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Abstract

We investigate how the electron-vibron coupling influences electron transport via an anisotropic

magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian

with parameter values obtained from density-functional theory (DFT). Magnetic anisotropy pa-

rameters, vibrational energies, and electron-vibron coupling strengths of the Fe4 are computed

using DFT. A giant spin model is applied to the Fe4 with only two charge states, specifically a

neutral state with the total spin S = 5 and a singly charged state with S = 9/2, which is consistent

with our DFT result and experiments on Fe4 single-molecule transistors. In sequential electron

tunneling, we find that the magnetic anisotropy gives rise to new features in conductance peaks

arising from vibrational excitations. In particular, the peak height shows a strong, unusual de-

pendence on the direction as well as magnitude of applied B field. The magnetic anisotropy also

introduces vibrational satellite peaks whose position and height are modified with the direction

and magnitude of applied B field. Furthermore, when multiple vibrational modes with consider-

able electron-vibron coupling have energies close to one another, a low-bias current is suppressed,

independently of gate voltage and applied B field, although that is not the case for a single mode

with the similar electron-vibron coupling. In the former case, the conductance peaks reveal a

stronger B-field dependence than in the latter case. The new features appear because the mag-

netic anisotropy barrier is of the same order of magnitude as the energies of vibrational modes with

significant electron-vibron coupling. Our findings clearly show the interesting interplay between

magnetic anisotropy and electron-vibron coupling in electron transport via the Fe4. The similar

behavior can be observed in transport via other anisotropic magnetic molecules.

PACS numbers: 73.23.Hk, 75.50.Xx, 73.63.-b, 71.15.Mb
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I. INTRODUCTION

Recent experimental advances allow individual molecules to be placed between electrodes,

and their electron transport properties to be measured in single-molecule junctions or tran-

sistors. One interesting family of molecules among them are anisotropic magnetic molecules

referred to as single-molecule magnets (SMMs). A SMM comprises a few transition metal

ions surrounded by several tens to hundreds of atoms, and has a large spin and a large

magnetic anisotropy barrier1–3. Crystals of SMMs have drawn attention due to unique quan-

tum properties such as quantum tunneling of magnetization1,2 and quantum interference or

Berry-phase oscillations induced by the magnetic anisotropy4–6. There have been studies

of the interplay between the quantum properties and the electron transport of individual

SMMs at the single-molecule level7–19.

Molecules trapped in single-molecule devices vibrate with discrete frequencies character-

istic to the molecules, and the molecular vibrations can couple to electronic charge and/or

spin degrees of freedom. When this coupling is significant, electrons may tunnel via the

vibrational excitations unique to the molecules, and the coupling can be tailored by ex-

ternal means. Electron tunneling through vibrational excitations have been observed in

single-molecule devices based on carbon nanotubes16,20–23 and small molecules24–27 including

SMMs such as Fe4
28. Interestingly, in some cases, a pronounced suppression of a low-bias

current was found, attributed to a strong coupling between electronic charge and vibrations

of nanosystems21,22,28–30. It was also shown that the coupling strength could be modified

at the nanometer scale in carbon nanotube mechanical resonators23. For a SMM TbPc2

grafted onto a carbon nanotube, a coupling between the molecular spin and vibrations of

the nanotube was observed in conductance maps of the nanotube16.

So far, theories of the electron-phonon or electron-vibron coupling effects have been devel-

oped only for isotropic molecules30–39 in single-molecule junctions or transistors. For exam-

ple, for molecules weakly coupled to electrodes, a model Hamiltonian approach is commonly

used to investigate the coupling effects, while for molecules strongly coupled to electrodes, a

first-principles based method such as density-functional theory (DFT) combined with non-

equilibrium Green’s function method, is applied36. Recently, the coupling effects have been

studied for isotropic molecules weakly coupled to electrodes, by using both DFT and the

model Hamiltonian approach39. For anisotropic magnetic molecules weakly coupled to elec-
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trodes, a combination of DFT and a model Hamiltonian would be proper to examine the

coupling effects. The interplay between magnetic anisotropy and vibron-assisted tunneling

can provide interesting features concerning vibrational conductance peaks.

The SMM Fe4 has been shown to form stable single-molecule transistors without linker

groups13,28,40. The Fe4 consists of four Fe
3+ ions (each ion with spin Si = 5/2), among which

the center Fe3+ ion is weakly antiferromagnetically coupled to the outer Fe3+ ions via O

anions, as shown in Fig. 1(a). The neutral Fe4 has the total ground-state spin S = 5 with a

magnetic anisotropy barrier of 16.2 K [Fig. 1(b)]28,40,41, while its doubly degenerate excited

spin multiplets S = 4 are located at 4.8 meV above the ground-state spin multiplet S = 541.

The negatively singly charged Fe4 has the total spin S = 9/2 well separated from the excited

spin multiplet S = 11/2. The previous DFT calculations suggest that the Fe4 has only three

vibrational modes with the electron-vibron coupling greater than unity28.

Here we present three electron-vibron coupling effects on electron transport via the SMM

Fe4 at low temperatures, in a sequential electron tunneling limit [Fig. 1(c)], by using the

model Hamiltonian with the DFT-calculated magnetic anisotropy parameters, vibrational

energies, and electron-vibron coupling strengths. Firstly, the height of vibrational conduc-

tance peaks shows a strong, unusual dependence on the direction and magnitude of applied

B field. This B-field dependence is attributed to the magnetic anisotropy barrier that is

of the same order of magnitude as the energies of the vibrational modes with significant

electron-vibron coupling. Without the magnetic anisotropy, the conductance peaks would

be insensitive to the B-field direction. Secondly, satellite conductance peaks of magnetic

origin exhibit a unique B-field evolution depending on the direction of B field. At low B

fields, the low-bias satellite peak arises from the magnetic levels in the vibrational ground

state only, while at high B fields, the levels in the vibrational excited states contribute to

the satellite peak as much as that those in the vibrational ground state, because the sepa-

ration between the levels becomes comparable to the vibrational excitations. Thirdly, when

multiple modes with significant electron-vibron coupling (1 < λ < 2) have energies close

to one another, the low-bias conductance peak and the B-field dependence of the conduc-

tance peaks reveal qualitatively different features from the case of a single mode with the

similar electron-vibron coupling. The similar trend to our findings may be observed for any

anisotropic magnetic molecules as long as magnetic anisotropy is comparable to vibrational

energies. This work can be viewed as a starting point for an understanding of magnetic
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anisotropy effects on electron tunneling via vibrational excitations, by using the combined

method.

The outline of this work is as follows. We present the DFT method in Sec.II, and show

our DFT results on electronic structure and magnetic and vibrational properties of the Fe4

in Sec.III. We introduce the model Hamiltonian and a formalism for solving the master

equation in Sec.IV, and discuss calculated transport properties of the Fe4 as a function of

gate voltage, temperature, and applied B field in Sec.V. Finally, we make a conclusion in

Sec.VI.
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FIG. 1: (Color online) (a) Top view of the Fe4 molecule with C2 symmetry axis along the vertical

axis, where Fe (orange), O (red), C (gray), H (white). Simplified from Ref.41. (b) Magnetic energy

levels of the Fe4 with S = 5 where the zero-field splitting is 0.50 meV. (c) Schematic view of

sequential tunneling from the left electrode to a molecular level (n = 0: vibrational ground state,

n = 1: vibrational first-excited state), where V is a bias voltage and Vg is a gate voltage. The

magnetic levels in each vibrational state are not shown. The chemical potential of the left and

right electrodes are +eV/2 and −eV/2, respectively.

II. DFT CALCULATION METHOD

We perform electronic structure calculations of an isolated Fe4 molecule using the DFT

code, NRLMOL42, considering all electrons with Gaussian basis sets within the generalized-

gradient approximation (GGA)43 for the exchange-correlation functional. To reduce the

computational cost, the Fe4 molecule41 is simplified by replacing the terminating CH3 groups

by H atoms, and by substituting the phenyl rings (above and below the plane where the

Fe ions are located) with H atoms. Figure 1(a) shows the simplified Fe4 molecule with C2
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symmetry. Without such simplification, vibrational modes would not be obtained within

a reasonable compute time. It is confirmed that this simplification does not affect much

the electronic and magnetic properties of the Fe4 molecule (Sec.III.A). The phenyl rings

are known to have high-frequency vibrational modes (about 600-1000 cm−1)44, while the

electron-vibron coupling is significant for low-frequency vibrational modes. Therefore, the

replacement of the phenyl rings by H would not affect our calculation of electron-vibron

coupling strengths for low-frequency vibrational modes. The total magnetic moments of the

neutral and charged Fe4 molecules are initially set to 10 µB and 9 µB, respectively, and they

remain the same after geometry relaxation. The geometries of the neutral and charged Fe4

molecules are relaxed with C2 symmetry, until the maximum force is less than 0.009 eV/Å,

or 0.00018 Ha/aB, where aB is Bohr radius. For the relaxed geometry of the neutral Fe4, we

calculate vibrational or normal modes within the harmonic oscillator approximation, using

the frozen phonon method42. We also calculate the magnetic anisotropy parameters for

the neutral Fe4 molecule by considering spin-orbit coupling perturbatively to the converged

Kohn-Sham orbitals and orbital energies obtained from DFT, as implemented in NRLMOL
42,45.

