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Geometric Universality of Plasmonic Modes in Graphene Nanoribbon Arrays

Kirill A. Velizhanin∗

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Graphene plasmonics is a rapidly growing field with multiple potential applications. One of the
standard ways to study plasmons in graphene is by fabricating an array of graphene nanoribbons
where nanoribbon edges provide the efficient photon-plasmon coupling. We systematically analyze
the problem of optical plasmonic response in such systems and demonstrate the purely geometric
nature of the size quantization condition for graphene plasmons. Accurate numerical calculations
allowed us to tabulate the universal geometric parameters of plasmon size quantization, which is
expected to become useful in analysis of experimental data on plasmonic response of graphene
nanoribbons. A simple analytical theory has also been developed which accurately reproduces all
the qualitative features of optical plasmonic response of graphene nanoribbons.

I. INTRODUCTION

The study of infrared plasmons – collective oscillations
of free electron density – in a charge-doped graphene is
a very rapidly growing field1–11. Multiple potential ap-
plications of graphene plasmonics8,10,11 are based or rely
heavily upon the strong optical confinement and large
density of states of graphene plasmons (GP), which is
the consequence of the GP wavelength being typically
much shorter than the photon wavelength at the same
energy (λhν/λGP ∼ 20− 100)6,8.

At these conditions, however, the simplest possible
means of GP excitation, i.e., via photon absorption by
a homogeneous graphene sheet, is not feasible since it is
impossible to simultaneously conserve both energy and
momentum. A lot of experimental and theoretical efforts
have been devoted recently to the development of effi-
cient optical and non-optical means to excite plasmons in
graphene. Some of these efforts employed particles with
dispersion relations sufficiently different from that of free
photons, e.g., electrons12–15, to be able to simultaneously
conserve energy and momentum. Other efforts focused
on breaking the continuous translational symmetry of the
system, so that only energy has to be conserved. These
include the formation of transient diffraction grating on
the surface of graphene by launching acoustic waves16,17,
as well as excitation of plasmons in near-field by a local
defect like atomic force microscope (AFM) tip4,18,19, in-
graphene impurity20 or semiconductor quantum dot5,6.
The translational invariance can be broken not only by
introduction of such external defects, but also by nano-
patterning of graphene itself. Specifically, optical excita-
tion of GPs in an array of graphene nanoribbons (GNR)
has recently emerged as one of the dominant experimen-
tal means to study GPs, Fig. 1(a). Size quantization of
GPs in such nanoribbons gives rise to spatially localized
plasmon modes that readily couple to photons. Studies of
GPs using GNR arrays have already provided important
insights into the nature of plasmon damping in graphene
and efficiency of plasmon coupling to optical phonons in
surrounding material21–25.

In order to use a GNR array to extract various prop-
erties of GPs (e.g., dispersion relation), the accurate the-
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FIG. 1. (a) GNR array with W and L being the GNR width
and the width of the periodic unit, respectively. (b) Effective
extra width normalized to the plasmon wavelength (left ver-
tical axis) and the extra reflection phase (right vertical axis)
versus the mode index.

oretical description of plasmon resonances in (i) an iso-
lated GNR and (ii) a GNR array is required. This has
been addressed to some extent recently23,24,26–29, how-
ever no systematic study in this regard has been under-
taken. In this work we (i) systematically study the plas-
monic response of periodic GNR arrays, and (ii) provide
a complete solution to the problem of size quantization
of GPs in such systems. This solution can be directly
used to analyze experimental results.

Classically, a plasmon mode within a single GNR can
be thought of as a standing wave of charge “sloshing”
perpendicular to the GNR axis. The insets in Fig. 1(b)
show schematically the charge distribution for the three
lowest-energy GP modes. Naively, one would think that
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the boundary condition of vanishing electric current at
the GNR edges directly transforms into a reflection phase
of π, resulting in a standard quantization condition

2Wkn = 2πn, n = 1, 2, ... (1)

where W is a GNR width and kn is a GP wavenum-
ber corresponding to the nth mode. However, this is not
entirely correct since just like any plasma oscillation, a
GP consists of the two coupled energy-carrying compo-
nents: charge current and oscillating electric field. The
current-vanishing boundary condition does obviously ap-
ply only to the current so that the electric field can ef-
fectively penetrate beyond the GNR edge resulting in a
new quantization condition 2knW

