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The phase behavior of multi-component metallic liquids is exceedingly complex because of the
convoluted many-body and many-elemental interactions. Herein, we present systematic studies of
the dynamical aspects of a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics
simulations with embedded atom method. We observed a dynamical crossover from Arrhenius to
super-Arrhenius behavior in the transport properties (self diffusion coefficient, self relaxation time,
and shear viscosity) bordered at Tx ∼ 1300 K. Unlike in many molecular and macromolecular liquids,
this crossover phenomenon occurs well above the melting point of the system (Tm ∼ 900 K) in the
equilibrium liquid state; and the crossover temperature Tx is roughly twice of the glass-transition
temperature of the system (Tg). Below Tx, we found the elemental dynamics decoupled and the
Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dy-
namics in the system mediated by dynamic communications among local configurational excitations.
To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsu-
pervised machine learning technique and identified dynamical clusters of atoms with similar atomic
mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and
mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify
the spatially heterogeneous dynamics such as the non-Gaussian parameter α2 and the four-point
correlation function χ4.

PACS numbers: 64.70.pe, 61.20.Lc, 66.10.-x, 66.20.-d

I. INTRODUCTION

Novel disordered alloys of various high entropic forms
have attracted much attention from physicists and mate-
rials scientists over the past few decades. Because of the
lack of long range crystalline order, bulk metallic glasses
(BMG), as prominent examples, show many unusual
properties, such as remarkable mechanical strengths and
stiffness, excellent wear and corrosion resistance, very
high coefficient of restitution, near-net-shape casting,
biocompatibility, and soft magnetic properties. Conse-
quently, they are favorable candidates in a broad range
of applications1–9.

Recent interests in BMGs center around Copper and
Zirconium based glassy alloys, which exhibit excellent
glass-forming abilities2,10,11. They have shown to form
stable glasses for a wide variety of compositions. Yet,
one of the ensuing challenges to mainstream utiliza-
tion of such BMGs remains the inability to manufacture
them in even larger sizes and better qualities, required
for advanced engineering applications3,10,12. BMGs are
usually produced by quenching high temperature multi-
component metallic liquids to room temperature at a
sufficiently fast rate such that local crystallizations are
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suppressed in the frozen states. While many efforts have
been devoted to exploring combinations of materials to
form stable metallic glasses13–17 as well as microstructure
analysis, it is believed that understanding the fundamen-
tal aspects of the liquid state dynamics of these melts still
holds the key to understanding their glass-forming abili-
ties.

In addition, multi-component metallic liquids and
glasses can serve as interesting model systems to study
how many-body and many-elemental interactions mani-
fest themselves on the way to the thermodynamically un-
stable but kinetically trapped states6,18–20. With regards
to such glassy materials, the general consensus is that a
glass transition occurs when the relaxation process slows
down by several orders of magnitude while the structure
remains almost unchanged. A plethora of theories have
been proposed to underpin the mechanisms of glass tran-
sition of simple unitary or binary liquids that interact
via straight-forward pair potentials21–26. In particular, in
light of wisdoms learned from critical phenomena, many
recent theoretical developments have focused on search-
ing for an appropriate non-equilibrium “order param-
eter” counterpart to describe the glass transition27–30.
Such attempts propose to use the size of dynamic het-
erogeneity, an idea borrowed from spin glasses, as a “dy-
namic” correlation length that can potentially quantify
the glass transition20,31,32. However, there remain sig-
nificant challenges in terms of (1) to what extent these
theories can be applied to describe the complex multi-
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component metallic liquids and their glass transitions,
(2) the understanding of the mechanisms responsible for
enhancing the glass-forming ability. Despite the compli-
cations, one advantage of metallic liquids and glasses as
interesting model systems is the absence of complex in-
ternal degrees of freedom that are omnipresent in other
molecular and macromolecular glass-formers2,6,10.

Liquid state is usually characterized by local structure
and dynamics, both self and collective. Neutron scatter-
ing, alongside computer simulations, has been the fron-
tier tool in investigating liquids33–35. Hence, our under-
standing and descriptions of the statistical quantities in
liquid state are formulated in the framework of space and
time correlation functions and can be directly probed by
neutron scattering experiments. Computer simulations,
on the other hand, have helped obtain deeper insights
of the liquid state of materials by comparing with ex-
perimental measurements. Metallic liquids can be rela-
tively reliably studied using classical Molecular Dynamics
(MD) simulations on large systems accelerated by use of
classical many-body interaction potentials.

There have been several other studies performed us-
ing MD simulations on Cu, Zr, Al based metallic glasses
in the liquid, supercooled, and glassy states13,15,16,36–40.
Embedded Atom Method (EAM) force field36 have been
extensively used in studying this ternary system. The
emphasis of many previous studies has been on quan-
tifying structural orderings in the melted and glassy
states40,41 and predicting structure-property correlations
in such BMGs5,37,42–45. Formation of icosahedron-like
structure has been quantified both computationally and
experimentally. The importance of localized interac-
tions and bond formation between Al and Cu has been
elucidated with regards to this key structural motif.
It has also been reported that these structural signa-
tures of the fragility only exists in deeply supercooled
Cu-Zr liquids.46–48 Besides structure and thermodynam-
ics, dynamics also plays a key role in the properties of
BMGs. Studies of liquid state dynamics are mostly lim-
ited to binary systems. In supercooled state, observa-
tion of fragile-to-strong crossover via decoupling of diffu-
sion coefficient and relaxation time has been proposed49.
In another study, a binary system with composition
(Cu33.3Zr66.7), the Stokes-Einstein relation is found to
break down in the liquid state50. However, there are
qualitative assertions on the mechanism underlying this
behavior without much detailed emphasis on its physi-
cal picture. Detailed study of liquid state dynamics in
such multi-component metallic system is lacking. Sev-
eral experimental measurements of dynamics in liquid
and supercooled state have been performed using electro-
statically levitated droplets in inelastic neutron scatter-
ing facilities51–55. By and large, such measured systems
are ternary or higher in composition and thus, there is a
pressing need to study them using reliable potentials to
develop greater insights from such experiments.