III. DFT RESULTS: ELECTRONIC, MAGNETIC AND VIBRATIONAL PROP-

ERTIES

A. Electronic and magnetic properties

Our DFT calculations show that the neutral Fe4 molecule with S = 5 has an energy gap of

0.87 eV between the lowest unoccupied molecular orbital (LUMO) and the highest occupied

molecular orbital (HOMO) levels. The HOMO level is doubly degenerate, while the doubly

degenerate LUMO+1 level is separated from the LUMO level by 0.05 eV. The LUMO arises

from the outer Fe ions with the minority spin (spin down) at the vertices of the triangle

[Fig. 1(a)], while the HOMO from the center Fe ion with the minority spin, as shown in Fig. 2.

The O orbital levels are found at the same energies as the Fe orbital levels. The contributions

of the C and H atoms to the HOMO and LUMO are negligible. The majority-spin HOMO

is 0.08 eV below the minority-spin HOMO, and the majority-spin LUMO is 0.23 eV above

the minority-spin LUMO. The calculated electronic structure suggests that when an extra

electron is added to the Fe4 molecule, the electron is likely to go to the minority-spin outer Fe
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FIG. 2: (a) Majority- and (b) minority-spin total and projected density of states onto the center

Fe and outer Fe sites and onto all O atoms of the Fe4 molecule shown in Fig. 1(a). The midpoint

between the HOMO and the LUMO levels is set to zero. The arrows in the bottom panel of (b)

indicate the HOMO and LUMO levels. Obtained from the neutral Fe4.

sites. Thus, the total spin of the charged Fe4 is expected to be S = 9/2, which is consistent

with our DFT calculation and experimental data40. Furthermore, we calculate the uniaxial

(D) and transverse magnetic anisotropy (E) parameters for the neutral Fe4, finding that

D=0.056 meV and E=0.002 meV, respectively. These values are in good agreement with

the experimental values, D = 0.056 and E = 0.003 meV40 and the previous DFT-calculated

result46. The calculated magnetic anisotropy barrier for the neutral Fe4 is 16.2 K (∼1.4 meV)

[Fig. 1(b)], in good agreement with experiment40,41. The calculated zero-field splitting is

0.5 meV, which is an energy difference between the two lowest doublets in the absence of

external B field.

The electronic structure study of the charged Fe4 molecule, however, provides a HOMO-

LUMO gap of 0.06 eV, which agrees with the previous DFT result46. This small gap is

partially due to the degenerate LUMO levels and partially attributed to delocalization of the

extra electron over the Fe4 (or difficulty in localization of the extra electron). The latter arises

from an inherent limitation of DFT caused by the absence of self-interaction corrections47.

The magnetic anisotropy parameters are highly sensitive to the HOMO-LUMO gap and the

location of the extra electron in the Fe4. Therefore, in our transport calculations (Sec.V),
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for the charged Fe4 molecule, we use the DFT-calculated relaxed geometry but not the

DFT-calculated magnetic anisotropy parameter values.

B. Vibrational spectra and electron-vibron coupling
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FIG. 3: Calculated (a) Raman and (b) infrared vibrational spectra of the neutral Fe4 molecule with

projections onto all Fe, all O, all C and H atoms replacing the phenyl rings, and the peripheral C

and H atoms. The scales of the horizontal axes in (a) differ from those in (b).

We obtain total and projected Raman and infrared spectra by applying the scheme in

Ref.48 to the DFT-calculated vibrational modes of the neutral Fe4 (Fig. 3). There are 16

non-zero frequency normal modes below 50 cm−1 (or 6.2 meV), among which the lowest-

energy mode has a frequency of 14.7 cm−1. These low-frequency modes are all Raman

active [Fig. 3(a)], and they involve with vibrations of Fe atoms and O and C atoms in the

peripheral area. We compare our calculated Raman spectra with experimental data in Ref.49.

The experimental Raman spectrum is for a crystal of Fe4 molecules with slightly different

ligands and only for high-frequency modes (> 200 cm−1). The experimental Raman peaks

appear at 257, 378, 401, 413, 511, 539, 590 cm−1, and they are all involved with Fe-O-Fe

vibrations or stretch. The corresponding DFT Raman peaks are found at 255, 345, 393,

414, 482, 542 cm−1, except for 590 cm−1. Note that these peaks have much lower intensities

than the 16 lower-frequency modes, so that some of them are not visible in the scales of

Fig. 3(a). Infrared-active modes [Fig. 3(b)] have much higher frequencies than the Raman

active modes.
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FIG. 4: (Color online) (a) Calculated electron-vibron coupling strength vs vibrational energy with

an inset of several low-frequency vibrational modes. (b) Vibrational mode “b” and (c) vibrational

mode “c” marked in (a), where the arrows represent in-plane displacements and
⊙

and
⊗

are the

positive and negative out-of-plane displacements, respectively. In (b) and (c), the vertical dashed

lines are the C2 symmetry axes. (a) and (c) are adapted from Ref.28.

For each vibrational mode, the dimensionless electron-vibron coupling strength is given

by28,38,39

λ =

√

ω

2h̄
ΩTM(R0 −R1), (1)

where ω is the angular frequency of the mode, M is a diagonal square matrix of atomic

masses, and ΩT is a transpose of the mass-weighted normal-mode column eigenvector with

ΩTMΩ = 1. Here R0 and R1 are column vectors representing the coordinates of the neutral

and charged Fe4 relaxed geometries, respectively. The relaxed geometries are translated and

rotated such that |R0 −R1| is minimized. Figure 4(a) shows the calculated value of λ as a

function of vibrational energy h̄ω. It is found that there are only three normal modes with

λ > 1, specifically modes of h̄ω = 2.0, 2.5, 3.7 meV with λ = 1.27, 1.33, 1.46, respectively28.

The mode “b” in Fig. 4(b) is antisymmetric about the C2 symmetry axis, while the mode

“c” in Fig. 4(c) is symmetric about the C2 symmetry axis.

IV. MODEL HAMILTONIAN AND MASTER EQUATION

In this section, we present the formalism to calculate transport properties from the model

Hamiltonian, adapted from Refs.30,31 to include the molecular spin Hamiltonian and the

multiple vibrational modes.
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A. Model Hamiltonian

We consider the following model Hamiltonian H = Hel +Hmol +Ht:

Hel =
∑

α=L,R

∑

k,σ

ǫαk,σa
α†
k,σa

α
k,σ, Ht =

∑

α=L,R

∑

k,σ

(t⋆αc
†
σa

α
k,σ + tαa

α†
k,σcσ), (2)

Hmol = −DN(S
(N)
z )2 + (ǫ− eVg)

∑

σ

c†σcσ + gµB
~S(N) · ~B

+
∑

i

h̄ωid
†
idi +

∑

i

λih̄ωi(d
†
i + di)

∑

σ

c†σcσ, (3)

where aα†k,σ and aαk,σ are creation and annihilation operators for an electron at the electrode

α with energy ǫαk,σ, momentum ~k, and spin σ. Here c†σ and cσ are creation and annihila-

tion operators for an electron with spin σ at the molecular orbital ǫ or the LUMO. The

parameter t⋆α in Ht describes electron tunneling from the electrode α to the SMM. Sym-

metric tunneling is assumed such that tL = tR. In Hmol, DN(> 0) is the uniaxial magnetic

anisotropy parameter for the charge state N with the total spin S(N). The transverse

magnetic anisotropy is neglected, since the uniaxial magnetic anisotropy and an applied

magnetic field are much greater than the transverse anisotropy. A charging energy of the

Fe4 is about 2.3 eV based on our DFT calculation, and experimental conductance maps

show only two Coulomb diamonds13,28,40. Therefore, we consider only two charge states: the

neutral (N = 0) state with S = 5 and the singly charged (N = 1) state with S = 9/2. The

second and third terms in Hmol represent changing the orbital energy by gate voltage Vg

and the Zeeman energy with g = 2, respectively. The second line in Hmol comprises (a) the

energies of independent harmonic oscillators with vibrational angular frequencies ωi and (b)

the coupling between electric charge and vibrational modes with coupling strengths λi. Here

d†i and di are creation and annihilation operators for the i-th quantized vibrational mode or

vibron. It is assumed that the vibrational frequencies are not sensitive to the charge state

of the Fe4.

For a weak coupling between the electrodes and the SMM, Ht is a small perturbation

to Hel and Hmol. Thus, a total wave function |Ψ〉 can be written as a direct product of

a wave function of the electrode α, |Φα〉, and the molecular eigenstate |q〉. Based on the

Born-Oppenheimer approximation, the latter can be given by |ψN
m,q〉 ⊗ |nq〉, where |ψN

m,q〉
describes an electronic charge and magnetic state and |nq〉 is a vibrational eigenstate of the

SMM with nq vibrons. For p vibrational modes, nq = n1 + n2 + ... + np, where ni is a
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quantum number of the i-th vibrational mode.

