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Abstract

Antiferroelectrics are under extensive reexamination owing to their unique properties and tech-

nological promise. Computationally, they pose a challenge for predictive modeling as they often do

not posses well defined localized electric moments and exhibit a delicate energetic balance between

polar and antipolar phases. We propose a first-principles-based atomistic model for the prototype

antiferroelectric PbZrO3 that captures accurately a wide range of its properties. Application of the

model to study finite-temperature properties of PbZrO3 under external electric field and hydro-

static pressure aids in achieving a coherent picture of this intriguing material. In particular, our

simulations predict: i) the existence of a strong coupling between the antiferrodistortive motion of

oxygen octahedra and the antipolar distortion in a wide range of temperatures and electric fields;

ii) a linear temperature dependence for the critical field associated with the antiferroelectric to

ferroelectric phase transition; and iii) a stabilizing effect of the hydrostatic pressure on the phase

transition in PbZrO3 .

PACS numbers: 77.80.B-,63.70.+h,64.60.Bd
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Antiferroelectrics form a class of materials which are characterized by an antipolar crys-

tal structure that has an energetically competitive polar counterpart1. Due to a variety of

attractive functionalities offered by these materials there is an increased interest for their use

in the technological applications. Some examples include energy and charge storage devices,

electrocaloric refrigerators and high-strain actuators and transducers2–8. Interestingly, unlike

their polar counterparts - ferroelectrics - antiferroelectrics are far less understood. Indeed,

even their definition remains debatable for decades. The main difficulty in defining these fas-

cinating materials arise from the fact that unlike their magnetic analogue - antiferromagnets

- the majority of antiferroelectric do not have well defined localized electric moments. As a

result in defining antiferroelectrics it is essential to add the energy criterion that requires the

existence of a ferroelectric phase that is energetically competitive with the antiferroelectric

one. The absence of well defined localized moments poses many challenges for developing

predictive models of these materials. Indeed, the simple models of reorientable moments

localized on two different sublattices are mostly inadequate. One may wish to turn to the

soft mode approach that has been remarkably successful in understanding ferroelectrics9–13.

In such an approach the soft, or unstable, modes are identified (usually in high-symmetry

nonpolar phase) and used to construct the energetic description of the material. This ap-

proach is powerful when executed within the framework of first-principles computations14.

At the same time, the drawback is that such computations only provide the zero Kelvin

picture.

In case of ferroelectrics the latter difficulty has been eliminated by combining the soft

mode approach with classical simulations9. The case of antiferroelectrics, however, is more

challenging since the unstable mode is not in the center of the Brillouin zone. Moreover,

the method should capture the delicate energy competition between the zone-center polar

mode and the off-center antipolar mode15,16. These challenges perhaps explain the lack of

computational methods capable of providing an atomistic description of antiferroelectrics

for practcal use and within technologically relevant temperature range.

In this paper we develop such a computational approach that provides an accurate atom-

istic description of antiferroelectrics at finite temperatures from first principles. We then

apply this approach to study one of the most intriguing antiferroelectric, PbZrO3. The

recently renewed interest in this material1,17–21 is driven by its special role as the proto-

type antiferroelectric and its technological importance. PbZrO3 exhibits a variety of unique
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and practically useful properties such as electric-field induced phase transition from an

antiferroelectric (AFE) to a ferroelectric (FE) state, large electrostriction coefficients, gi-

ant electrocaloric effects1. PbZrO3 has been widely studied both experimentally22–28 and

computationally15,20,21,29–32 with majority of computational studies focused on zero Kelvin

properties of this materials. Interestingly, despite its special status as the prototype antifer-

roelectric our understanding of this material is far from complete. In particular, it remains

controversial whether there exists an intermediate, possibly ferroelectric phase, close to the

paraelectric to antiferroelectric phase transition19,33–38. The precise origin of antiferroelec-

tricity in this material is being revisited17. It is currently not well understood how the

intrinsic critical fields that induce AFE-FE phase transition depend on the temperature

and what is the effect of the hydrostatic pressure on the phase transition. As a result a

coherent picture of this material is presently missing. The purpose of this work is to use our

first-principles-based approach to provide a comprehensive evaluation of PbZrO3 properties

under applied electric field and hydrostatic pressure in a wide temperature range. In partic-

ular, we look into the temperature evolution of PbZrO3 electric properties, AFE-FE phase

transition, critical fields. We study the field and temperature evolution of the leading order

parameters as well as the effect that the hydrostatic pressure has on them.