In this paper, we address these concerns by studying
a model system compositionally similar to a BMG man-

ufactured by Liquidmetalr Technologies, Inc. namely
LM601 (Zr51Cu36Ni4Al9). Ni is very similar in size to
Cu, and from a dynamical point of view has very sim-
ilar diffusional characteristics. Thus, the system stud-
ied using MD, Cu40Zr51Al9, could mimic the quaternary
BMG appropriately. We use the ternary EAM poten-
tial to study the structure and self-motions of the con-
stituent elements in this model system. The paper is
organized as follows: we begin by describing the struc-
ture of this system in terms of the pair correlation func-
tions and the static structure factor. This is followed
by descriptions of dynamical quantities such as mean-
squared displacement, self van Hove correlation func-
tions, self-intermediate scattering functions, etc. Inves-
tigations of the self-motions led to testing the validity
of Stokes-Einstein relation in this glass-forming metal-
lic liquid. In the following discussions, we focus on an
emerging concept, heterogeneous dynamics and our novel
methodology to visualize and quantify it in a 3D system
using a non-parametric unsupervised machine-learning
technique. We conclude our discussions by relating a few
statistical quantities that probe the nature of this hetero-
geneity to the concepts of onset of correlated dynamics in
the system and demonstrate the agreement with results
from the machine-learning technique.

II. METHODS

Molecular Dynamics (MD) simulations were carried
out using the open-source parallel simulator LAMMPS56,
developed by the Sandia National Laboratory. At first,
we attempted to model the exact quaternary system
LM601, with the EAM potential obtained by rapid fitting
techniques57. However, the system resulted in a gel-like
mixture that eventually phase separated within the equi-
librium liquid. Furthermore, to the knowledge of the au-
thors there are no other available potentials developed for
quaternary system comprising the elements used in this
quaternary BMG. Thereafter, we carried out MD simu-
lations using a relevant EAM potential for the ternary
Cu-Zr-Al system. For more details on the EAM poten-
tial, readers are referred to Ref. [36]. The system size is
100,000 atoms (51,000 Zr, 40,000 Cu and 9,000 Al) in a
cubic box. Periodic boundary conditions were enforced
in all three dimensions. The system was heated up to a
temperature of 2500 K and well equilibrated for 100 ps
at zero external pressure (NPT ensemble with a Nosé-
Hoover thermostat) to obtain the correct volume. The
system was then cooled to subsequent temperatures with
a cooling rate of 10 K/ps in the range of 950 – 2500 K
which are higher than the reported melting temperature
of the system ∼ 900 K. The system was allowed to evolve
for another 100 ps after it cooled down to the required
temperature. In this equilibrium state, the system is not
expected to show any aging effects, as the system is fast
relaxing. Once the system was fully equilibrated at a
given temperature, NPT ensemble was enforced to gener-
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ate the trajectory outputs and to compute relevant statis-
tical quantities. Relevant ensemble averaged quantities
such as the mean-squared displacement, self-intermediate
scattering functions etc. were computed by averaging
over a large subset of trajectory snapshots.

Subsequent dynamical cluster analysis was performed
in a smaller system of 4,000 atoms with the same relative
composition of each element. This was done with con-
scious effort to easily demonstrate the method’s usability
and produce quick and clear visualizations. Displacement
of individual particles between a timescale of the struc-
tural relaxation time at any specified temperature was
used to quantify the characteristic dynamics in the liq-
uid. During the structural relaxation time window, the
average displacement of atoms is roughly between the
g(r) first peak and the first valley58,59. The distribu-
tion of the displacements was divided into smaller bins
or ‘mobility groups’ ranging from 15 – 1000 bins. Par-
ticles were classified into each of these mobility groups
based on their displacements. Particles in one mobility
group were used to further perform an Hierarchical Clus-
tering Analysis (HCA) using a non-parametric, unsuper-
vised machine-learning algorithm60,61. This algorithm
sorts data by creating binary clusters that join to form
a larger cluster in a hierarchical level dendrogram based
on natural groupings in the data. The first step involves
characterizing the dis/similarity between every pair of
data in the set using Euclidian distance measures. Soli-
tary data points, identified as isolated particles with no
other particles within two-diameters of largest atom Zr,
are filtered out at this step to enhance the robustness of
the algorithm. Reduced data points with close proximity
are grouped in binary pairs and form a hierarchical tree
spanning the entire set of data points. To find natural
groupings in this tree an inconsistency coefficient60–62,
which ranges from 0 to 2 and characterizes each link of
the cluster tree by comparing its heights with the mean
height of all other links at the same level of hierarchy, was
used with an optimized value 1.0 throughout all analy-
sis. The value of 1.0 was so chosen to ensure distances
between objects joining a (binary) cluster are similar to
the distance of the particles in that (binary) cluster. A
higher inconsistency value indicates the clusters are much
farther than the distances of the constituent particles of
each clusters and thus defines a natural clustering set.
Mean cluster size defined as average number of particles
in a cluster for each mobility group was computed by
averaging over all clusters, including the isolated single
particles filtered in earlier step. To understand the size
of these dynamical clusters, the entire system was fur-
ther regrouped into 5 major groups and their trends etc.
were studied. A minimal spanning tree63–65 was used to
draw connections between atoms that form a networking
cluster.

III. RESULTS AND DISCUSSIONS

A. Structure

At first, the structure of the material represented by
the pair distribution functions g(r) and the total static
structure factor S(Q) was routinely checked. The amor-
phous nature of the system in the liquid states was veri-
fied. No sharp transitions can be appreciated throughout
the studied temperature range from these static quanti-
ties.

1. Pair Distribution Function

For an isotropic and homogenous liquid system, the
pair distribution function (PDF) or radial distribution
function (RDF), depends only on the modulus of relative
atomic distance and can be computed as follows:

g(r) =
1

4πr2ρN

〈∑
l 6=l′

δ(r− |rl − rl′ |)

〉
. (1)
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FIG. 1. Partial g(r) derived using EAM potential for
Cu40Zr51Al9 metallic liquids at 1300 K. Al-Al correlation is
weak suggesting caging by Cu and Zr atoms.

Partial g(r) for the six possible pairings were computed
by discretizing the cubic simulation cell into small con-
centric volumetric regions, counting the respective atom
pair types and subsequently normalizing the counts by
the volume of the spherical shells. The amorphous nature
of the system is clearly illustrated in Fig. 1, along with
the nearly homogenous mixing of atoms in the system.
The results are consistent with those published by the
developers of the potential36 differing only in intensity
of peaks due to temperature and composition difference.
Al-Al correlation is found to be the weakest owing to its
lowest composition and is suggestive of being surrounded
in local cages formed by Cu and Zr atoms. Zr favors or-
dering with Al atoms indicated by the highest intensity
of the partial g(r).
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2. Structure Factor

The static structure factor S(Q) is a quantity that can
be directly measured by scattering experiments such as
with neutrons or X-rays. For an isotropic system there
are no preferred orientation and hence the structure fac-
tor depends only on the modulus of the wave vector trans-
fer Q. The experimentally measured structure factor by
neutrons is weighed by the proper coherent bound neu-
tron scattering lengths ‘b’ and needs to be factored in
when computing the total S(Q) of the system as shown:

S(Q) =
1

N〈b〉2

〈
N∑

l,l′=1

blbl′ exp {−iQ · [rl − rl′ ]}

〉
. (2)

A simplified representation of S(Q) is shown in Eq. [3]. In
performing the computations of S(Q), the computational
complexity of Eq. [2] is reduced to O(N) by performing
angular average over 500 random angular directions using
Eq. [3]. Fig. 2(a) shows the temperature dependence of
S(Q) representative of a normal liquid state.