When the SMM is charged, the electron-vibron coupling gives rise to off-diagonal terms

in the vibrational part of the Hmol matrix. These terms can be eliminated by applying a

canonical transformation30,31 to the Hamiltonian, such as eŶ Ôe−Ŷ , where Ô is an observ-

able operator and Ŷ ≡ −∑

i λi(d
†
i − di)

∑

σ c
†
σcσ. After the transformation, the molecular

Hamiltonian becomes diagonal with respect to the new vibron creation and annihilation

operators d′,†i and d′i, where d
′
i = di + λi

∑

σ c
†
σcσ. The canonical transformation shifts ǫ to

ǫ′ = ǫ −∑

i λ
2
i h̄ωi, while tα is modified to tαexp[−

∑

i λi(d
†
i − di)]. This energy shift corre-

sponds to a shift of polaron energy caused by adjustment of the ions following the electron

tunneled to the molecule. Henceforth, we drop all primes in the operators, parameters, and

Hamiltonians.

B. Transition rates

In the sequential tunneling limit [Fig. 1(c)], we write transition rates Ri→f from the initial

state |Ψi〉 to the final state |Ψf〉, to the lowest order in Ht, as

Ri→f =
2π

h̄
|〈Ψf |Ht|Ψi〉|2δ(Ef − Ei), (4)

Ht =
∑

α=L,R

∑

k,σ

(t⋆αX̂
†c†σa

α
k,σ + tαX̂a

α†
k,σcσ), X̂ ≡ exp[−

∑

i

λi(d
†
i − di)] (5)

where Ef and Ei are the final and initial energies, and Ht is the new tunneling Hamiltonian

after the canonical transformation. In these rates we integrate over degrees of freedom of

the electrodes and take into account thermal distributions of the electrons in the electrodes

by the Fermi-Dirac distribution function f(E). Then the transition rates can be written in

terms of degrees of freedom of the SMM only30.

Let us first discuss transition rates γq→r
α from a magnetic level in the N = 0 state

|q〉 = |ψN=0
M,q , nq〉 to a level in the N = 1 state |r〉 = |ψN=1

m,r , nr〉, i.e., electron tunneling from

the electrode α to the SMM. The rates are given by

γq→r
α =

∑

σ

W σ,α
q→rf(ǭ− µα)Fnq,nr

, (6)

where W σ,α
q→r and Fnq,nr

represent transition rates associated with the electronic and nuclear

degrees of freedom, respectively. Here ǭ is defined to be ǫN=1
m − ǫN=0

M + (nr − nq)h̄ω for

a single vibrational mode, where ǫNm,M contain orbital and magnetic energies of the SMM
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for the charge state N . For multiple vibrational modes, indices for individual modes are

introduced in nq and nr, following the scheme in Refs.50–52. The chemical potential of the

left and right electrodes are µL = −µR = eV/2, where V is a bias voltage. In Eq. (6),

f(ǭ−µα) is included in the transition rates since electrons tunnel from the electrode α. We

discuss the electronic and nuclear parts of the rates separately.

The electronic part of the rates is given by

W σ,α
q→r =

2π

h̄
Dα

σ |tα|2|〈ψN=1
m,r |c†σ|ψN=0

M,q 〉|2, (7)

|ψN=0
M,q 〉 =

∑

l

ul|S = 5,Ml〉, Ml = −5,−4, ..., 4, 5, (8)

|ψN=1
m,r 〉 =

∑

j

vj |S = 9/2, mj〉, mj = −9/2,−7/2, ..., 7/2, 9/2, (9)

where Dα
σ is the density of states of the electrode α near the Fermi level EF , which is assumed

to be constant and is independent of α and σ. The initial and final electronic states of the

SMM, |ψN=0
M,q 〉 and |ψN=1

m,r 〉, can be expressed as a linear combination of the eigenstates of Sz

for S = 5 and S = 9/2, respectively. The matrix elements 〈ψN=1
m,r |c†σ|ψN=0

M,q 〉 in W σ,α
q→r dictate

selection rules such as |M −m| = 1/2 and ∆N = ±1, and they are evaluated by using the

Clebsch-Gordon coefficients.

The nuclear part of the rates, Fnq,nr
, is called the Franck-Condon factor30, and it is

symmetric with respect to the indices. The factor is defined to be |Jnq,nr
|2, where Jnq,nr

is

an overlap matrix between the nuclear wave functions of the N = 0 and N = 1 states30,39,50,

i.e.,

Jnq,nr
= 〈nr|X̂|nq〉. (10)

In the case of p vibrational modes, for nq = nr = 0, it is known that

J0,0 = exp[−
p

∑

k=1

λ2k/2], F0,0 = exp[−
p

∑

k=1

λ2k]. (11)

For the rest of nq and nr values, the overlap matrix elements can be found by applying the

following recursion relations51,52:

Jn,n′ = − λi√
ni

Jni−1 +

√

n′
i√

ni

Jni−1,n′

i
−1 (ni > 0), (12)

Jn,n′ =
λi

√

n′
i

Jn′

i
−1 +

√
ni

√

n′
i

Jni−1,n′

i
−1 (n′

i > 0), (13)

12



where n = (n1, ..., np) and n
′ = (n′

1, ..., n
′
p). In Jni−1, the quantum number ni is lowered by

one with the rest of the quantum numbers fixed, while in Jni−1,n′

i
−1, both quantum numbers

ni and n
′
i are lowered by one with the rest fixed. For example, for a single vibrational mode,

we find that J0,1 = λe−λ2/2 and F0,1 = λ2e−λ2

.

Now we discuss the transition rates γr→q
α from the N = 1 state |r〉 = |ψN=1

m,r , nr〉 to the

N = 0 state |q〉 = |ψN=0
M,q , nq〉, i.e., electron tunneling from the SMM to the electrode α.

Similarly to Eq. (6), the rates are given by

γr→q
α =

∑

σ

W σ,α
r→q[1− f(ǭ− µα)]Fnr,nq

, (14)

where 1− f(ǭ−µα) appears since an energy level ǭ−µα must be unoccupied for an electron

to tunnel back to the electrode α.

C. Master equation

A probability Pq of the molecular state |q〉 being occupied, satisfies the master equation

dPq

dt
= −Pq

∑

α=L,R

∑

r

γq→r
α +

∑

α=L,R

∑

r

γr→q
α Pr, (15)

where the summation over r runs for the orbital, magnetic, and vibrational degrees of

freedom. The first (second) term sums up all allowed transitions from (to) the state |q〉. We

assume that the vibrons are not equilibrated, in other words, they have a long relaxation

time. For steady-state probabilities Pq, we solve dPq/dt = 0 by applying the bi-conjugate

gradient stabilized method50,53. Starting with the Boltzmann distribution at V = 0 as initial

probabilities, we achieve a fast convergence to the steady-state solution for non-zero bias

voltages. Finally, we compute the current Iα from the electrode α to the SMM using the

steady-state probabilities and transition rates,

Iα=L,R = e
∑

q,r

γ|N=0,q〉→|N=1,r〉
α Pq − e

∑

q,r

γ|N=1,r〉→|N=0,q〉
α Pr, (16)

where the sums over q and r run for all the orbital, magnetic, and vibrational indices. In

our set-up, the current is positive when an electron tunnels from the left electrode to the

SMM (or from the SMM to the right electrode), while it is negative when an electron tunnels

from the SMM to the left electrode (or from the right electrode to the SMM). The total
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current I = (IL − IR)/2. For symmetric coupling to the electrodes, we have that IL = −IR.
A differential conductance dI/dV is computed numerically from current-voltage (I − V )

characteristics by using a small bias interval of ∆V = 0.01 or 0.05 mV.

V. RESULTS AND DISCUSSION: TRANSPORT PROPERTIES

We present the I − V characteristics and dI/dV vs V as a function of Vg, temperature

T , and applied B field, obtained by solving the master equation Eq. (15) with the DFT-

calculated parameter values. We use DN=0 = 0.056 meV and DN=1 = 0.062 meV. The value

of DN=1 is chosen to be 10% greater than the value of DN=0, which is consistent with the

experimental data40. We consider up to 9 vibrons (n = 9), which is large enough that the

transport properties do not change with a further increase of n in the ranges of V and Vg

of interest. The level broadening Γ = 2πD|t|2 is taken as 0.01 meV, which satisfies that

Γ ≪ kBT , h̄ω. In the sequential tunneling limit, the Γ value plays a role of units in the

current and conductance.

Regarding the electron-vibron coupling, we consider two cases: (i) a single vibrational

mode with λ > 1, such as h̄ω = 2.0 meV with λ = 1.27 [Fig. 4(c)], and (ii) three vibrational

modes with λ > 1, such as h̄ω1,2,3 = 2.0, 2.5, 3.7 meV with λ1,2,3 = 1.27, 1.33, 1.46 [inset of

Fig. 4(a)], which are only modes with λ > 1 from the DFT calculation (Sec.III.B). The case

(i) is an instructive example of the electron-vibron coupling. The case (ii) approximates to

the case that all of the vibrational modes are included in Hmol, Eq. (3), since the modes

with λ < 1 would not significantly contribute to the sequential tunneling at low bias. This

is justified because of their exponential contributions to the Franck-Condon factor, Eq. (11).