We begin by developing the soft mode based effective Hamiltonian for PbZrO3 from

first-principles. The ground state structure of PbZrO3 is an antiferroelectric orthorhombic

distorted perovskite structure with an associated space group Pbam22–24. The dominant dis-

tortions are from the Σ2 (q = 2π
a
(1/4, 1/4, 0)) and R+

4 (q = 2π
a
(1/2, 1/2, 1/2)) modes. While

distortion associated with the Σ2 mode is responsible for the antipolar arrangements of the

lead ions along [110] direction, the R+
4 distortion arises due to the oxygen octahedra rota-

tion around [110] direction39. We first reproduce the ground state structure of PbZrO3 in

density functional theory (DFT) calculations carried out using the VASP software40,41. For

exchange-correlation we employ the local density approximation42,43 energy functional to-

gether with the projector-augmented wave method41,44 to represent the ionic cores. The

structural distortions are then analyzed using ISOTROPY software45. Fig. 1 gives the

amplitudes of different structural distortions along with the cumulative change in energy

associated with the addition of each distortion. Note that the energy of undistorted cubic

structure is chosen as the zero energy. We find that Σ2 and R+
4 are structurally and energet-

ically the most influential distortions. Indeed these two distortions together with the elastic
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deformations provide more than 92% of the energy gain associated with the distortion of the

ideal cubic perovskite structure. Based on this analysis we build our model to include Σ2

and R+
4 modes and strain deformations. Σ2 and R+

4 modes are localized on A and B sites

of the ABO3 unit cell, respectively, following the approach of Ref.46. Furthermore, the local

Σ2 mode (or just the local mode), u, is defined from the atomic displacements in Σ2 mode,

while the local R+
4 mode (or AFD local mode), ω, is defined from ∆r = a0

2
R̂ij × (ωi−ωj)

46,

where ∆r is the oxygen displacement in a mode, R̂ij is the unit vector that connects unit

cells i and j, a0 is the cubic lattice constant. Both u and ω are three-dimensional vectors.

Thus defined u has a polar character and is proportional to the local dipole moment in the

unit cell, while ω is nonpolar and describes antiferrodistortive (AFD) oxygen octahedron

tilts about the pseudocubic axises. The corresponding order parameters are computed by

averaging the local modes in the associated point of the Brillouin zone.

The energy of the structure (the effective Hamiltonian) is expanded in symmetry invari-

ants and written as

Etot =EAFE({ui}) + EAFD({ωi}) + Eelas({ηi}) + EAFE−elas({ui,ηi})

+EAFD−elas({ωi,ηi}) + EAFE−AFD({ui,ωi}), (1)

where EAFE is the energy associated with the antiferroelectric Σ2 mode and includes

contributions from the dipole-dipole interactions, short-range interaction, and on-site self

energy as defined in Ref.47. EAFD gives the energy due to the AFD mode that is similar

to EAFE but excludes the dipole-dipole interactions as AFD local modes are nonpolar. The

third term, Eelas, is the elastic energy associate with the unit cell deformation47. The

terms EAFE−elas, EAFD−elas, and EAFE−AFD are the energy contributions due the interactions

between the AFE mode and the strain, the AFD mode and the strain, and the AFE and AFD

modes, respectively46,47. The parameters that describe the interactions in Eq. (1) are derived

from the local density approximation based DFT calculations and are given in Table I. It

should be noted that a similar computational approach was previously developed to study

Pb(Zr1xTix)O3 solid solution near its morphotropic phase boundary and led to a variety

of insights and computational predictions48. The main difference between the approach

proposed here and the one developed in Ref.48 is the parametrization. Our parametrization

targets pure PbZrO3, while the parametrization of Ref.48 focuses on Pb(Zr1xTix)O3 with

x close to 50%. Methodologically the prime differences are in the terms that describe the
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TABLE I. First-principles parameters for PbZrO3 in atomic units using the notations of Ref.46,47.