S(Q) =
1

N〈b〉2

〈[
N∑
l=1

bl cos(Q · rl)

]2
+

[
N∑
l=1

bl sin(Q · rl)

]2〉
.

(3)
The peak position of the first S(Q) peak is approx-

imately 2.6 Å−1 and is found to shift in both inten-
sity and position with increasing temperature. Subse-
quent computations of wavevector dependent quantities
are computed at this Q-value, which is roughly repre-
sentative of the scale of the first peak in the g(r) of the
system. This peak position in S(Q) is proportional to
changes in atomic density of the material. Any evidence
of structural changes observed in the temperature range
used in the experiments may be employed to explain
the phase transition behavior that has been observed in
many metallic liquid systems. Monotonically decreasing
peak amplitude (Fig. 2(b)) is observed in the tempera-
ture range without the presence of any distinct structural
order change. Structural analysis reveals smooth temper-
ature dependence without any sharp transitions.
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FIG. 2. (a) Temperature evolution of the total neutron struc-
ture factor S(Q) of Cu40Zr51Al9 system. (b) The first peak
position of S(Q) shows continuous temperature dependence.

B. Dynamics

The major focus of this work concerns the investiga-
tion of the self-dynamics of constituent elements of this
glass-forming metallic liquid. Single particle dynamics,
evidently influenced by neighboring atoms, of the multi-
component liquids involves multiple relaxations and long-
time diffusions. Statistical quantities that illustrate liq-
uid dynamics can be studied in both real space and time
or in the reciprocal (Fourier) space. To this end, we be-
gin by illustrating the self van Hove correlation function
and then move on to other time and space correlation
functions.

1. Self van Hove Correlation Function

Single particle’s motion can be studied using the self-
part of the van Hove correlation function66,67. In the
liquid state, the system is isotropic and hence these quan-
tities depend only on the magnitude of displacements not
their directions.

Gs(r, t) =
1

N

〈
N∑
l=1

δ(r + rl(0)− rl(t))

〉
. (4)

At t = 0, the Gs(r, t) has a singularity at the origin in-
dicative of the particle under investigation. The physical
meaning of Gs(r, t) is the probability of finding a particle
i in the vicinity of some distance ‘r’ at some other time
‘t’ given that it was at origin at t = 0. In essence, it
describes the average motion of such a particle. The vol-
ume integral ofGs(r, t) is a conserved quantity and equals
unity. Hence, in Fig. 3, we plot the quantity 4πr2Gs(r, t)
for all constituent particles at a high and a low temper-
ature value. The intensity of the colormap in the insets
corresponds to the time and location of finding a particle
with certain probability. This probability distribution is
found to broaden with increasing time, evidenced by the
widening colored regime. As expected, individual parti-
cles are observed to diffuse much faster at 1450 K than at
1100 K. In the temperature range studied, the particles
show distributions for a normal liquid without presence
of any prominent secondary peaks. Usually when the sys-
tem gets close to the glass transition, multiple peaks may
appear in the probability distributions that have been at-
tributed to thermally activated hopping process68. The
time taken for correlations to decay to the hydrodynamic
limit or Gaussian behavior is generally comparable to
structural relaxation time of each species in the liquid
state58. The non-Gaussian behavior of Gs(r, t) at inter-
mediate timescale is discussed later in the paper.
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FIG. 3. Gs(r, t) normalized by the area to measure the prob-
ability distribution of finding a particle at a later time. As
expected, all three species in the system exhibit a hydrody-
namic behavior with a single Gaussian peak that broadens in
spatial direction with increasing time at 1450 K. However, at
1100 K, the Gaussian behavior is slightly distorted. At 1450 K
the particle diffuses much faster than at 1100 K evidenced by
the broadening of the distribution. Insets show normalized
Gs(r, t) in both ‘r’ and ‘t’ directions.

2. Mean Squared Displacement and Self-Diffusion
Coefficient

The mean-squared displacement of particles at an
elapsed time ‘t’ is related to the second moment of the
self van Hove correlation function34,35.

〈r2(t)〉 =
1

N

〈
N∑
l=1

|rl(t)− rl(0)|2
〉

=

∫
r2Gs(r, t)dr.

(5)
Computational implementation of MSD involves averag-
ing of particle displacements over all particles of interest
at two time points. It is a measure of the average dis-
tance travelled by a particle. At short times, particles
show ballistic motions, i.e., a particle doesn’t encounter
any other particles in its vicinity. In this case, the dis-
tance travelled is linearly proportional to the time in-
terval considered, and thus MSD is proportional to ‘t2’.
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FIG. 4. Temperature dependence of Mean Squared Displace-
ments (MSD) for constituent elements. Arrow indicates in-
creasing temperature. Al shows largest displacements at short
times compared to Zr and Cu.

Usually, the timescale for this behavior is indicative of the
mean free time. Beyond the ballistic motions, there is a
plateau that is much more pronounced at lower temper-
atures and indicative of the onset of caging effect. This
is roughly equivalent to the time needed for a local con-
figurational or topological excitation in the system69. At
longer times, particles collide with one another and even-
tually undergo random walk. In this regime MSD is lin-
early proportional to ‘t’. Consequently, the self-diffusion
coefficient can be computed directly in MD simulations
using the MSD of each atom.