We also confirm that this is the case from actual calculations of the I − V and dI/dV with

an additional low-λ normal mode to the case (ii). We first present the basic features and

magnetic-field dependencies of the conductance peaks for the case (i) and then those for the

case (ii).

A. Case (i): Basic features

Figures 5(a)-(d) show the I−V curve and dI/dV vs V for the case (i) at T = 1.16 K and

0.58 K (∼ 0.05 meV), for the gate voltage where the lowest magnetic levels of the N = 0
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and N = 1 charge states are degenerate at zero bias, i.e., charge degeneracy point. This gate

voltage is set to zero. The steps in the current and the dI/dV peaks appear at V = 2nh̄ω

(n = 0,1,2,...), where the factor of 2 is due to the symmetric bias application [Fig. 1(c)]. The

first peak at V = 0 arises from the vibrational ground state (n = 0), while the second and

third peaks at V = 4.0 and 8.0 mV come from vibrational excitations (n = 1 and n = 2),

respectively. Figures 6(a) and (b) reveal dI/dV (= G) maps as a function of V and Vg, i.e.,

stability diagrams, at 1.16 K and 0.58 K, respectively. Here the Coulomb diamond edges

arise from the sequential tunneling via the lowest doublets in the n = 0 state, while the

evenly spaced peaks parallel to the Coulomb diamond edges originate from the vibrational

excitations. As T is lowered, overall features of the peaks do not change, while the peaks

become sharper with more apparent fine structures.

We now analyze the heights of the dI/dV peaks at 0.58 K in detail [Fig. 5(d)]. The

dI/dV peak height decreases as n increases. This implies that the sequential tunneling via

the vibrational ground states is dominant over the tunneling via the vibrational excitations

for λ = 1.27. This feature qualitatively differs from the case (ii) (Sec.V.C). A peak height

at a fixed temperature is determined by the Franck-Condon factor, the electronic part of

the transition rates, and the occupation probabilities. We introduce simplified notations for

transitions between the N = 0 and N = 1 states: (n,n′)≡ {|ψN=0
M 〉 ⊗ |n〉 → |ψN=1

m 〉 ⊗ |n′〉,
|ψN=0

M 〉 ⊗ |n〉 ← |ψN=1
m 〉 ⊗ |n′〉, |ψN=0

M 〉 ⊗ |n′〉 → |ψN=1
m 〉 ⊗ |n〉, |ψN=0

M 〉 ⊗ |n′〉 ← |ψN=1
m 〉 ⊗ |n〉}

≡ {(n → n′), (n ← n′), (n′ → n), (n′ ← n)}. Here (n,n′) contain all possible tunneling

paths including all magnetic levels allowed by the selection rules. Several values of the

Franck-Condon factor for (n,n′), are listed in Table III in the Appendix.

Figure 5(f) shows contributions of different transitions (n,n′) to the first, second, and

third peak heights, G
(n,n′)
p . For the first peak height, only transitions (n = 0, n′ = 0)

contribute. Resonant tunneling occurs via the lowest doublets (M = ±5 and m = ±9/2) in
the n = 0 state because they are only occupied levels at 0.58 K. The zero-field splitting is

one order of magnitude larger than the thermal energy, and so levels other than the doublets

are not occupied [Figs. 1(b),5(e)].

Regarding the second peak height, transitions (n = 0,n′ = 1) dominantly contribute,

while transitions (n = 1,n′ = 1) slightly involve in the tunneling [Fig. 5(f)]. In this case,

all the levels in the n = 0 state and some low-lying levels in the n = 1 are occupied. At

V = 4.0 mV, the transitions (n = 0,n′ = 0) lower the second peak height because the
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occupation probabilities of the levels in the n = 0 state differ from those in the case of zero

bias. When all the contributions are summed, the second peak is found to have a smaller

height than the first peak. Let us discuss in detail the tunneling via (n = 0,n′ = 1) at

V = 4.0 mV. The contributions of (n = 0,n′ = 1) can be decomposed into those of (0→ 1),

(0 ← 1), (1 → 0), and (1 ← 0), as shown in Fig. 5(i). The transition (0 ← 1) gives the

highest peak value Gp among the four transitions. In the case of (0 → 1), as shown in

Fig. 5(g), each of the levels M = ±4,±3,±2,±1, 0 in the n = 0 state can tunnel to two m

levels in the n = 1 state, such as M = −4 in the n = 0 state to m = −7/2,−9/2 in the

n = 1 state, but the lowest level M = 5 (M = −5) in the n = 0 state can transit only

to one m level in the n = 1 state such as m = 9/2 (m = −9/2). However, for the reverse

transition, (0 ← 1), each of all levels in the n = 1 state can tunnel to two M levels in the

n = 0 state. In addition, the separation between the level m = −9/2 in the n = 1 state and

the levelM = −4 in the n = 0 state is h̄ω−9D0 which is less than h̄ω. These two factors are

the reasons that the contribution of (0 ← 1) to the Gp is higher than that of (0 → 1). An

interesting case is the transition (1→ 0) shown in Fig. 5(h). In this case, two of the allowed

transitions require a higher bias voltage than 4.0 mV. The energy difference between the

level M = −4 (M = 4) in the n = 1 state and the level m = −9/2 (m = 9/2) in the n = 0

state is h̄ω + 9D0. This energy difference prevents the levels M = ±4 in the n = 1 state

from being significantly occupied at eV/2 = h̄ω. As a consequence, the transition (1 → 0)

participates in the tunneling much less than the other three transitions, as confirmed in

Fig. 5(i).

For the third peak height, transitions (n = 0,n′ = 2) play a leading role, with considerable

contributions of transitions (n = 1,n′ = 3) and (n = 2,n′ = 2) [Fig. 5(f)]. At V = 8.0 mV,

all the levels in the n = 0 and n = 1 states as well as some low-lying levels in the n = 2 and

n = 3 states are involved in the tunneling. The occupation of the levels in the n = 2 and

n = 3 states significantly modifies the occupation of the levels in n = 0 and n = 1 states

compared to the case of V = 4.0 mV. Accordingly, this modification causes the transitions

(n = 0,n′ = 0) and (n = 0,n′ = 1) to contribute to the third peak height less than in the

case of V = 4.0 mV. Overall, when all the contributions are added, the third peak has a

smaller height than the second peak.

We now examine the magnetic anisotropy effect on the dI/dV map at 0.58 K, as shown

in Figs. 5(d) and 6(b). The small (or satellite) peak at 1.0 mV and the flat shoulders around
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the second and third main peaks in Fig. 5(d), are signatures of the magnetic anisotropy.

Since the zero-field splitting (0.5 meV) is a maximum energy difference between adjacent

levels for a given N and n state, at a bias voltage of 1.0 mV, allM and m levels in the n = 0

state are accessible. Thus, all the levels in the n = 0 state are equally occupied and they

contribute to the satellite peak at 1.0 mV. Additional satellite peaks are not found despite

increasing a bias voltage, until some low-lying levels in the n = 1 state become occupied.

The left-hand (right-hand) shoulder of the second main peak in Fig. 5(d) is attributed to

tunneling to the lowest doublet in the n = 1 (n = 2) state barely occupied.

B. Case (i): Magnetic field dependence

Figures 7(a)-(b) are stability diagrams for the case (i) at 0.58 K for Bz = 8.0 T and

Bx = 8.0 T, respectively. The zero-bias charge degeneracy for Bz = 8.0 T and Bx = 8.0 T

occurs at the gate voltage of 0.61 and 0.46 mV, respectively, due to the Zeeman energy.

With an external B field, it is found that the Coulomb diamonds are simply horizontally

shifted from the zero B-field case, in other words, that the positions of the main dI/dV

peaks remain the same relative to the charge degeneracy point. Compare Figs. 7(a)-(b)

with Fig. 6(b). Figures 7(c)-(d) exhibit the dI/dV vs V at the charge degeneracy point for

Bz = 8.0 T and Bx = 8.0 T, respectively. Compare Figs. 7(c)-(d) with Fig. 5(d). The shift

of the main peaks was observed in experiment28, and it is consistent with the vibrational

origin of the main peaks.

A further comparison between Figs. 7(c)-(d) with Fig. 5(d) reveals two interesting aspects

of the B-field dependence of the peaks: (1) The heights of the main peaks are greatly

modified with the direction as well as magnitude of applied B field, which is a signature

of the magnetic anisotropy; (2) Both the positions and the heights of the satellite peaks

strongly depend on the direction and magnitude of applied B field. Note that the two

effects are found because the magnetic anisotropy barrier or the zero-field splitting is on

the same order of magnitude as the vibrational energy. In this section, we present features

of the main peak height for the case (i) as a function of B field followed by those of the

positions and the heights of the satellite peaks, by considering two B-field orientations (z

and x axes) for 0 ≤ B ≤ 24.0 T. Our calculations are carried out at 0.58 K and at a gate

voltage corresponding to the charge degeneracy point for each B-field value.
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1. Bz-field dependence of main peaks

Figure 8(a) shows a ratio of the peak height Gp at Bz 6= 0 to that at zero B, Gp(B)/Gp(0),

as a function of Bz, for the first, second, and third main peaks. The heights of the second

and third main peaks decrease abruptly at low B and they remain unchanged until about

12.0 T, above which there appear large steep rises in the heights. The effect of Bz is greater

on the ratio of the third peak height than on the ratio of the second peak height. However,

the first peak height does not change with Bz field because only the lowest levels (M = −5,
m = −9/2) in the n = 0 state participate in the tunneling even for Bz 6= 0.