′
n = 2πn, where

W ′n ≡W + ∆Wn > W (2)

is the n-dependent effective GNR width. This condition
can also be expressed as23

2knW + 2φn = 2πn, (3)

where φn = kn∆Wn is an extra reflection phase accu-
mulated by a plasmon during “propagation” outside a
GNR. It turns out (see Sec. II) that this phase is rather
universal and depends only on mode index n and aspect
ratio of a GNR array, L/W (see Fig. 1(a)). Therefore,
evaluating φn for a few values of n and L/W (Fig. 1(b)
and Table I) provides a complete solution to the problem
of GP size quantization in an arbitrary GNR array.

The paper is organized as follows. Sec. II formalizes
the problem of polarization currents in a GNR arrays in
terms of an integro-differential equation. The spectral
decomposition of the kernel of this equation provides an
appealing geometric perspective onto the size quantiza-
tion of plasmons in GNRs. A simple approximate theory
of this size quantization is developed in Sec. III. Sec. IV
concludes.

II. GENERAL THEORY & SPECTRAL
DECOMPOSITION

From the onset we will limit ourselves to the situation
where (i) graphene is assumed purely two-dimensional
“zero-thickness” material, the projection of the exter-
nal electric field onto the graphene’s plane is (ii) ho-
mogeneous, E0(x, ω) ≡ E0(ω), and (iii) polarized per-
pendicular to GNR axes, Fig. 1(a). At these condi-
tions the problem becomes one-dimensional and the po-
larization current within a GNR array can be written as
j(x, ω) = σ(x, ω) [E0(ω) + Eind(x, ω)], where Eind(x, ω)
is the induced electric field. The spatially-resolved sur-
face conductivity of a GNR array is denoted by σ(x, ω)30.
Using the typically large ratio λhν/λGP ∼ 20 − 100 one
can neglect retardation effects and relate the induced
electric field to the induced surface charge density of
graphene, ρ(x, ω), via (in Gaussian units)

Eind(x, ω) =

∫
dx′

2

x− x′ ρ(x, ω), (4)

where 2
x−x′ is the electric field of a line charge with unit

linear density. The integration is assumed in the Cauchy
principal value sense. Using the expressions above and
the continuity relation, −iωρ(x, ω) + ∂xj(x, ω) = 0, one
can write down a closed equation for the polarization
current as

j(x) = σ(x)E0 −
2iσ(x)

ω

∫
dx′

∂x′j(x′)
x− x′ , (5)

where the explicit dependence on ω is omitted for brevity.
The obtained integro-differential equation can be

straightforwardly modified if the environment-induced
dielectric screening is present, which is the case when
a GNR array is fabricated on top of some dielectric sub-
strate (e.g., SiO2). The effective dielectric constant of
environment, ε, then enters the problem via a modified
electric field of a line charge, 2

ε(x−x′) . This modification

is straightforwardly absorbed into σ(x) which is what is
assumed in what follows.

Eq. (5) can be solved numerically as a large system of
linear equations via discretization of j(x) and σ(x) on
a real-space or momentum-space grid, the latter based
on the Fourier transform of Eq. (5). The real-space ap-
proach is most suitable in the case of an isolated GNR
(i.e., L/W →∞). The momentum-space approach - ex-
pansion of j(x) and σ(x) into plane waves with periodic
boundary conditions - is ideal when L is finite. Indeed,
using the momentum-space expansion with the period set
to L one automatically obtains a solution for the infinite
periodic GNR array so there is no need to solve a com-
putationally intensive problem of a very large but still
finite number of GNRs within a array24.