D = lim
t→∞

1

6t
〈|ri(t)− ri(0)|2〉. (6)

Al being the lightest element in the system shows much
larger displacements at short times as shown in Fig. 4(c).
In contrast, at long time, the MSD of Cu is the largest,
and that of Zr is the smallest. Such elemental features
can be further studied from the long-time self-diffusion
coefficient of each atom extracted from a linear fit of the
MSD at long time. Cu shows the largest diffusion coeffi-
cient while Zr is the slowest among the elements. Tem-
perature dependence of the self-diffusion coefficient can
be described by many models such as Arrhenius, VFT,
MCT, parabolic, free-volume, Adam-Gibbs, etc. In this
analysis, we did not try to fit the entire temperature
range with any particular model, but focused on the de-
viation from the Arrhenius behavior (Fig. 5). Therefore,
we applied Arrhenius fit at high temperatures to extract
the activation energy EA and diffusion constant D0 for
each element. A sharp deviation from the Arrhenius fits
is observed around Tx ∼ 1300 K, which is much higher
than the melting temperature of the system (∼900 K).
This is indicative of onset of correlated dynamics of the
system, where system transitions from uncorrelated liq-
uid dynamics at very high temperatures to a state with
increasing cooperativity in various regions in time and
space69. For most molecular systems, this deviation from
the Arrhenius law usually happens below the melting
point in the supercooled regime, and therefore has raised
some concerns on whether the system is well equilibrated
in the simulation studies. As this study is concerned
with temperatures much higher than the glass transition,
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there are no effects due to aging. In the multi-component
metallic liquids, the chemical disorder essentially pushes
the dynamical crossover higher than the melting point,
resulting in a non-controversial equilibrium phenomenon.
The addition of Al in slowing down dynamics of Cu-Zr
based liquid has been discussed elsewhere70. Hence, the
additional chemical disorder brought by Al addition can
be responsible for the observation of dynamical crossover
above Tm. Furthermore, it is interesting to note that
the dynamical crossover temperature is more or less the
same for all three constituent elements. As the local
structure in various spatial regions is comprised of Al
centered with Cu-Zr atoms as the neighbors, their local
cooperativity necessarily influences the manifestation of
dynamical crossover in each element.

0.01
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1

D
  (

Å2 /p
s)

1.21.00.80.60.4
1000/T (K-1)

 Cu
 Zr
 Al
 Arrhenius Fit

Tx

Tm

FIG. 5. Self-diffusion coefficients extracted from MSD for
each element. Black arrow (Tx ∼ 1300 K) indicates onset of
correlated dynamics (crossover) marked by a deviation from
respective Arrhenius fits. Red arrow indicates the melting
temperature of this system (Tm ∼ 900 K).

3. Self Intermediate Scattering Function

Atomic trajectories obtained from MD simulation pro-
vide comprehensive information to compute the Self In-
termediate Scattering Functions (SISF). SISF is defined
as the spatial Fourier transform of Gs(r, t) to the recipro-
cal space, which can be measured either directly by cor-
relation spectroscopy and neutron spin echo technique,
or indirectly by inelastic scattering experiments.

Fs(Q, t) =
1

N

〈
N∑
l=1

exp {−iQ · [rl(t)− rl(0)]}

〉
. (7)

The Intermediate Scattering Function (ISF) is thus
named as it can be Fourier transformed in time to obtain
the dynamic structure factor S(Q,ω) or inverse Fourier
transformed in space to recover the van Hove correlation
function G(r, t). SISF characterizes the density fluctua-
tions of the same particle in the system at time t = 0 and
at another subsequent time t. Fig. 6, shows the temper-
ature dependence of SISF for each constituent element.

For dense liquids, the decay of SISF can roughly be sepa-
rated into two steps: fast cage breaking of atoms and the
subsequent slow diffusion of the atoms71. SISF shows a
Gaussian like behavior at short times indicative of ballis-
tic or vibration motions of particles followed by a multi-
ple step relaxation processes around the sub-picosecond
to picosecond time scale. At low temperatures, SISF is
highly stretched and reveals two relaxation mechanisms
separated by a shoulder corresponding to the plateau in
MSD. The early relaxations are usually referred as the β-
relaxation regime. A slower relaxation process referred
as the α-relaxation follows the subsequent shoulder in
Fs(Q, t).
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FIG. 6. Self-intermediate scattering functions Fs(Q, t) of con-
stituent elements of Cu40Zr51Al9 metallic liquid system at Q
= 2.6 Å−1. Cu and Zr atoms show simple two-step relaxations
while Al shows additional peaks around 0.1 ps.

The α-relaxation time is usually defined as the time
when Fs(Q, t) at the first peak Q = 2.6 Å−1 of the
structure factor, S(Q), decays to 1/e34,35. Recent stud-
ies highlight that in high temperature liquids the α-
relaxation time, τα, is roughly 3 times the time-scale
needed for a local configurational excitation or a bond-
breaking/forming event τLC . τα also corresponds to the
average time for a atom to move a distance of the inter-
atomic distance59. The temperature dependence of τα
is found to be similar to that of τLC , τB (bond-lifetime)
and τM (Maxwell relaxation time, discussed later on).
The bond-lifetime, τB , is so defined as the average time
for an atom to lose half of the neighbors. An alterna-
tive definition of the average relaxation time, which is
quite frequently used in experiments, is the area under
the Fs(Q, t) curve. This definition of the average relax-
ation time also takes the short and intermediate time
behaviors into account, and therefore its value and curva-
ture in the Angell plot are slightly different from those of
the relaxation time defined by the 1/e cut of the Fs(Q, t).
Further discussions can be found in Ref. 72.

〈τ〉 =

∫ ∞
0

Fs(Q, t)dt. (8)

Care must be given to note full decay of Fs(Q, t) before
applying this definition. With increasing temperature,
atomic mobility is increased leading to a reduction in re-
laxation time. The deviation from a simple Arrhenius
behavior (linear) is easily observed in Fig. 7(a)&(b) plot-
ted in semi-log scale. Just like the self-diffusion coeffi-
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cient, this activated nature of temperature dependence
of τα can be described with various functional forms. In
fact, in the temperature range we studied, the data can
be fit well with most of the models. However, despite var-
ious fittings of the activated dynamics, the deviation of
τα from the Arrhenius behavior is observed around Tx ∼
1300 K and agrees with what has been reported in other
studies69. Extracting fast relaxation time (β-relaxation)
from SISF is usually sensitive to model fittings and the
time range used, and as such cannot be relied upon.
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FIG. 7. Angell plot of temperature dependence of τα. (a) τ
found using 1/e cut of SISF. (b) 〈τ〉 computed by the area
under SISF. Al transitions from fast Cu-like dynamics at at
high T, to much slower Zr-like dynamics at low T.