Firstly, we study the Bz-field dependence of the second peak height by understanding

how the contributions of transitions j to the height are modified with Bz relative to the

B = 0 case, i.e., by computing [Gj
p(B) − Gj

p(B = 0)]/Gp(0), where j = (n, n′), as shown

in Fig. 8(b). It is found that the sharp decrease of the height at low B (∼1.0 T) is mainly

caused by a large decrease of the transitions (n = 0, n′ = 1) at V = 4.0 mV. For further

analysis, we compute Gk
p(B)/

∑

kG
k
p(0) at several Bz values, where k =(0 → 1), (0 ← 1),

(1→ 0), (1← 0). As shown in Fig. 8(c), the large decrease of the transitions (n = 0, n′ = 1)

at low Bz is attributed to a large decrease of the transition (1→ 0) compared to the B = 0

case. This decrease can be understood by examining the evolution of the magnetic levels

with Bz. At zero B, within V = 4.0 mV, several low-lying levels, such as M = ±5, ±4
in the n = 0 (n = 1) state and m = ±9/2, ±7/2 in the n = 1 (n = 0) state, dominantly

participate in the transitions (n = 0, n′ = 1). As Bz > 0 increases, the M,m < 0 levels

are shifted down, while the M,m > 0 levels are lifted up in energy [Fig. 8(d)]. At B field

somewhat above Bz = D1/gµB = 0.54 T, the M = 5, 4 and m = 9/2, 7/2 levels are located

quite above the M = −5, −4 and m = −9/2, −7/2 levels. Hence, within the bias window,

the M = −5, −4 levels in the n = 0 (n = 1) state and the m = −9/2, −7/2 levels in the

n = 1 (n = 0) state dominantly contribute to the transitions (n = 0, n′ = 1), as shown in

Fig. 8(e). The separation between the M = −4 level in the n = 1 state and the m = −9/2
level in the n = 0 state, equals h̄ω + (gµBBz + 9D0). Since this separation is greater than

V/2, the occupation of the M = −4 level in the n = 1 state decreases, and the transition

(1 → 0) also decreases. As a result, the transition (n = 0, n′ = 1) considerably decreases,

which leads to the drop of the second peak height at low B (∼1.0 T). As Bz field increases

beyond 1.0 T, the separation between the two lowest levels in a given N and n state grows.
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Considering the occupation probabilities and the transition rates, within V = 4.0 mV, the

contributions of transitions (0 → 1), (0 ← 1), (1 → 0), and (1 ← 0) remain almost the

same as the case of Bz = 1.0 T [Fig. 8(c)]. Thus, the second peak height does not decrease

beyond Bz = 1.0 T. However, the situation dramatically changes when the Bz field is high

enough that the spacing between the two lowest levels for a given N and n state equals h̄ω

[Fig. 8(f)]. This occurs at B = (h̄ω− 9D0)/(gµB) which is 12.9 T. In this case, the M = −4
(m = −7/2) level in the n = 0 state is degenerate with the M = −5 (m = −9/2) level in
the n = 1 state. Thus, at V = 2h̄ω, the occupation of the six levels within the bias window

increases compared to the case of lower Bz fields, which results in an increase of the transition

(0→ 1). Dominant tunneling pathways are indicated in Fig. 8(f). More contributions from

the transition (0 → 1) lead to a large increase of the transitions (n = 0, n′ = 1) at high B

fields (> 12.0 T). Therefore, the peak height sharply rises above 12.0 T.

Secondly, we examine the height of the third peak. Figure 8(b) reveals that within

V = 8.0 mV, at low Bz, there appear a large decrease of transitions (n = 0,n′ = 2) and

a small decrease of transitions (n = 1,n′ = 3) and (n = 2,n′ = 2), despite an increase of

(n = 0, n′ = 1). The overall height is governed by the transitions (n = 0,n′ = 2). Similarly

to the second peak height, (n = 0,n′ = 2) can be decomposed into four sets such as (0→ 2),

(0 ← 2), (2 → 0), and (2 ← 0). The trend of the contribution of each of the four sets is

similar to the case of the second peak if the n = 1 state is replaced by the n = 2 state in the

explanation. At low Bz, the lift of the degeneracy in the low-lying levels above Bz =0.54 T

drives a large reduction of the transition (2→ 0), which results in the rapid drop in the peak

height. The peak height does not change beyond Bz = 2.0 T, until the Bz field is increased

to the field where the spacing between the two lowest levels for a given N and n state is

comparable to h̄ω, similarly to the second peak. At this B field (12.9 T), the second excited

level in the n = 0 state (M = −3 or m = −5/2) and the first excited level in the n = 1

state (M = −4 or m = −7/2) are almost degenerate with the lowest level in the n = 2 state

(M = −5 or m = −9/2) [Fig. 8(f)]. Hence, at V = 8.0 mV, the occupation of the levels

within the bias window substantially increases, which gives rise to a significant increase of

the transition (0 → 2) compared to the zero B-field and low B cases, in other words, an

increase of the transitions (n = 0,n′ = 2) [Fig. 8(b)]. Consequently, the height of the third

peak sharply rises with Bz field before its saturation.
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2. Bx-field dependence of main peaks

Figure 9(a) shows the ratio Gp(B)/Gp(B = 0) as a function of Bx, for the first, second,

and third main peaks. As Bx field increases, the first peak height slightly decreases at low B

(2.0-3.5 T) and it returns to the value Gp(0). The heights of the second and third main peaks

have a complex Bx dependence. The heights initially increase somewhat and they slightly

decrease at low Bx (2.0-3.5 T). Then they gradually increase and jump up from ∼17.0 T.

After reaching maxima near 19.3 T, the heights slightly go down before saturation. The

Bx-field dependence qualitatively differs from the Bz-field dependence, which is due to the

magnetic anisotropy. Compare Fig. 9(a) with Fig. 8(a).

Firstly, we discuss the first peak height. With a Bx field, the magnetic eigenstates are

admixtures of different Ml levels (ml levels) for N = 0 state (N = 1 state), where Ml and

ml are the eigenstates of Sz. In contrast to the case of Bz field, for small Bx fields, several

low-lying levels for a given N and n state remain degenerate within the thermal energy,

kBT =0.05 meV (∼0.58 K) [Fig. 9(f)]. For example, around Bx = 1.0 T (2.0 T), there are

three (two) low-lying doublets for a given N and n state [Fig. 9(f)]. However, when the

Bx field increases above 3.0 T, the degeneracy of all the levels is lifted, and the separation

between the adjacent levels grows with Bx. At V = 0, for zero B, only the lowest doublet

in the N and n = 0 state participate in the tunneling, while for Bx =2.0-3.0 T, the first-

excited level in the N and n = 0 state slightly contributes to the peak, which causes the

small decrease of the peak height. When the first-excited level is well separated from the

lowest level in the n = 0 state at higher Bx fields, the peak height resumes to the Gp(0)

value.

Secondly, let us examine the second peak height by computing [Gj
p(B) − Gj

p(0)]/Gp(0),

where j =(n,n′), as shown in Fig. 9(b). It is found that the Bx-field dependence of the peak

height is mainly determined by a Bx-field dependence of the transitions (n = 0,n′ = 1). At

low Bx (∼1.0 T), for V = 4.0 mV, the peak height slightly goes up, since there are still a

few degenerate pairs for a given N and n state within the bias window. As Bx increases

above 3.5 T, the degeneracy of the levels is completely lifted, but the strong mixing between

different Ml or ml levels in the eigenstates open up more tunneling pathways within the

bias window than the Bz case. As a result, the transition (1→0) used to be suppressed at

zero B field and Bz fields now increases [Fig. 9(d)]. With a further increase of Bx, the three
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transitions other than (1→0) increase, and so the peak height goes up. As Bx field increases

above 17.0 T, the spacing between the first-excited and the lowest levels for a given N and

n state becomes close to h̄ω, which creates more tunneling paths, as indicated in Fig. 9(e).

Thirdly, we examine the height of the third peak. The Bx-field dependence of the peak

height dominantly arises from a Bx-field dependence of the transitions (n = 0,n′ = 2),

as shown in Fig. 9(c). Within V = 8.0 mV, at Bx = 3.5 T, the transitions (0←2) and

(2←0) decrease as much as transitions (0→2) and (2→0) increase, among the transitions

(n = 0,n′ = 2), so that the peak height is close to the Gp(0) value. As Bx field increases

further, the low-lying levels in the n = 0 state become close to the low-lying levels in the

n = 2 state. At 19.3 T, the second-excited level in the n = 0 state and the first-excited level

in the n = 1 state are almost degenerate with the lowest level in the n = 2 state [Fig. 9(e)].

Thus, for V = 8.0 mV, the increase in the occupation of the levels within the bias window

greatly enhances the tunneling via the transitions (n = 0,n′ = 2) and somewhat increases

the transitions (n = 1,n′ = 3) and (n = 2,n′ = 2). Thus, the overall peak height becomes

the maximum.