A. Spectral Decomposition

A more insightful and physically transparent approach
to solving Eq. (5) is to reformulate it as an eigenvalue
problem. To this end we first consider an integro-
differential operator in the second r.h.s. term of Eq. (5).
That this operator is not symmetric complicates its spec-
tral decomposition. However, by defining a new unknown
function as y(x) = σ1/2(x)Eind(x) one obtains a new
equation

y(x) = σ1/2(x)E0 −
2i

ω

∫
dx′

σ1/2(x)∂x′
[
σ1/2(x′)y(x′)

]

x− x′ ,

(6)
where the operator is now symmetric31. Further simpli-
fication can be obtained for a specific but very impor-
tant case where the spatial variation of the conductivity
within the GNR array can be expressed as

σ(x) = σ0h(x), (7)

where h(x) = 1 when x is within a GNR and h(x) = 0
otherwise32. Then the integro-differential equation can
be rewritten as

y(x) = σ1/2(x)E0 −
2iπσ0
ω

(K̂y)(x), (8)
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where operator K̂ is defined as

(K̂y)(x) =
1

π

∫
dx′

h(x)∂x′ [h(x′)y(x′)]
x− x′ . (9)

This operator is real and symmetric so that it can be di-
agonalized with all the eigenvalues being real and a set
of eigenfunctions forming a complete orthogonal basis.
Therefore, in matrix bra-ket notation this operator is de-
composed as K̂ =

∑
n kn|yn〉〈yn| so that Eq. (8) can be

formally solved as

|y〉 =
∑

n

|yn〉〈yn|(
1 + 2πiσ0

ω kn
) |ỹ〉, (10)

where ỹ(x) = σ1/2(x)E0. Restoring the original real-
space notation and multiplying both sides by σ1/2(x) we
obtain the spatially-resolved polarization current as

j(x) = σ0E0

∑

n

h(x)yn(x)
∫
dx′ h(x′)yn(x′)(

1 + 2πiσ0

ω kn
) . (11)

The homogeneous current, i.e., the one interacting with
the external homogeneous electric field, is given by
L−1tot

∫
dx j(x), where Ltot is the total length of GNR in

x direction. The effective homogeneous conductivity of
the system is then (recovering explicit frequency depen-
dence)

σ̃(ω) = σ0(ω)
∑

n

Λn[
1 + 2πiσ0(ω)

ω kn

] , (12)

where Λn is given by

Λn = L−1tot

[∫
dxh(x)yn(x)

]2
. (13)

As a function of ω, σ̃(ω) can have resonances when one
of the denominators vanishes or nearly vanishes. The
positions and the intensities of such resonances are de-
termined by kn and Λn, respectively. The obtained uni-
versal spectral decomposition is similar in spirit to that
obtained recently in Ref.27.

In the limit of continuous graphene, h(x) ≡ 1, one can
show that y(x) = eikx with arbitrary real k is an eigen-

function of operator K̂ with eigenvalue |k|. Therefore,
eigenvalues kn can be interpreted as effective wavenum-
bers of a continuous GP being size-quantized within a
GNR array. As was discussed in Introduction, kn does
not exactly match the “naive” size quantization condi-
tions since there is a finite phase accumulation, φn =
πn − knW > 0, that occurs when a GP “propagates”
beyond the GNR edge. The advantage of the solution
of the problem given by Eqs. (11) and (12) is that oper-

ator K̂ is purely geometric i.e., it does depend only on
geometric configuration of a GNR array via h(x) but not
on ω or σ0(ω). Furthermore, a simple size rescaling of
Eq. (9) shows that φn and Λn are functions of only two

L/W φ1 λ1 φ2 λ2 φ3 λ3

∞ 0.826 0.888 0.774 0 0.791 0.513

4 0.885 0.891 0.773 0 0.795 0.504

2 1.075 0.896 0.755 0 0.812 0.471

1.5 1.297 0.902 0.703 0 0.846 0.429

1.25 1.563 0.912 0.593 0 0.921 0.372

1.125 1.823 0.923 0.438 0 1.049 0.310

1.05 2.105 0.938 0.240 0 1.286 0.237

1.01 2.429 0.961 0.059 0 1.719 0.146

TABLE I. The extra reflection phase (φn) and the resonance
strength (in the form of λn = n2Λn

L
W

) tabulated for three
first plasmon modes within a range of aspect ratios (L/W ) of
GNR arrays.

parameters: n and L/W , and not on L or W separately.
Therefore, one can say that the plasmonic response of
different GNR arrays with the same L/W belong to the

same geometric universality class since K̂ – operator that
encodes the geometry of a GNR array and determines the
GP size quantization – is exactly the same for them up
to the size rescaling.