It is interesting to note that, Al has much faster dy-
namics at high temperatures similar to Cu but slows
down considerably and behaves like Zr in relaxation time
scales at lower temperatures. We may thus interpret that
Al atoms couple to faster Cu atoms at high tempera-
tures, but switch to slower Zr atoms at lower temper-
atures. It has been suggested that Al addition to this
system greatly improves the glass forming ability of Cu-
Zr based metallic liquids. The mechanisms responsible
for this improvement still remain elusive. In the glassy
state, Al favors the formation of icosahedral structural or-
dering with improved symmetry, connectivity and charge
stability via bonded interactions70. In the liquid state,
the striking slowing down of dynamics with Al coupling
to Zr-like dynamics can partially be responsible for such
improvements. Q-dependence of SISF allows computa-
tions of relaxation time at various length scales. In the
hydrodynamic limit, Q → 0, τ and self-diffusion coef-
ficient D are inversely related. Therefore, the slope of
the inverse of τ versus Q2 plot in the small Q limit also
gives the self-diffusion coefficient, which agrees with that
extracted from MSD. Fig. 8 shows the temperature de-
pendence of inverse of τ versus Q2 depicting the linear
dependence for Q < 1.7 Å−1.
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FIG. 8. Inverse of structural relaxation time τα plotted
against Q2 shows a linear dependence for small Q values. The
slope of the curve, when fitted with a linear curve, can be used
to extract the self-diffusion coefficient D.

4. Shear Viscosity

Shear viscosity is another key transport property de-
scribing macroscopic liquid state dynamics and can be
calculated by equilibrium molecular dynamics (MD) cal-
culations using the appropriate Green-Kubo relation34,35.

η =
V

kBT

∫ ∞
0

dt〈σxy(0)σxy(t)〉, (9)

σxy is the off-diagonal x-y component of the stress ten-
sor, kB is the Boltzmann constant, V is the volume of
liquid and T is the absolute temperature of the system.
In the framework of a very simple viscoelastic Maxwell
model, a material undergoing shear exhibits exponential
relaxation/decay of local stress with a characteristic re-
laxation time τM that is related to viscosity through the
Maxwell relation.

τM =
η

G∞
(10)

G∞ is the instantaneous (high-frequency) modulus of
rigidity35. This relaxation behavior essentially separates
the timescale where the system evolves from solid-like
to liquid-like. In the framework of local configurational
excitations, the viscosity of the system is a manifesta-
tion of elementary changes in the atomic connectivity
network. Because the timescale for such local bond ex-
change and the timescale for stress-relaxation are equal
at high temperatures, it is postulated that the macro-
scopic stress is determined by topology of local neighbors
of an atom69. Normalized shear stress auto-correlation
function is a temperature dependent, monotonically de-
creasing function as shown in Fig. 9(a). At higher tem-
peratures, shear relaxation is almost exponential while
on approaching the melting point the relaxation becomes
highly non-exponential. Decreasing temperature rapidly
increases the correlation time and interestingly develops
a ‘bump’ around 0.3 ps. This feature has been attributed
to effect of boson peak vibrations in the glassy state50.
Shear viscosity obtained using the Green-Kubo relation
is shown in Fig. 9(b) and fitted with a VFT (Volger-
Fulcher-Tammann) equation. Temperature dependence
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FIG. 9. (a) Normalized stress auto-correlation function of melted Cu40Zr51Al9 at various temperatures. (b) Computed shear
viscosity of liquid Cu40Zr51Al9 using the Green-Kubo relation and the temperature dependence is fitted using VFT type
equation. (c) Testing linearity between Maxwell relation τM and alpha relaxation time τα. τα is roughly 3 times of τM .

of the viscosity can be fitted equally well using other
models such as MCT, parabolic, etc. in the studied tem-
perature range. The resulting fitting parameters depend
on the temperature range we choose to analyze. Nev-
ertheless, here we show the VFT fitting applied to the
entire temperature range we studied as it results in the
fitting parameter of interest, the diverging temperature,
T0 = 642 K, close to the reported glass transition for this
composition. We demonstrate linearity between τα and
τM by applying a linear fit in Fig. 9(c).

C. Dynamical Decoupling

1. Decoupling of Elemental Dynamics

The self-dynamics of elements occur in varying
timescale in the system. This can be readily quantified
by taking the ratios of elemental self-diffusion coefficients
and the relaxation time shown in Fig. 10. Al and Zr dif-
fusion and relaxations are observed to couple across the
temperature range studied. Interestingly, this ratio re-
veals that Cu dynamics is clearly decoupled from both
Al and Zr, and this decoupling is accelerated below the
dynamical crossover temperature Tx. Local bond forma-
tions between Al and Zr atoms must promote their simi-
larity. This decoupling of dynamics can be an important
mechanism causing heterogeneous dynamics in the sys-
tem in the liquid state. Rapidly decoupled elemental dy-
namics below Tx promotes spatial domains with distinct
dynamics.

2. Breakdown of Stokes-Einstein Relation

Having computed both self-structural relaxation time
and diffusion coefficient, we can test the validity of
Stokes-Einstein Relation (SER) in this glass forming liq-
uid. SER relates the translational diffusion coefficient
D, bulk viscosity η, and temperature T as D ∝ T/η, and
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FIG. 10. Decoupling of elemental dynamics revealed by taking
the (a) ratio of self-diffusion coefficients and (b) ratio of α-
relaxation time of all three elements. Al and Zr dynamics
is highly coupled while Cu shows decoupling in the entire
temperature range but accelerated below Tx ∼ 1300 K.

usually works well for high temperature liquids73. As vis-
cosity η, Maxwell relaxation time τM , and α-relaxation
time τα are proportional to each other, it is possible to
study the validity of SER in such metallic melts using
D and τα. We plot the quantity Dτα/T as a function
of temperature in Fig. 11. At high temperatures, this
quantity is approximately constant but increases sharply
below Tx ∼ 1300 K. Clearly, the deviations from Arrhe-
nius behavior of diffusion coefficient and relaxation time
transpires to the breakdown of the SER in this metal-
lic liquid at around Tx ∼ 1300 K, which is sufficiently
higher than its melting temperature. Results from this
analysis illustrate the deviations in Arrhenius behavior
of elemental diffusion and relaxation more distinctly.