3. Bz-field dependence of satellite peaks

The Bz-field evolution of the satellite peaks is shown in Fig. 10(a). As Bz increases,

interestingly, the leftmost satellite peak and the satellite peak on the right side of the second

main peak move toward a higher bias voltage, while the satellite peak on the left side of the

second main peak is shifted toward a lower bias voltage. Starting from the leftmost one,

the satellite peaks are referred to as first, second, and third. Around 4.5 T, the first and

the second satellite peaks merge into one peak, and the merged peak moves toward a higher

bias voltage. The merged satellite peak disappears above 10.0 T.

Let us focus on the field evolution of the heights and positions of the first and the

second satellite peaks. For Bz > 0.5 T, the peak bias Vp for the leftmost satellite peak

is dictated by the separation between the two lowest levels M = −4 and M = −5 (or

m = −7/2 and m = −9/2) in the n = 0 state, which grows linearly with Bz, i.e., Vp(B)/2 =

min{(9D0+gµB|Bz|), (8D1+gµB|Bz|)}, as shown in Fig. 10(d). However, the second satellite

peak is governed by a bias voltage where a few low-lying levels in the n = 1 state are just

about to be populated. The low-lying levels of the n = 1 state become closer to the first-
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excited level in the n = 0 state, as Bz increases. Therefore, with an increase of Bz, a smaller

bias voltage can induce a tiny occupation in the low-lying levels of the n = 1 state, shifting

the position of the second satellite peak to the opposite direction to the first satellite peak.

More specifically, for Bz
<∼ 4.0 T, the tunneling between the levels in the n = 0 state and the

levels n = 1 states is prevented within the first satellite peak bias. However, at Bz
>∼ 4.5 T,

several low-lying levels in the n = 0 and n = 1 states are sufficiently close to one another,

and so the transitions (n = 0,n′ = 1) are allowed within the bias window [Fig. 10(e)]. Thus,

for Bz ∼ 4.5 T, the first and second satellite peaks merge, and the transitions (n = 0, n′ = 1)

begin to significantly contribute to the merged satellite peak in addition to the transitions

(n = 0, n′ = 0). For higher Bz fields, the contributions of the transitions (n = 0, n′ = 1) to

the merged peak outweigh those of the transitions (n = 0, n′ = 0). This explains the abrupt

large increase of the height of the merged peak and the sudden small jump in the intercept

of the Vp curve starting from 4.5-5.0 T. Thus, the position and the height of the leftmost

satellite peak become largely deviated from the case of without electron-vibron coupling, as

shown in Figs. 10(c) and (d).

We can estimate the Bz value from which the satellite peaks begin to merge. According

to the analysis of the transitions (n = 0, n′ = 1) similar to that in Sec.V.B.1, at low and

intermediate Bz fields, the transitions (0→1) and (0←1) contribute more than the transitions

(1→0) and (1←0), within the bias window [Fig. 8(c)]. Therefore, the minimum Bz value

where the satellite peaks merge can be determined by the minimum bias window which

allows the transition between the level M = −4 in the n = 0 state and the level m = −9/2
in the n = 1 state, that is, Bz = [h̄ω/2 − 9D0]/gµB [the solid arrow in Fig. 10(e)]. This

value is 4.3 T, which agrees with what we find from the actual calculation of the dI/dV

vs V . The merged satellite peak, however, disappears when the spacing between the two

lowest levels for a given N and n state is comparable to h̄ω, since in this case the second

main peak appears at the same bias voltage. Even though the first-excited level in the n = 0

state is degenerate with the lowest-level in the n = 1 state at 12.9 T, the merged satellite

peak cannot be identified above 10.0 T due to the broadening of the second main peak.

22



4. Bx-field dependence of satellite peaks

With a Bx field, similarly to the case of Bz field, the first and second satellite peaks are

shifted toward the opposite directions, merging into one, until the merged peak disappears

Bx
>∼16.0 T, as shown in Fig. 10(b). However, the leftmost satellite peak has distinctive

features from the case of Bz field: (1) The peak height forms a large protrusion for 7.5 <∼
Bx

<∼ 11.0 T after which it decreases to the Gp(0) value; (2) The peak voltage remains

almost flat for 7.0 <∼ Bx < 11.0 T; (3) The peak disappears at a higher Bx field than in the

case of Bz field. Compare Figs. 10(f) and (g) with Figs. 10(c) and (d).

We discuss the leftmost satellite peak first for Bx
<∼ 11.0 T and then for higher Bx fields.

The unique features of the Bx dependence can be understood by examining how the Bx-field

evolution of the magnetic levels affects the satellite peaks. For Bx ≤ 2.0 T, several low-lying

levels are still degenerate [Fig. 9(f)], and the first satellite peak occurs when a bias voltage

is twice as large as the separation between the two lowest doublets in the n = 0 state. For

such low Bx fields, this separation decreases with increasing Bx, and so do the height and

bias voltage of the peak. However, above 3.0 T, the degeneracy of all the levels is lifted, and

the peak voltage is much greater than twice the separation between the two lowest levels in

the n = 0 state. This implies that above 3.0 T, within the bias window, high-energy levels

in the n = 0 state significantly contribute to the tunneling and the peak height increases

with increasing Bx. When Bx is increased above 7.5 T, some levels in the n = 0 and n = 1

states appear close to one another [Fig. 10(h)], and they can be accessible within the bias

window. The transitions (n = 0, n′ = 1) are now allowed in the tunneling. Then the first

and second satellite peaks merge and the transitions (n = 0, n′ = 1) dominantly contribute

to the merged peak in addition to (n = 0,n′ = 0). We observe the sudden large increase

in the peak height. The peak height and position are strikingly deviated from those in the

case of without electron-vibron coupling.

However, the trend of the peak height drastically changes, as Bx field increases even

further, in contrast to the case of Bz. The level spacing continues to grow with increasing

Bx. For Bx >11.0 T, the separation is so large that the intermediate-energy levels in

the n = 0 and n = 1 states used to be accessible at lower Bx do not participate in the

tunneling anymore within the bias window. Hence, the contributions of both the transitions

(n = 0,n′ = 1) and (n = 0, n′ = 0) to the peak are highly reduced. Therefore, the peak
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height drops abruptly, and the peak position is about twice as large as the spacing between

the two lowest levels in a given N and n state. Similarly to the case of Bz, when the spacing

between the two lowest levels in the n = 0 state is comparable to h̄ω, the merged satellite

peak disappears. With Bx 6= 0, the former situation occurs around 18.0 T. Due to the

broadening of the second main peak, the satellite peak is not distinguishable above 16.0 T.

C. Case (ii): Basic features

Figures 11(a)-(d) exhibit the I − V curve and dI/dV vs V for the case (ii) at the charge

degeneracy point for 1.16 K and 0.58 K, respectively. In contrast to the case (i), we find that

the current is significantly suppressed at a low bias, and that the dI/dV peak at zero bias is

considerably lower than the peaks arising from vibrational excitations marked by arrows in

Figs. 11(b) and (d). Compare Fig. 11(d) with 5(d). This feature is found at both 1.16 K and

0.58 K. Henceforth, we consider the case at 0.58 K. The peaks from vibrational excitations

occur at V =4.0, 5.0, 7.5, 8.0, 9.0, and 10.0 mV for 0 ≤ V ≤ 10.0 mV, which correspond

to 2h̄ω1, 2h̄ω2, 2h̄ω3, 4h̄ω2, 2(h̄ω1 + h̄ω2), and 4h̄ω2, respectively. In general, peaks from

vibrational excitations are found at V =
∑3

i=1 2nih̄ωi, where n1 + n2 + n3 = n > 0. All

possible vibrational states for n = 0, 1, 2, 3 are listed in Table I. Each of the peaks at V =4.0,

5.0, 7.5, 8.0, 9.0, and 10.0 mV dominantly originates from transitions between the vibrational

ground state and a vibrational excited state, as shown in Table II. Among the six peaks,

the peak at V = 4.0 mV has the largest height. In the bias range of interest, except for the

zero-bias peak, four additional main peaks are identified at V =6.0, 6.5, 8.5, and 9.5 mV

[Fig. 11(d)], each of which arises dominantly from transitions between a vibrational excited

state to another vibrational excited state, as listed in Table II. The heights of these peaks are

smaller than those of the previous six peaks, because the vibrational excited states are poorly

occupied. The stability diagrams shown in Figs. 11(g) and (h) also support the suppression

of the low-bias current and its robustness with varying Vg and T . The diagrams clearly

reveal the peaks from the vibrational excitations parallel to the Coulomb diamond edges in

the conduction region. Note that the values of λ1,2,3 do not differ much from the value of λ

for the case (i), and that the ratio of the Franck-Condon factor for the peak at 4.0 mV to

the factor at zero bias is the same for both cases, such as F0,p3/F0,0 = F0,1/F0,0 = λ2 = λ21.