This geometric universality is a generalization of the
previously introduced electrostatic scaling law26. The
advantage of the former is that the diagonalization of
operator K̂, done only once for each value of L/W , gives
not only the positions of resonance peaks but the full
information on the frequency-resolved optical response of
a GNR array via Eq. (12). This includes peak intensities
as well as their widths and shapes.

Tabulating numerically evaluated φn and Λn for a few
first modes within a range of L/W constitutes then, with
the help of Eq. (12), the complete solution to the the
problem of size quantization of GPs in an arbitrary pe-
riodic GNR array. Table I gives the numerical values
for the extra reflection phase and the resonance strength
(in the form of λn = n2 LW Λn) for the first three plas-
mon modes. The numerical diagonalization of operator
K̂ has been performed on the real-space grid for an iso-
lated GNR (L/W = ∞) and using the plane wave basis
set at finite L/W . The convergence with respect to the
basis (or grid) size was thoroughly tested and ∼ 103−104

basis functions (grid points) were sufficient for numerical
convergence of all the numerical results presented in this
work. The numerical results for the isolated GNR (the
first line in the table) are consistent with those obtained
very recently elsewhere28.

To see if the extra reflection phase is significant it has
to be compared to the “naive” phase a GP accumulates
when getting from one edge of GNR to another, i.e.,
πn for the nth mode [see Eq. (1)]. Naturally, the cor-
rection is most significant for the first mode (n = 1),
for example φ1/π = 0.263 for an isolated GNR consti-
tutes a significant correction if a resonance frequency is
used to draw some conclusions on plasmonic response of
graphene, e.g., its dispersion relation. Furthermore, one
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can notice that the difference between φ1 for an isolated
GNR (L/W →∞) and for a GNR array with L/W = 2 is
also non-negligible. At these conditions, GNRs in a very
typical experimental configuration22–24 (L/W = 2) can-
not be considered isolated and the interaction between
GNRs has to be accounted for by assuming φ1 = 1.075
and not φ1 = 0.826 as it was in the case of the isolated
GNR.

III. ANALYTICAL ESTIMATES

The problem of the plasmonic response of a GNR
array has been solved numerically in the previous sec-
tion. Eq. (12) parametrized by data in Table I gives
the frequency-resolved effective conductivity of a GNR
array. However, it would be great to develop a simpler
(i.e., analytical) theory to reproduce the trends in the
dependence of φn and Λn on n and L/W . Such theory
would be useful when simple “quick-and-dirty” estimates
are needed and also if a deeper intuition on the physics
of size quantization of GPs is required. To this end we
assume a perturbative approach where as a zeroth-order
approximation we take the eigenfunctions of operator K̂
in Eq. (9) to be simple (normalized) standing waves, i.e.,

y(0)n (x) =

(
2L

LtotW

)1/2∑

m

hm(x) sin [qn(x+mL)] ,

(14)
where hm(x) = 1 only when x is within the mth GNR,
and qn = πn/W comes from the “naive” size quantiza-

tion. Then, the first-order-corrected eigenvalues of K̂ can
be evaluated as (in matrix notation) kn = 〈yn|K̂|yn〉 and
the explicit substitution of Eq. (14) into this expression
yields

kn =
2Lqn
πLtotW

∑

m,m′

∫ W

0

dx

∫ W

0

dx′
sin(qnx) cos(qnx

′)
(x+mL)− (x′ +m′L)

=
2

πW

∞∑

m=−∞

∫ qnW

0

dx

∫ qnW

0

dx′
sin(x) cos(x′)
x− x′ +mqnL

.