In many liquids, breakdown of SER is observed in the
supercooled states but still above the glass transition
temperature and have been empirically found to obey
Fractional Stokes-Einstein relation74,75 D ∝ (τ/T )−ξ.
Specifically, in several molecular and macromolecular liq-
uids this crossover behavior is observed around ∼1.2Tg

76.
The reported glass transition temperature Tg for this
composition is approximately around 640 K. It is thus
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a surprising revelation that this crossover temperature
Tx is roughly ∼2Tg and thus in the equilibrium liquid
state. The many-body and complex chemical interac-
tions among the alloying elements should be partly re-
sponsible for this behavior. In addition, many studies
have attributed this violation of SER to the occurrence of
dynamical heterogeneities in structural glass formers77.
Dynamic heterogeneity, or spatially heterogeneous dy-
namics, refers to the existence of clusters of atoms, typi-
cally of the size of several particles (intermediate length
scale)78,79, whose relaxation dynamics differ from other
nearby clusters. Such heterogeneities in liquids are conse-
quences of highly mobile molecules forming clusters and
moving cooperatively. These spatially correlated clusters
allow local structural relaxations. Thus, due to the pres-
ence of clusters of varying local dynamics, the system as
a whole cannot relax. Thus, in this liquid, such hetero-
geneous domains grow spatially and lead to a decoupling
of translational diffusion and structural relaxation time.
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FIG. 11. Breakdown of Stokes-Einstein relation is observed
below Tx ∼ 1300 K, which is well above the glass transition
temperature of the system, and above the melting temper-
ature of the system. Arrow indicates the onset temperature
Tx where dynamics crossovers from uncorrelated to correlated
state.

In high temperature metallic liquids, the role of atomic
configurations and stresses in connection to the dy-
namical onset or the landscape influenced regime has
been discussed58,69,80,81. Local configurational excita-
tions (LCE)69, which involves the formation or break-
ing of a bond between neighbors, have been described as
steps to change atomic connectivity network and control
structural relaxations in the system. In this landscape
influenced regime, LCE’s are believed to interact via the
dynamic long-range stress fields they create. Dynamic
communications between two or more LCE’s are thus in-
volved in the flow mechanism. Such LCE’s interactions
may give rise to spatially heterogeneous dynamics in the
system69. However, the connections between these two
mechanisms need to be studied further. Above the dy-
namical crossover temperature Tx, the time involved in
LCE event and the Maxwell relaxation time agree with
each other. This is suggested to explain the Arrhenius
dependency of viscosity at high temperatures.

The effective hydrodynamic diameters of a liquid par-
ticle undergoing diffusion can be computed by utilizing

the ‘slip’ boundary condition50.

dh =
kBT

2πηD
. (11)

This provides a rigorous meaning to the Stokes-Einstein
relation and for it to hold, dh, must be a temperature in-
dependent constant. At high temperatures, it is nearly a
constant value while it sharply decreases below the iden-
tified onset of correlated dynamics (Fig. 12). The re-
duction of effective diameter is indicative of local bond
formations and development of correlations among par-
ticles.
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FIG. 12. Effective hydrodynamic/Stokes-Einstein diameter
of Cu, Zr and Al using (a) viscosity η and respective self-
diffusion coefficients D (b) using VFT fitted η. Clearly, at
higher temperatures the effective diameter is constant while
decreasing sharply below the dynamical crossover tempera-
ture Tx.

D. Dynamical Clustering

1. Dynamical Cluster Analysis using Machine-Learning

In a multi-component system, spatially heterogeneous
dynamics is believed to be initiated by varying mobility of
each species that form clusters and move cooperatively.
While, many studies have resorted to computations of
a ‘dynamical correlation length’ using four-point corre-
lation functions27,28,82, a physical picture in the atomic
scale is yet not fully developed beyond model 2D systems.
Because of the highly localized nature of cooperative dy-
namics, it is necessary to establish relevant quantity that
distinguishes local fluctuations in particle positions and
velocities83. To quantify such a dynamical quantity, we
choose the distribution of particle displacements over a
timescale of structural relaxation as a measure of relevant
dynamics.

We used a non-parametric, unsupervised machine
learning technique to perform an automated cluster anal-
ysis. Cluster size analysis algorithm, as described in
the methods sections, groups particles with very similar
mobility into spatial clusters. The distribution of parti-
cle displacements at any temperature follows a Maxwell-
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FIG. 13. (a)–(f) Visualization of dynamical clusters with more than 2 atoms in each group, which are classified based on
displacement of atoms over a time period of α-relaxation time at 1000 K and 2000 K. In this analysis, distribution of displace-
ments is divided into 25 bins and average cluster size in each mobility group is shown in (g)&(h). Clusters are colored by
the number of atoms in groups (3–43 atoms). Larger clusters are formed at lower temperatures in the slow and intermediate
mobility groups. Faster mobility groups don’t show appreciable changes over the temperature range.

Boltzmann type distribution, such that many particles
have small to intermediate displacements. Few particles
in the systems have very large displacements but their
numbers increase with increasing temperature in the sys-
tem. We choose τα as the timescale for performing this
analysis because the range of displacements of particles is
similar (in the range of 0 – 5 Å) and of the order of near-
est neighbor distance for highly mobile particles, similar
to collective jumps in soft-sphere glass in Ref. [84]. An-
other control parameter critical to this analysis is the
number of mobility groups (bins) covering the distribu-
tion of displacements. Using a small bin number leads to
larger number of particles in each mobility groups. Sub-
sequently, the sizes of clusters are larger simply due to
availability of many particles in each group. Hence, in our
analysis the number of bins was varied from 20 – 1000 and
verified to show no qualitative effect on the cluster size
trend. However, with large number of bins, mean cluster
sizes are smaller as each group contains fewer particles.
For visualization purposes, 25 bins are used; while for
temperature dependency, an optimal value of 250 bins is
used to define the mobility groups for the 4000 particles.

In Fig. 13 clusters with more than 2 atoms are vi-
sualized for three different mobility groups indicated by
the arrows in (g)&(h) at 1000 K and 2000 K. Atoms
within one cluster are connected via a minimal spanning
tree for visual aid. Evidently, slower groups at 1000 K
shows the largest cluster sizes with up to 43 atoms. In-
termediate mobility groups show comparable statistics
at both temperatures. Faster atom numbers grow sig-
nificantly at 2000 K leading to larger number of clus-

ters but no real size increase in comparison to those at
1000 K. To gain better insight into temperature depen-
dence of cluster size distributions, all 250 mobility groups
are re-arranged into 5 main groups with equal number of
particles (20% in each group). We plot the mean size
variation 〈ndc〉 across 3 of these 5 groups and the aver-
age (solid circle) over entire mobility groups versus tem-
perature in Fig. 14. Single particles and pairs were also
incorporated in this analysis. Size of dynamical clusters
revealed by this machine learning technique follows the
trends of Dτα/T (Fig. 11). At higher temperatures, ev-
idently, there are clusters with fewer particles while be-
low the identified dynamical crossover Tx increase in the
mean cluster size is more pronounced. For highly mobile
clusters, the increase in size is very small. This is ex-
pected for such mobile clusters that span spatial regions
in a transient manner. Furthermore, due to increase in
particle number at smaller displacements at low temper-
atures, a large number of bins span 20% of the fastest
particles. As the classification of 5 representative groups
is based on fixed number of atoms, each of these bins
contains less number of particles. Hence the mean clus-
ter size of fast groups remains small at low temperatures.
While this feature is statistically controlled and can be
analyzed using alternative approaches, it is more impor-
tant to appreciate the general trend of increasing cluster
sizes found in all other four groups and 〈ndc〉 with low-
ering temperature.