(Several values of the Franck-Condon factor for the case (ii) are listed in Table IV in the
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TABLE I: List of all vibrational states (n1, n2, n3) and their energies E(n1,n2,n3) (meV) for n =

0, 1, 2, 3, where E(n1,n2,n3) =
∑3

i=1 nih̄ωi.

label n1 n2 n3 n E(n1,n2,n3) 2E(n1,n2,n3)

0 0 0 0 0 0 0

p1 0 0 1 1 3.75 7.5

p2 0 1 0 1 2.5 5.0

p3 1 0 0 1 2.0 4.0

q1 0 0 2 2 7.5 15.0

q2 0 1 1 2 6.25 12.5

q3 0 2 0 2 5.0 10.0

q4 1 0 1 2 5.75 11.5

q5 1 1 0 2 4.5 9.0

q6 2 0 0 2 4.0 8.0

r1 0 0 3 3 11.25 22.5

r2 0 1 2 3 10.0 20.0

r3 0 2 1 3 8.75 17.5

r4 0 3 0 3 7.5 15.0

r5 1 0 2 3 9.5 19.0

r6 1 1 1 3 8.25 16.5

r7 1 2 0 3 7.0 14.0

r8 2 0 1 3 7.75 15.5

r9 2 1 0 3 6.5 13.0

r10 3 0 0 3 6.0 12.0

Appendix.) Nonetheless, the case (ii) produces an effect similar to what was shown for

a single mode with stronger electron-vibron coupling, referred to as the Franck-Condon

blockade effect29,30.
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TABLE II: Eleven identified main dI/dV peaks shown in Fig. 11(d) with the peak voltages Vp (in

meV) and the dominant transitions. The peakM11 at 10.0 mV arises from equally dominant two

transitions (p2, q1) and (0,q3). Here (0, p3) represents all allowed transitions such as {|ψN=0
M 〉⊗|0〉 ↔

|ψN=1
m 〉 ⊗ |p3〉} and {|ψN=0

M 〉 ⊗ |p3〉 ↔ |ψN=1
m 〉 ⊗ |0〉}. Refer to Table I for the definitions of the

vibrational states in the dominant transitions.

Label M1 M2 M3 M⋆
4 M⋆

5 M6 M7 M⋆
8 M9 M⋆

10 M11

Vp 0 4.0 5.0 6.0 6.5 7.5 8.0 8.5 9.0 9.5 10.0

Tran. (0,0) (0,p3) (0,p2) (p3,q3) (p2,q4) (0,p1) (0,q6) (p3,q2) (0,q5) (q6,r3) (0,q3)

To analyze the dI/dV peak height, we separate contributions of different transitions j to

the first, second, and third main peaks (M1, M2, M3) at 0, 4.0, and 5.0 mV. As shown

in Fig. 11(f), at V = 4.0 mV, the height of the peak M2 arising solely from transitions

(0,0), (0, p3), and (p3,p3), is about 9.5 nS, and this height is smaller than the height of

the zero-bias peakM1 (∼22 nS). The fact that the former height is smaller than the latter

height, is similar to the case (i). However, interestingly, transitions (p1,p3), (p2,p3), (p1,p2),

and (p1,q5) considerably contribute to the peakM2 with additional 22 nS, and so the total

height of the peak M2 becomes larger than the height of the peak M1. This strikingly

differs from the case (i) where the transitions (n = 1,n′ = 1) provide only a tiny increase of

the height of the second peak (Fig. 5(f) in Sec.V.A). The key difference between the cases

(i) and (ii) is that the latter has two additional modes whose energies are close to that of

the lowest-energy mode. At V/2 = h̄ω1, the lowest levels M = ±5 or m = ±9/2 in the p3

state are significantly occupied. Hence, for (h̄ω2 − h̄ω1) < h̄ω1 and (h̄ω3 − h̄ω1) < h̄ω1, the

transitions (p1,p3) and (p2,p3) are also allowed [Fig. 11(e)]. Accordingly, the levels M = ±5
or m = ±9/2 in the p2 and p1 states are somewhat occupied, and so the transitions (p1,p2)

and (p1,q5) are possible within the bias window. A similar analysis can be carried out for

the third peak height. In this case, at V = 5.0 mV, transitions (0, p2) play a major role in

the peak height, while transitions (p1,p2), (p2,p3), (p2,q6), and (p1,q5) provide considerable

contributions to the height [Fig. 11(f)]. The overall height of the third peak turns out to be

greater than the height of the zero-bias peak, although it is smaller than the second peak

height. Similarly to the case (i), a satellite peak occurs at 1.0 mV and a flat shoulder appears

on the left side of the second main peak [Fig. 11(d)], which is attributed to the magnetic
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anisotropy. The first (leftmost) satellite peak can be explained similarly to the case (i).

The Franck-Condon blockade effect has recently been observed in single-molecule tran-

sistors made of individual Fe4 molecules28, where the experimental data were fitted to vibra-

tional excitations from a single normal mode of a non-magnetic molecule. The experimental

values of λ and h̄ω were 2.0±0.2 and 2.3-2.6 meV, respectively28, and they are in reason-

able agreement with the corresponding DFT-calculated values. With the experimental level

broadening Γ ∼ 1.0 meV, the vibrational excitations may not be individually identified,

and the calculated peaks at 4.0 mV and 5.0 mV could be viewed as a single peak in the

experimental data.

D. Case (ii): Magnetic field dependence

The heights of the main peaks and the heights and positions of the satellite peaks show

strong B-field dependencies (Fig. 12), while the positions of the main peaks relative to the

charge degeneracy point do not change with B field, which is similar to the case (i). The

main peaks from the tunneling between the levels in the n = 0 state and the low-energy

vibrational excited state, such asM2,M3,M6, andM9 (marked by the arrows in Fig. 12),

have still a larger height than the zero-bias peak, independently of the orientation and

magnitude of B field. Some main peaks involved with either high-energy vibrational excited

states or close to the other main peaks, are smeared out at some B fields. In this section,

we focus on the first, second, and third main peaks (M1,M2,M3) and the satellite peaks

between the first and second main peaks, in the presence of Bz or Bx field at 0.58 K for the

charge degeneracy point. The height of the third main peak reveals a B-field dependence

qualitatively different from that in the case (i). Note that the former peak dominantly arises

from the tunneling between the levels in the n = 0 state and in one of the n = 1 states (p2

state), while the latter peak mainly originates from the tunneling between the levels in the

n = 0 and n = 2 states. Since some conductance features in the case (ii) are similar to those

in the case (i), we underscore results distinctive from the case (i).
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1. Main peaks

As Bz field increases, the heights of the second and third main peaks sharply decrease

near 1.0 T, and then they rapidly rise well above the Gp(B = 0) values [Fig. 13(a)]. This

is in contrast to the case (i), where the heights remain saturated to much lower values than

the Gp(0) values until about 12.0 T. Compare Fig. 13(a) with Fig. 8(a). To understand this

difference, we examine [Gj
p(Bz)−Gj

p(0)]/Gp(0) for different transitions j = (n, n′). At 1.0 T,

similarly to the case (i), the abrupt drops of the heights of the peaks are due to the lift

of the level degeneracy, which brings a large decrease of the dominant transitions (0, p3) at

V = 4.0 mV and a large decrease of (0, p2) for V = 5.0 mV, as shown in Fig. 13(b) and (c).

However, as Bz field increases, the transitions (0, p3) [(0, p2)] and other transitions begin to

contribute more to the second (third) peak than at zero B field, since new tunneling pathways

are available from the three vibrational modes, compared to the case (i). More specifically,

within V = 4.0 mV, the transitions (0, p3) and (p2,p3) participate in the tunneling more at

4.0 T than at zero B, while the transitions (0, p3) and (p1,p3) involve more at 8.0 T than

at 4.0 T. Within V = 5.0 mV, the transitions (0, p2) contribute to the third peak more at

4.0 T than at zero B, while the transitions (0, p2), (p1,p2), and (p2,p3) participate in the

peak more at 8.0 T than at 4.0 T.

The small bumps in the heights of the second and third peaks at Bz =12.9 T appear

due to the same reason as in the case (i) (Sec.V.B.1). At this Bz field, the spacing between

the lowest and the first-excited levels for a given N and n state is comparable to h̄ω1, such

that the first-excited level in the n = 0 state is degenerate with the lowest level in the p3

state [Fig. 13(d)]. For V = 2h̄ω1, this gives rise to an additional boost of the contributions

of (0, p3) and (p1,p3) to the second peak compared to lower Bz fields. For V = 2h̄ω2,

there is an increase of the contributions of (0, p2) and (p2,p3) to the third peak. Another

bump in the height of the third peak occurs at 17.2 T, where the spacing between the

lowest and the first-excited levels for a given N and n state is now comparable to h̄ω2, i.e.,

(h̄ω2/2− 9D0)/gµB = 17.2 T.