(15)

Performing substitution u = x − x′ and v = (x + x′)/2
one obtains kn = limN→∞ kNn , where

kNn =
2

πW

N∑

m=−N

∫ qnW

0

du (qnW − u)
sinu

u+mL
. (16)

The contribution m = 0 to kn is easily evaluated as

k0n =
2

πW
[qnWSi(qnW ) + cos qnW − 1] , (17)

where Si(x) =
∫ x
0
dt sin t

t is the sine integral33. This is
the final answer for an isolated GNR. If other GNRs

are nearby however, interaction with them has to be ac-
counted for. To this end, we first have to evaluate the
following integral

S(b, a) ≡
∫ a

0

du
sinu

u+ b

= Si(a+ b, b) cos b− Ci(|a+ b|, |b|) sin b, (18)

where we define Si(a, b) ≡ Si(a) − Si(b) and Ci(a, b) ≡
Ci(a) − Ci(b). The cosine integral is given by Ci(x) =
−
∫∞
x
dt cos t

t
33. Eq. (18) is valid when (i) a > 0, (ii)

|b| > a (i.e., b can be negative) or b = 0. Then, kNn
defined above becomes

kNn =
2

πW

N∑

m=−N
[qn(W +mL)S(mqnL; qnW )

+ cos qnW − 1] . (19)

In Fig. 2 we compare these analytical results with numer-
ical simulations for a GNR array with L/W = 2 (panel a)
and L/W = 1.125 (panel b). Analytical calculations are
performed for the case where interaction between GNRs
is turned off (k0n, red line), interaction only between near-
est nanoribbons is turned on (k1n, blue squares) and for
the whole GNR array where interaction between any two
GNRs is allowed (k∞n , magenta triangles). As is seen,
even in the case of GNRs separated by a very thin slit
(panel b) the tight-binding description is already very
close to the full analytical description (k∞n ). The latter
reproduces all the qualitative features of the exact numer-
ical solution such as converging to a constant at large n,
as well as the phase and the amplitude of oscillations of
φn versus n. The largest disagreement between numer-
ical and analytical results is a systematic down shift of
the latter. The difference between numerical and analyt-
ical results, plotted by black dashed lines in both panels,
is seen to be essentially a constant ∆φ ≈ 0.15 indepen-
dent on L/W , except for very few lowest plasmon modes.
Thus, in principle, one can use the analytical expression
shifted by this empirical correction constant as a good
approximation to exact numerical results.

The zeroth-order analytical estimate for the resonance
strength reads as

Λn = L−1tot

[∫
dx y(0)n (x)

]2
, (20)

where y
(0)
n (x) is given by Eq. (14). The straightforward

evaluation of this integral produces

Λn =
W

L

8

π2n2
sin2 (πn/2) . (21)

As is seen, the resonance strength vanishes exactly for
even modes (n = 2, 4, ...). This is related to the symme-
try of a GNR array with respect to the inversion x→ −x,
which results in a definite parity state (even or odd) of
each plasmon mode. Even modes have even parity of
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FIG. 2. Comparison of numerically exact simulations (solid
black line) and the approximate analytical approach. (a)
typical experimental configuration (L/W = 2). (b) “wide-
nanoribbon-thin-slit” configuration (L/W = 1.125). In both
panels analytical results are shown for: an isolated GNR (k0n,
red circles), Tight-Binding (k1n, blue squares) and full GNR
array (k∞n , magenta triangles). Black dashed line is the dif-
ference between the numerical simulation results and k∞n .

the charge density distribution, Fig. 1(b), thus producing
zero dipole moment and, therefore, vanishing resonance
strength. This phenomenon is related to symmetry and
thus true not only for the perturbative calculations but
also for the exact numerical ones. In particular, this is
the reason for vanishing resonance strength λ2 in Table I.

Fig. 3 shows the comparison of the analytical, Eq. (21),
and numerical results for resonance strength plotted as

λn ≡ Ln2

W Λn. It is seen that the analytics underestimates
the resonance strength for all the modes except for the
lowest one (n = 1) by a factor of ∼2 at L/W → ∞
(isolated GNR) and even more for finite L/W . This ob-
servation can be rationalized by realizing that Eq. (21) is

based on zeroth-order eigenfunctions of K̂ so it does not
account for coupling between GNRs. Decreasing L/W
results in stronger interaction between GNRs and thus
leads to an increasing deviation of non-interacting ana-
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lytical results from the numerical ones.