The quantified increase in cluster size in Fig. 14 spans
a range of 1.0 – 1.8 atoms per group. While, this may not
seem a rapid increase numerically, it must be emphasized
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FIG. 14. Mean number of atoms in dynamical clusters 〈ndc〉
classified into 5 major groups. Clearly, cluster size increases
with decreasing temperature, but it increases sharply below
the dynamical crossover temperature Tx ∼ 1300 K. This fea-
ture is observed across all 5 groups as well as the mean value
for each temperature. Average cluster size computation in-
cludes single particles. Displacement distribution is divided
into 250 bins and average cluster size for each bin (or mobility
group) is computed. Next, the slowest 20% of atoms are clas-
sified as Grp 1 (slow) particles, while the most mobile 20%
are in Grp 5.

that this computation incorporates all the isolated single
particles. The system, still being a high temperature
liquid, is highly mobile and as such clustering tendency
is suppressed unlike in supercooled states where cluster
sizes have been reported to be much larger. Furthermore,
it is important to clarify that definition of a cluster is
not unique and may be sensitive to the mobility parame-
ter used85,86. This non-parametric technique reveals the
atomic-scale spatial picture of increasing cooperativity
of dynamically similar particles. Coexistence of clusters
of mobile and immobile particles is a direct indication of
heterogeneous dynamics. Within one cluster, in order for
the structural relaxation to occur, all the particles have
to coordinate with each other and find a way to rear-
range themselves. As a consequence, the process needs
to overcome a certain energy barrier which gives rise to
the slow dynamics. At high enough temperatures, each
cluster is in principle composed of only one single parti-
cle, therefore, the dynamic correlation length should be
close to one; while as the system is increasingly cooled,
such clusters start to form and grow in size, therefore,
the mean cluster size also increases. The crossover tem-
perature Tx marks the onset of such correlated motions
or dynamic heterogeneity.

In high temperature metallic liquids, the role of atomic
configurations and stresses characterized by Local Con-
figurational Excitation (LCE) has been discussed with
regards to dynamical onset and glass transition58,69,80,81.
Phonons in liquids are short-lived, strongly scattered and
thus, can’t be used to explain macroscopic dynamical
properties. LCE, on the other hand are linked to the

macroscopic viscosity and could form the basis of elemen-
tary excitations in liquids. It is claimed that interactions
of multiple LCEs may give rise to spatially heterogeneous
dynamics in the system. Each LCE event involves break-
ing or formation of a bond. Thus, the dynamic communi-
cation between LCEs involves 2 – 3 atoms. The average
cluster size revealed by our technique 1 – 1.8 is influenced
by many isolated, single particles. If such particles are
filtered out the mean size is in the range of 2 – 3 atoms
and thus agrees with the LCEs picture.

In many relevant works, the underlying potential
energy landscapes that characterize structural relax-
ations in the system is proposed to influence the non-
exponential relaxations in liquids. In this landscape-
influenced regime68,87 the relaxation is found to be in-
creasingly non-exponential in time. Temperature depen-
dence of relaxations also deviates sharply from Arrhe-
nius behavior. This corresponds to the liquid being able
to sample deeper potential energy minima69. Hence, to
cross these deeper energy barriers requires the rearrange-
ment of positions of several particles in different clusters
independently. Thus, the mechanism illustrated in our
analysis also agrees with the qualitative assertions of en-
ergy landscape. To our knowledge, this is the first at-
tempt at visualizing such dynamical clusters using ad-
vanced machine learning and non-parametric statistical
analysis. Furthermore, in the ensuing sections we show
the agreement in trends with other commonly used mea-
sures of dynamic heterogeneity. Unlike the atomic scale
measure of heterogeneous dynamics revealed by our anal-
ysis, these quantities are ensemble averaged over many
possible configurations of the liquid.

2. Non-Gaussian Parameter

The non-Gaussian parameter, α2(t), has been exten-
sively used by researchers as a measure of dynamic het-
erogeneity.

α2(t) =

3

〈
N∑
l=1

[rl(t)− rl(0)]4
〉

5

〈
N∑
l=1

[rl(t)− rl(0)]2
〉2 − 1. (12)

The computed α2(t) in the temperature range of 950 –
2500 K are shown in Fig. 15(a–c). For an isotropic sys-
tem undergoing diffusive motions, MSD is linearly pro-
portional to time and the van Hove self-correlation func-
tion is Gaussian in nature. As expected α2(t) is zero in
this case. This is also true for short time ballistic motions
of atoms in the cage where the velocity of atoms is de-
scribed the Maxwell-Boltzmann distribution88. At inter-
mediate times, α2(t) is found to obey power-law depen-
dence on time given by α2(t) ∝

√
t similar to observations

in Ref. [89]. It is observed that α2(t) usually peaks at a
time corresponding to the crossover between the cage-
regime and the longer-time diffusive regime of the MSD.
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This timescale is in the late β-regime. This is indicative
of the fact that α2(t) yields information on transiently
mobile particles that jump due to the destruction of their
cages21. Positive value of α2(t) indicates that the prob-
ability for a particle to move very far is enhanced rela-
tive to a Gaussian random walk process90. While α2(t)
doesn’t provide any information on the length scale, it
is commonly observed to correlate with the timescale of
maximal dynamic heterogeneity in the system.

The peak height of α2(t) (Fig. 16(a)) when plotted
against the temperature scale shows a similar behavior
as 〈ndc〉 as well as the quantity Dτα/T . It is approxi-
mately constant at high temperatures and shows a sharp
rise around Tx ∼ 1300 K. In this Cu-Zr-Al system, α2(t)
shows an uncharacteristic short time peak for Al even at
very high temperatures. Timescale of this peak corre-
sponds to that of oscillations in both the MSD and SISF
of Al. While the mechanisms behind this observation
needs further examination, an interesting consequence of
this additional heterogeneity can be that the material is
locally resistant to enhanced diffusions under conditions
of localized heating or energy deposition. We hypothe-
size that the additional heterogeneity brought about by
Al can lead to resistance to increase in the effective tem-
perature in the glassy state.

