflow power density reaches a

maximum for the case with Auger recombination. We can explain this behavior as follows:

The semiconductor’s carrier density increases significantly as the applied voltage increases

beyond Vt. Furthermore, since the Auger recombination rate in Eq. 12 scales with a higher

exponent with respect to carrier density as compared to radiative recombination rate, the

non-radiative recombination rate (R in Eq. 11) increases faster and eventually dominates

over the radiative recombination rate. The Auger recombination process generates heat

inside body 1. As a result, the net outflow power density from it reaches a maximum as V

increases. Therefore in the presence of Auger recombination, there exists an optimal voltage

at which the cooling power is maximized.
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FIG. 5. Top row includes plots of power density P as a function of V for (a) the homogeneous

and (b) the heterogeneous structures in the presence of Auger recombination. Plots are shown

for different separations d [inset of (a)]. (c) and (d) show the COP as a function of V for the

same set of d’s. The dashed curves in (c) and (d) represent the analytical solution without Auger

recombination, as obtained from Eq. 23. The horizontal dashed lines in (c) and (d) represent the

Carnot efficiency limit for this configuration.

In Fig. 5, we plot the cooling power density P and the COP as a function of voltage for

both homojunction and heterojunction structures with various separations d, taking into

account Auger recombination. The homojunction and heterojunction structures show qual-
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itatively similar behaviors. At d = 600 nm, there is only small net cooling of approximately

0.76 W/m2 for both junctions. Significant cooling is observed for smaller d. For each d,

the cooling power density shows a maximum at a specific voltage Vmax, a behavior that was

already discussed in Fig. 4 for d = 36 nm. Moreover, Vmax increases as we reduce d. The

reduction of d results in an increase of the radiative recombination rate. Hence the system

can operate at a higher voltage before the non-radiative recombination process dominates.

We also observe an increase of maximum power density as we reduce d. This arises as a

result of both the power transfer enhancement for small d, as well as the higher operating

voltage.

Figures 5 (c) and (d) show the COP as a function of applied voltage V for the same

separations d in both homojunction and heterojunction structures. In general, the presence

of non-radiative recombination reduces the COP. This reduction, however, is far less severe

as we decrease the separation d into the near-field region. This is because the non-radiative

recombination rate is independent of d, while the radiative recombination rate increases as

we reduce d. Thus, the detrimental effect of non-radiative recombination is mitigated as we

reduce d.

We also note that such non-radiative recombination is significant only when a forward bias

is applied. Hence in these calculations we do not need to include the Auger recombination

on the hot side where no voltage is applied. In the heterojunction case, this means that

we only need to take into account the Auger recombination on the InAs side. In addition,

the Auger combination rate per unit area is proportional to the thickness of the structure,

as seen in Eq. 12. Thus for the cold side InAs, we have chosen its thickness t1 = 1 µm

as a compromise between the need to maximize emission and the need to reduce Auger

recombination.

IV.3. Effects of the Phonon-Polariton Heat Transfer

From the discussions above, we see that to mitigate the effect of Auger recombination,

one generally prefers to operate in the near-field regime where the separation between the

two bodies is small. However, in this near-field regime, the presence of phonon-polariton

heat transfer can become very substantial. For a cooling device, such a phonon-polariton

heat transfer represents a detrimental leakage pathway.

16



We plot in Fig. 6 the phonon-polariton contribution to the heat transfer Pphonon as a

function of gap separation d for the homojunction and heterojunction structures. For the

homojunction case, the heat transfer power increases approximately as 1/d2 when d de-

creases since the two bodies have surface phonon-polariton excitations with near matching

frequencies. This behavior is in consistency with the literature on near-field heat transfer.2

The presence of such strong phonon-polariton heat transfer, in combination with the Auger

recombination is sufficient to eliminate any cooling effect in the homojunction structure, as

demonstrated in Fig. 3 (a).
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FIG. 6. Plot of phonon-polariton heat transfer power density Pphonon for the homojunction struc-

ture (dashed blue curve) and heterojunction structure (solid red curve) as a function of vacuum

gap separation d. At d = 10 nm, the phonon-polariton heat transfer in heterojunction structure is

one order of magnitude lower than that of the homojunction structure.

To demonstrate cooling in the presence of non-idealities, one therefore needs to mitigate

the effect of phonon-polariton heat transfer. As a straightforward approach, we consider a

heterojunction structure in which the semiconductors are different. For the heterojunction

structure considered in this paper, the surface phonon-polariton excitation frequencies for the

InAs-vacuum and InSb-vacuum interfaces no longer match, and hence the phonon-polariton

heat transfer is substantially reduced as compared to the homojunction structure (Fig. 6).

The use of such heterojunction structures in the near-field regime thus allows us to mitigate

the detrimental effects of both Auger recombination and phonon-polariton heat transfer,
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and therefore enables significant cooling as shown in Fig. 3 (b).

IV.4. Performance including both non-idealities

Figure 7 (a) shows the peak outflow power density Pmax as a function of the gap size d

for the InAs-InSb structure. At separations d < 16 nm, the surface phonon-polariton heat

transfer dominates over above-bandgap photon heat transfer and the peak power density is

negative, indicating there is a net energy flow from the hot side to cold side and hence the ab-

sence of any cooling effect. Whereas for large separations d > 570 nm, Auger recombination

dominates and we also do not observe any net cooling for body 1. In the intermediate range

from 16 nm to 570 nm, the system can operate as a solid-state cooling device. The largest

cooling power density is found when d = 36 nm, for which V = 0.158 V yields 91.23 W/m2

of cooling power density against the assumed 10 K temperature difference. In addition, we

note that when the two bodies are near thermal equilibrium, the maximum cooling power

density in the near field is three orders of magnitude higher than that in the far field.
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FIG. 7. (a) Pmax versus separation d in the presence of Auger recombination and phonon-polariton

heat transfer for the heterojunction structure. (b) The maximum COP as a function of d from

16 nm to 570 nm for the heterojunction structure.

Fig. 7 (b) shows the maximum COP achievable for InAs-InSb structures with separations

16 nm < d < 570 nm. The maximum COP is 1.65 and is found at d = 170 nm. Such a

COP is comparable to that of thermoelectric coolers at similar operating temperatures in

practice,46 and is significantly higher than other photon-based solid-state cooling schemes,

including laser cooling of solids.47,48 Therefore, the results here show that the device in Fig. 1

can in principle be used as a high-efficiency solid-state cooling device, even in the presence of

18



significant non-radiative recombination and phonon-polariton heat transfer. In addition, by

using quantum wells49 to mitigate Auger recombination and engineering surfaces to reduce

the phonon-polariton coupling, higher COP and cooling power density are achievable by our

design.

V. CONCLUSION

In summary, in this paper, we have shown that controlling the chemical potential of

a thermally emissive body could enable significant new opportunities to exploit near-field

electromagnetic heat transfer. These include the capability for electronic control of both the

magnitude and the direction of heat flow in nano-scale systems and as well as the potential

for a solid-state cooling device that operates near the Carnot limit. The cooling effect

persists even in the presence of non-idealities such as Auger recombination and phonon-

polariton heat transfer. We have further seen that to achieve this, we must place the

semiconductor heat absorber in the near field of the electrically driven emitter to mitigate

the effect of Auger recombination, and choose a heterojunction configuration that minimized

the parasitic phonon-polariton heat transfer in the near field.
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