It is then rather counterintuitive that the analytics un-
derestimates the resonance strength of the first plasmon
mode only slightly for all L/W . This phenomenon can
be explained using the sum rule

∑∞
n=1 Λn = W/L that is

applicable for resonance strengths calculated from both
the exact eigenfunctions of K̂ and the zeroth-order basis,
Eqs. (14) and (21). The derivation of this sum rule is
given in Appendix A. According to this sum rule, an-
alytically overestimating the resonance strengths for all
the modes with n > 1 has to result in an underestima-
tion of Λ1 which is indeed the case. The reason why
the analytical result for Λ1 is only slightly less than the
the numerical one is that according to Eq. (21), Λn de-
cays rapidly with n so that most of the total resonance
strength, W/L, has to be concentrated in the very first
resonance. Therefore, Λ1 ≈W/L (i.e., λ1 ≈ 1) no matter
which basis set of the two is used.

At L/W → 1 the resonance strengths of plasmon
modes have to decrease since L/W = 1 corresponds to
the case of homogeneous graphene where no plasmon can
be excited by the homogeneous electric field assumed in
this work. Resonance strengths at n > 1 are indeed
in agreement with this expectation as is seen in Fig. 3.
However, the sum rule dictates that the total resonance
strength is conserved so that it becomes more and more
concentrated in the very first mode. Along with this, φ1
grows with L/W → 1 (see Table I) so that k1 → 0. These
two observations lead to transformation of Eq. (12) into
σ̃(ω) = σ0(ω) which is of course a quite expected result
since the effective conductivity of a uniform graphene has
to reduce to its intrinsic conductivity, σ0(ω).

To further corroborate this, Fig. 4 shows the profile of
the lowest-mode eigenfunction for a range of L/W . For
convenience, the eigenfunction is normalized with respect
to a single GNR here and not to the entire GNR array,
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hence the prefactor
(
LtotW
L

)1/2
for the vertical axis. The

zeroth-order eigenfunction,
√

2 sin(πx/W ), is shown by
a dashed red line for comparison. One can see that this
analytical dependence most closely resembles the eigen-
function of the isolated GNR (L/W =∞). Once the dis-
tance between GNRs decreases, the numerically obtained
eigenfunction deviates farther from the zeroth-order one
and approaches a constant value of 1 (shown by dashed
black line as a guide for the eye). Therefore, it is expected
that in the limit of L/W → 1 the so normalized eigen-
function of the lowest plasmon mode will approach 1 at
any x thus producing a homogeneous current consistent
with σ̃(ω) = σ0(ω).

IV. CONCLUSION

In this paper we analyze the problem of spatially con-
fined plasmon modes in GNR arrays. We demonstrate
that this problem can be decoupled into the problem of a
plasmon in a uniform graphene sheet and the problem of
size quantization. By focusing on the latter we demon-
strate that such a size quantization is purely geometric
in nature, i.e., the correct size quantization condition for
plasmons in the GNR array is fully determined by the
geometry of the array and nothing else. Further, we in-
troduce the notion of the geometric universality class of
GNR arrays where arrays with the same value of L/W
(other parameters are arbitrary) belong to the same class.
The size quantization condition is universal within a class
and can be obtained by a numerical (or approximate an-
alytical) diagonalization of a certain integro-differential
operator. We provide the results of accurate numerical
diagonalization for the first three plasmon modes in Ta-
ble I. The tabulated data can be directly used in analysis
of experimental data on optical response of GNR arrays.

Finally, it is worthwhile to discuss the assumptions
that were made in the very beginning of Sec. II. From

the perspective of dimensional analysis, since L/W is
the only dimensionless parameter of the problem, the
only possible equation for the frequency of plasmon res-
onances is (neglecting the real component of graphene
conductivity)26

Im {σ0(ωn)}
ωnW

f(n,L/W ) = 1, (22)

where f(n,L/W ) is a certain “universal” function of n
and L/W . Introducing other parameters to the problem
may lead to a more complex “universal” function if ex-
tra dimensionless combinations can be constructed. For
example, if the optical wavelength, λopt, becomes com-
parable to W in the frequency range of interest, then
we are forced to introduce a new dimensionless param-
eter, λopt/W , as an argument of f . The same is true
for, e.g., the Fermi wavelength in charge-doped graphene,
λF , or the effective thickness of graphene sheet, d. For-
tunately, one typically has d, λF � W � λopt in realis-
tic systems, so that graphene can be considered a truly
two-dimensional system (d�W ) with local conductivity
(λF � W ), and the homogeneous external electric field
(λopt � W ). At these conditions, dimensionless param-
eters d/W , λF /W and λopt/W are physically irrelevant
bringing us back to Eq. (22).