3. Four-point Correlation Function

In highly viscous liquids approaching glass transition,
relaxation spectra span a wide range of time and are
strongly non-exponential20,78. Characterization of the
spatial fluctuations dynamics of the system must be re-
solved in both space and time and also their variance
from average behavior. Direct quantification of a length
scale characterizing correlated particles motion in liquids
involves the motion of two or more particles, and hence
are probed using a four-point, time-dependent density
correlation functions that contain information about the
density at two spatial points and two times27,82.

χ4(t) =
V

TN2
[〈Q2

s(t)〉 − 〈Qs(t)〉2],

Qs(t) =

N∑
l=1

w(|rl(t)− rl(0)|).
(13)

To capture the correlated motions between particles in
liquids, we used a ‘coarse graining’ approach by utilizing
an ‘overlap’ function that measures overlap between con-
figurations at time t = 0 and a future time t, described
in Ref. [27]. The overlap function w(|r1 − r2|) is unity
for |r1 − r2| ≤ a and 0 otherwise. The distance pa-
rameter ‘a’ is chosen to be larger than the square root of
the plateau of MSD. Using a value of a = 1.0 Å, χ4(t)
was computed in the temperature range of 950 – 2500 K
and shown in Fig. 15(d–f). Contribution to χ4(t) comes
from localized particles (self correlations) and particles
that move and are replaced by other particles (distinct).

It is shown that self-correlations dominate the χ4(t) sug-
gesting increasing contributions of localized particle fluc-
tuations. Hence, only self-correlations were assessed in
computations of χ4(t).
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FIG. 15. (a,b,c) Non-Gaussian parameter α2(t) for con-
stituent elements spanning a temperature range of 1100 –
2300 K. Al shows distinct short time peak below the main
structural relaxation time. This behavior is consistent with
medium timescale oscillations in Fs(Q, t) and MSD of Al.
(d,e,f) Temperature dependence of four point correlation
function χ4(t) of constituent elements27. As T decreases, both
α2(t) and χ4(t) increase in peak height and shift to a larger
time value.

The qualitative behavior of χ4(t) has been described by
many authors27,28,82,91,92; at very short times t = 0 and
long times t =∞, χ4(t) is close to zero, while in between
it shows a peak around a timescale of the order of typi-
cal relaxation time of the liquid. It is believed that such
time dependence reflects the transient nature of hetero-
geneous dynamics 28. Peak height of χ4(t), denoted by
χ∗4, is interpreted as the correlated volume for structural
relaxations, or simply an average ‘size’ of dynamic hetero-
geneity. Studying the temperature variation of χ∗4 in this
model glass forming system reveals an increasing spatial
correlations of dynamics in all constituent elements be-
low the identified dynamical crossover. Fig. 16(b) reveals
the drastic increase in peak height χ∗4 below Tx ∼ 1300 K
in Cu, Zr and Al. While the qualitative features of χ4(t)
agree for all three elements in the liquid, there are subtle
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variations in the timescale of peak value and in the χ∗4. Al
shows the largest scale of correlations among all elements,
which could be indicative of correlations in dynamics and
spatial structural fluctuations. The timescale of χ∗4 can
also be used as a measure of structural relaxation time
of liquid.
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FIG. 16. (a) Peak value of α2(t), denoted as α∗
2 shows a

distinct increase below the dynamical crossover temperature.
(b) χ∗

4 is defined as the maximum of χ4(t). Temperature
dependence of χ∗

4 shows similar behavior as that of α∗
2, the

mean cluster size 〈ndc〉, and Dτα/T . Arrows indicates the
dynamical crossover temperature Tx ∼ 1300 K.

IV. CONCLUSIONS

In this paper we characterize the equilibrium liquid
state of a model multi-component metallic liquid system,
displaying complex many-body interactions, using molec-
ular dynamics simulations, with emphasis on incoherent
or self-motions of constituent elements. The structure of
the liquid behaves similar to a simple liquid but reveals
locally favored bonding among Al & Zr atoms. Subse-
quent analysis of dynamic quantities reveals a deviation
from the Arrhenius behavior below a crossover tempera-
ture Tx ∼ 1300 ± 100 K, which is well above its melting
temperature of Tm ∼ 900 K and roughly twice of the
glass-transition temperature of the system. Below Tx,
the dynamics of Cu atoms is found to decouple strongly
from that of Al and Zr atoms. In addition, the Stokes-
Einstein relation that relates the diffusion coefficient and
the macroscopic shear viscosity or structural relaxation
time also breaks down in the equilibrium liquid phase at
Tx. The mechanisms for such decoupling are interpreted
as the increase in spatially heterogeneous dynamics or de-
velopment of intermittent correlated rearranging regions
mediated by the dynamic communications among local
configurational or topological excitations. The many-
body and chemical complexity of the investigated metal-
lic liquid allows the examination of these phenomena un-
ambiguously in the equilibrium liquid state. The onset
of sluggish dynamics at such a high temperature tempt-

ingly suggests that this material can be a good-glass for-
mer. The incipience of cooperativity in the equilibrium
state marks a sudden increase in dynamical cluster for-
mation. As the system is systematically cooled below the
liquidus temperature, we expect that the dynamical clus-
tering trend will enhance. However, upon reaching close
to experimental glass transition it can only be qualita-
tively asserted that such correlation lengths may span
entire system length.

To obtain an atomic-scale understanding of the spa-
tially correlated dynamics, we use a non-parametric, un-
supervised machine-learning algorithm to find natural
clusters of particles with similar mobility at a time-scale
of structural relaxation. The method allows unambigu-
ous direct visualization of three-dimensional dynamical
clusters for the first time to the knowledge of the authors.
Results from this cluster analysis reveals that the dynam-
ical cluster size progressively increases with decreasing
temperature, but below the dynamical crossover temper-
ature Tx this phenomenon is accelerated among particles
with slow to intermediate mobility. Particles with the
largest mobility do not show any appreciable increase in
cluster sizes. This is expected because such mobile par-
ticles do not span any spatial domain for a long period
and can be isolated due to their enhanced mobility. This
cluster analysis technique is qualitatively insensitive to
the number of mobility groups used in the analysis. The
temperature-trend of cluster size increase matches that of
other commonly used measures of dynamic heterogene-
ity such as non-Gaussian parameter α2(t) and four-point
correlation functions χ4(t). The effective hydrodynamic
radius also reveals a drastic decrease in size below Tx.
This agreement reveals that the method is able to pro-
vide a compelling picture of the dynamic heterogeneity.
This technique can be further extended to characterize
the morphology of the clusters, the influence of element
types on cluster formation and time-evolution of dynam-
ical clusters.
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