The cubic lattice constant in is 7.81362 (a.u.). The normalized ionic displacements derived from

Σ2 mode are ξPb = −0.445326, ξZr = −0.069582, ξO1
= 0.475535, ξO2

= 0.748773, ξO3
= 0.100244.

AFE on-site κ2 0.00049 α 0.00723 γ −0.00345

j1 −0.00392 j2 0.01190

AFE intersite j3 0.00093 j4 −0.00007 j5 −0.00047

j6 −0.00011 j7 0.00015

Elastic B11 5.62008 B12 0.80047 B44 0.82796

AFE-strain coupling B1xx −0.12962 B1yy 0.14621 B4yz 0.01116

AFE dipole Z∗ 6.3244 ǫ∞ 7.025

AFD on-site κ̃2 −0.00059 α̃ 0.01721 γ̃ −0.01026

j̃1 0.00291 j̃2 −0.00028

AFD intersite j̃3 −0.00004 j̃4 −0.00276 j̃5 0.00056

j̃6 0.00011 j̃7 0.00001

AFD-strain coupling B̃1yyx,B̃2yyx 0.00277 B̃3yyx 0.02932 B̃4yzx 0.00113

AFE-AFD coupling Gxxxx 0.00894 Gxxyy 0.01926 Gxyxy −0.01396

interactions between the AFD mode and the strain and the AFE and AFD modes.

The total energy of Eq. (1) is used in Metropolis Monte Carlo (MC) simulations to

investigate the finite temperature properties of PbZrO3 . Technically, we simulate the an-

nealing of bulk PbZrO3 sample modeled by a 16x16x16 supercell with periodic boundary

conditions applied along all the three Cartesian directions. The annealing starts at 1500 K

and proceeds in steps of 20 K until the temperature reaches 20 K except for the vicinity

of the phase transition where the temperature step is reduced to 2 K. For each tempera-

ture we used 40,000 MC sweeps. The results from this simulation are shown in Fig. 2. In

agreement with some experiments37,38, we find a single transition from a paraelectric cu-

bic phase to an orthorhombic antiferroelectric phase at 946 K. The transition is associated

with the condensation of AFD mode in R+
4 point and AFE mode in Σ2 point. The AFE

vector points along [110] pseudocubic direction while the oxygen octahedra rotate around

the AFE vector. Our computational transition temperature overestimates the experimental

one of Tc = 505 K which could be in part due to the overbinding of structure by LDA
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since our Hamiltonian reproduces the zero Kelvin LDA energies precisely. We have also

computed the ferroelectric order parameter, however, did not find any ferroelectric phase

for the temperatures simulated. To understand the effect of the coupling between the local

modes and oxygen octahedron rotations we repeated the annealing simulations with this

coupling turned off. In these simulations we still observe condensation of both the AFE

and AFD order parameter, however, we find the presence of the following features: i) the

transition to the AFE and AFD phases are now decoupled with the latter one occurring

at a much higher temperature; ii) both transitions occur at temperatures higher than the

computational transition temperature of PbZrO3 . These suggest that both AFE and AFD

are the primary order parameters that compete with each other.

Next we investigate the behavior of PbZrO3 under an applied electric field. The term that

couples local mode to the applied electric field is added to the Hamiltonian of Eq. (1). We

carried out two sets of simulations with a dc electric field applied along [110] and [111] pseu-

docubic directions. In these simulations the field is slowly applied, then removed; reapplied

in the opposite direction, and then removed again. Such protocol simulates electric field

measurements at low frequencies. Fig. 3 shows the field evolution of FE, AFE, AFD and

strain order parameters. Panels (a) and (e) give the polarization components as a function of

the electric field and demonstrates the double loop structure that is a signature of the AFE

behavior. For the field applied along [110] direction the ferroelectric phase is orthorhombic

with polarization pointing along [110] direction, while for the field applied along [111] direc-

tion the ferroelectric phase is of rhombohedral symmetry with polarization pointing along

the [111] direction. Our 300 K saturation polarization of 34 µC/cm2 for the [110] field (and

of 28 µC/cm2 for the [111] field) agrees well with the experimentally measured values of 41

µC/cm227 and 24 µC/cm228. Our computational critical fields are higher than the reported

experimental ones27,28 owing to the fact that we simulate defect free samples which usually

exhibit nearly homogeneous phase transitions. Samples with defects are likely to exhibit

inhomogeneous phase transitions that may involve domain formation and propagation that

usually lowers switching fields22,49. Therefore, the computational critical fields model the

intrinsic critical fields for the material.