Finally, it is worth mentioning that the phenomenon
considered in this work, i.e., the penetration of the elec-
tric field beyond the GNR edges, is not the only possi-
ble source of the inequality W ′n 6= W in Eq. (2) when
realistic experimental conditions are considered. The
quality of GNR edges can also affect the effective GNR
width. For example, specific parameters and experi-
mental conditions of electron-beam lithography can re-
sult in over-exposed22 or under-exposed25 GNR edges,
resulting in the width of conducting graphene within a
GNR being lower or higher, respectively, than the ap-
parent GNR width extracted from scanning electron mi-
croscopy (SEM) images. At first glance, this uncertainty
in the GNR width renders the analysis present in this
paper somewhat useless since one would have to notice a
small change in W ′n on top of W that is not accurately
known because of lithographic imperfections. However,
we would like to emphasize that these two effects scale
differently with such parameters as W , L and n (see
Fig. 1). Indeed, the lithography-induced variation of the
GNR width, i.e., under- or over-exposure, is expected to
be independent of these parameters. On the other hand,
∆Wn is seen in Fig. 1(b) to be dependent on n and L/W
so that these two effects can be experimentally distin-
guished and thus analyzed independently. In the present
work, W is always assumed to be the actual width of con-
ducting graphene, Eq. (7), and not the apparent width
seen in SEM images.

We are thankful to Anatoly Efimov for multiple discus-
sions and the help with the manuscript. This work was
performed under the NNSA of the U.S. DOE at LANL
under Contract No. DE-AC52-06NA25396.
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Appendix A: Sum Rule for Resonance Strength

In this Appendix we will demonstrate that the total
resonance strength of all the plasmon modes in a GNR
array equals to the fraction of graphene in the array, i.e.,∑∞
n=1 Λn = W/L, where Λn is defined by Eq. (13). To

this end it is most convenient to work in a discretized
real-space representation where a normalized eigenfunc-
tion yn(x) is represented by vector |yn〉 with components
defined as [|yn〉]i = ∆x1/2yn(xi), where ∆x = Ltot/M
is the discretization step and M is the total number of
real space discretization points. Here, the prefactor of
∆x1/2 is required so that |yn〉 is normalized in a vector
sense, i.e., 〈yn|yn〉 =

∑
i y

2
n(xi) = 1. Within this discrete

picture, Eq. (13) takes on the form

Λn = L−1tot

(∑

i

h(xi)yn(xi)∆x

)2

= L−1tot
(

∆x1/2〈h|yn〉
)2
, (A1)

where [|h〉]i = h(xi). The summation over all the reso-
nance strengths then becomes

∑

n

Λn = L−1tot∆x
∑

n

〈yn|h〉〈h|yn〉. (A2)

In this expression, the summation over the complete or-
thogonal basis {yn} is equivalent to evaluation of the

trace of matrix ĥ = |h〉〈h|. A diagonal elements of this
matrix, hii, equals to 1 if xi corresponds to a position
within a GNR, and 0 otherwise. Therefore, the trace of

ĥ is proportional to the areal fraction of graphene in the

GNR array. More specifically,
∑
n〈yn|h〉〈h|yn〉 = Trĥ =

M W
L . Substituting this result into Eq. (A2) one obtains

∑

n

Λn = W/L. (A3)

This result does not depend on the basis yn as long as it
is complete. For example, the basis does not have to con-
sist of exact eigenfunctions of operator K̂ for Eq. (A3) to
be true. Furthermore, if the basis is not complete in the
entire space but complete in the space defined by equa-
tion h(x) = 1, it still produces Eq. (A3). Therefore, the
summation of zeroth-order resonance strengths, Eq. (21),
still produces W/L since the zeroth-order basis, Eq. (14)
is complete on GNRs. This can also be shown by direct
summation.
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