Panels (b) and (f) in Fig. 3 show the field evolution of the AFE order parameter. The

application of the electric field first results in a small decrease in the magnitude of the order

parameter and then a sharp transition into the FE phase. Panels (c) and (g) show the field
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evolution of the AFD order parameter. We find that in the AFE phase the AFD order

parameter remains parallel to the antipolar axis, while in the ferroelectric phase it prefers

to align in parallel to the polar axis. As a result, for the [110] electric field the AFD order

parameter does not change its direction throughout the electric field application. Similarly,

the direction of the low field AFE order parameter does not change. For the [111] field, on

the other hand, the direction of both AFE and AFD order parameters may change as the

poling field is removed.

Panels (d) and (h) in Fig. 3 show the electric field evolution for the components of

the strain tensor. Here we notice a very large (up to 0.01) change in strain as the structure

transitions from the AFE to the FE phase under application of the [111] electric field. For the

field along [110] direction the change in strain at the point of the AFE-FE phase transition

is rather small. However, the change in the strain due to the FE to AFE transition can

reach the values of up to 0.006. Such large strain response to the applied electric field is

very attractive for strain and force generators50 and electrostrictors51. We also note the

formation of low symmetry monoclinic phases upon application of the electric field.

Next we investigate how the response to the electric field changes with the temperature.

Fig. 4(a) shows the hysteresis loops computed at different temperatures. We notice that as

the transition temperature approaches the loop area shrinks and the critical field decreases.

The temperature dependence of the intrinsic critical field is given in Fig. 4(b). The critical

field decreases linearly with the temperature similar to the coercive field in ferroelectrics52.

The decrease in the critical field was observed experimentally in the vicinity of the phase

transition22. The critical fields associated with the electric field applied along the [111]

direction are slightly lower than the critical fields that correspond to the electric field ap-

plied along the [110] direction. The fact that the intrinsic critical field never crosses the

temperature axis suggests that the AFE remains energetically more favorable in the entire

temperature range. However, the situation may change in the presence of defects that lower

the critical fields and make the FE energetically more competitive. Indeed, Ref.[33] suggests

that the FE phase occur in response to the change in calcium concentration. Fig. 4(c) shows

the temperature dependence of strain and saturation polarization. Saturation polarization

remains nearly constant while there is an anomalous decrease in strain. Similar behavior

was also reported for the (Pb0.97La0.02)(Sn,Ti,Zr)O3 alloy53.

Next we turn to the effect of hydrostatic pressure on the properties of PbZrO3 that has
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recently received some attention20. Here we apply a hydrostatic pressure in the range of

-4 GPa to 4 GPa to study its effect on the PbZrO3 order parameters at finite temperature.

To the best of our knowledge, the finite temperature response of PbZrO3 to the hydrostatic

pressure is currently unknown. Fig. 5(a) shows the pressure dependence of AFE and AFD

order parameter at 300 K. We find that the hydrostatic compression favours AFD order

parameter and disfavours the AFE one, while the hydrostatic expansion causes the opposite

effect. AFD distortions respond to the hydrostatic pressure more strongly as compared to

the antipolar ones. The effect of the hydrostatic pressure on the transition temperature

is quantified in Fig. 5(b). In agreement with the experimental studies [] we find that the

hydrostatic compression results in an increase in the transition temperature. The hydro-

static expansion causes the transition temperature to drop. We attribute this trend to the

stabilizing effect that the hydrostatic compression has on the AFD motion.

In summary we have developed a computational model to study antiferroelectric PbZrO3 from

first principles. Application of the model to investigate finite temperature properties of this

prototype antiferroelectric demonstrated the existence of a strong coupling between the

oxygen octahedron rotation and AFE order parameter for a very large range of tempera-

tures and under applied electric field. The temperature evolution of the double hysteresis

loops indicated that the area of the loops shrink as the transition temperature approaches.

The intrinsic critical field that induces the AFE-FE phase transition decreases linearly with

temperature similar to the coercive field in ferroelectrics. The hydrostatic compression was

found to favour the AFD motions and disfavor the AFE distortions that lead to the increase

in the transition temperature.
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