With a Bx field, the third peak height shows an interesting feature, although the field

dependence of the heights of the first and second main peaks is similar to that for the case

(i). The height of the third main peak drops until 3.3 T, and as Bx increases, it goes up

with three apparent bumps at 12.8, 19.3, and 23.8 T, as shown in Fig. 13(f). At the first
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bump, the spacing between the second-excited level and the lowest level for a given N and n

state is comparable to h̄ω2, and so the second-excited level in the n = 0 state is degenerate

with the lowest level in the p2 state [Fig. 13(e)]. For V = 2h̄ω2, this leads to an increase of

the transitions (0, p2), (p1,p2) and (p2,p3), as indicated in Fig. 13(h). At the second bump,

similarly to the case (i), the first-excited level in the n = 0 state has the same energy as the

lowest level in the p3 state, giving rise to a slight increase of contributions of the transitions

(p2,p3) to the third peak, compared to lower Bx fields. At this Bx field, a bump also appears

in the height of the second peak [Fig. 13(g)], similarly to the case (i) (Sec.V.B.2). At the

third bump, the first-excited level in the n = 0 state is degenerate with the lowest level in

the p2 state. A slight increase of transitions (0, 0) brings the small bump in the third peak.

2. Satellite peaks

We first discuss the case of Bz field. Figure 14(a) shows how the satellite peaks between

the first and second main peaks evolve with Bz field. Compare Figs. 14(a),(c),(d) with

Figs. 10(a),(c),(d). Similarly to the case (i), near 4.5 T, the leftmost satellite peak merges

with the second satellite peak, and the merged satellite peak has a large height which

is strongly deviated from the case of without electron-vibron coupling. We find that at

5.0 T, the transitions (0,p3) and (p2,p3) contribute to the first satellite peak as much as the

transitions (0,0) [Fig. 14(e)]. The energy difference between the lowest levels in the p3 and

p2 states is only 0.5 meV, and the low-lying levels in the p3 state are occupied from the

transitions (0,p3). Thus, the transitions (p2,p3) can participate in the tunneling for a bias

window of 2.2 mV at 5.0 T. As Bz field further increases, more diverse types of transitions

contribute to the merged satellite peak. The merged peak height increases to a much higher

value than the case (i), although the peak position is the same as that for the case (i). The

merged satellite peak eventually disappears above 10.0 T at 0.58 K, attributed to the same

reason as in the case (i) (Sec.V.B.3).

With a Bx field, below 7.0 T, the evolution of the satellite peaks [Fig. 14(b)] is similar to

the case (i) (Sec.V.B.4). As Bx field increases, the leftmost satellite peak is shifted toward a

higher bias, while the second satellite peak moves toward a lower bias. Interestingly, around

7.0 T, three satellite peaks appear instead of two, while around 9.0 T, the first two satellite

peaks become merged but the third peak still survives [Fig. 14(b)]. Then at 13.0 T, the
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survived two satellite peaks are completely merged. The merged peak is shifted toward a

higher bias at higher B fields. Compare Fig. 14(b) with Fig. 10(b) at 7.0 T and 9.0 T.

Comparing with the case (i), the leftmost peak height does not drop to the Gp(0) value

above 11.5 T. Instead it resumes to grow and reaches to a local maximum at 13.0 T. Then

the height undergoes a slight decrease with another upturn until the merged peak disappears

above 16.0 T [Fig. 14(f)]. At the Bx fields where the height of the leftmost satellite peak

reaches to local maxima, the peak position remains almost flat [Fig. 14(g)].

Above Bx =7.0 T, the vibrational excited states play an important role even in the

satellite peaks. At 7.5 T, the transitions (0,p3) contribute substantially to the leftmost

satellite peak, while at 9.0 T (at the maximum peak height), there is a great increase of

the transitions (0,p3) and (p2,p3) compared to lower Bx fields [Fig. 14(h)]. Some dominant

transition pathways within (0,p3) are shown in Fig. 14(i). As Bx increases to 11.5 T, the

transitions (0,p3) and (p2,p3) greatly decrease, which gives rise to a drop in the peak height

[Fig. 14(f),(h)]. As discussed in the case (i), above 11.5 T, the peak bias is determined

by the spacing between the two lowest levels in the n = 0 state. At 13.0 T (at the local

maximum height), the spacing between the lowest and the first-excited level in the n = 0

state is comparable to the energy difference between the first-excited level in the n = 0 state

and the lowest-level in the p2 state [vertical arrows in Fig. 14(j)]. Thus, at this B field,

the transitions (0,p2) and (p1,p2) increase and they contribute to the satellite peak height.

Dominant transition pathways among (0,p2) and (p1,p2) are shown in Fig. 14(j). The merged

satellite peak disappears above 16.0 T.

VI. CONCLUSION

We have shown that magnetic anisotropy provides new features concerning electron-

vibron coupling in electron transport through single anisotropic molecules such as the SMM

Fe4. The heights of the vibrational conductance peaks show an unusual B-field dependence

at low temperatures. When the current flows via the vibrational excited states of the Fe4,

the magnetic levels in the vibrational ground and excited states participate in the tunneling.

The separation between the magnetic levels strongly depends on the direction and magnitude

of applied B-field, and so the occupation of the levels and transition rates between them are

accordingly modified with B field. As a result, the vibrational conductance peaks are highly
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influenced by the direction as well as magnitude of the applied B field. Interestingly, when

the two lowest levels in the n = 0 state are separated by about the vibrational energies at

high B fields, a sudden large jump in the peak height is expected. Moreover, the magnetic

anisotropy introduces satellite conductance peaks whose position and height are varied with

the direction and magnitude of the applied B field. At zero B field, the low-bias satellite

peak originates from the current via the magnetic levels in the vibrational ground states

only, while at intermediate B fields, the levels in the vibrational first-excited state start to

contribute to the satellite peak. Another interesting point is the effect of multiple strong

electron-vibron coupled modes whose energies are close to one another. For such multiple

modes the vibrational conductance peaks are greatly enhanced compared to a single mode

with the similar electron-vibron coupling. Our findings may be extended to studies of spin-

vibron coupling effects, higher-order tunneling processes, and many-spin model Hamiltonian

in transport via individual anisotropic molecules.

So far, there are no available experimental data to compare with our calculated features

of the B-field dependence of the differential conductance peaks. Our theoretical predictions

would serve as a guideline for future experiments and to stimulate experimental research.

For comparison with future experiments, two factors are worthwhile to be mentioned. The

first is the effect of the apparent difference between the experimental28,40 and theoretical level

broadening. The features of transport characteristics are determined by the occupation of

the levels, the transition rates, and the Franck-Condon factors, rather than the level broad-

ening. This is supported by experimental observation of dominant sequential tunneling28,40,

and it was also theoretically shown in the case of without electron-vibron coupling54. In

addition, the vibrational excitation energies of interest are larger than the experimental

level broadening. Therefore, despite the apparent difference in the level broadening, the

calculated features of the conductance peaks in this work are relevant to experimental ob-

servation. The second factor is the effect of excited spin multiplets on transport properties.

These multiplets may play a role on transport properties only at very high magnetic fields (∼
20T). Thus, our calculated transport properties can be compared with future experiments.
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FIG. 5: (Color Online) Calculated I − V and dI/dV vs V at the charge degeneracy point for

the case (i) at T = 1.16 K [(a),(b)] and T = 0.58 K [(c),(d)]. (e) Magnetic energy levels in the

vibrational n = 0, n = 1, and n = 2 states for the two charge states N = 0 and N = 1. For

each set of the magnetic levels, the left column, the center, and the right column correspond to

the levels M < 0, M = 0, and M > 0, respectively. (f) Contributions of different transitions j to

the first (leftmost), second, and third main dI/dV peak heights in (d). See the main text for the

definitions of the transitions (n,n′). (g) and (h) Dominant transition pathways for the transitions

(0→1) and (1→0). (i) Contributions of transitions k within the transitions (n = 0,n′ = 1) to the

height of the second main peak in (d).
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FIG. 6: (Color Online) Calculated dI/dV maps as a function of V and Vg for the case (i) at

T = 1.16 K (a) and T = 0.58 K (b).
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FIG. 7: (Color online) Calculated dI/dV values as a function of V and Vg for the case (i) at

T = 0.58 K for Bz = 8 T (a) and Bx = 8 T (b). (c) and (d) Computed dI/dV vs V at the charge

degeneracy point in (a) and (b), respectively.
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vs Bz for the case (i) at 0.58 K. (b) Changes of contributions of different transitions j to the

second and third main peaks [Gj
p(B)−Gj

p(B = 0)], relative to the zero B case, normalized by the

height of the second and third main peaks at zero B, Gp(0), computed at Bz = 1.0, 13.0, and

15.0 T. (c) Contributions of transitions k within the transitions (n = 0,n′ = 1) to the second peak

at Bz = 0, 1.0, 8.0, 13.0, and 14.0 T. (d) Evolution of the magnetic levels of S = 5 with Bz. (e)

Dominant transition pathways for the second peak (V/2 = 2.0 mV) at Bz = 1.0 T, where the solid

arrow indicates the pathway critical to the abrupt reduction of the second peak height in (a)-(c).

(f) Dominant transition pathways for the second peak at Bz = 13.0 T dictating the sudden jump in

the second peak height. In (e) and (f), the vertical arrows represent half of the peak bias voltage.
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Appendix: Franck-Condon factors for several transitions in the cases (i) and (ii).

The Franck-Condon factors for several transitions are computing for the cases (i) and

(ii), by applying the recursion relations51,52 to the overlap matrices (Sec.IV.B).

TABLE III: Franck-Condon factors for several transitions (n, n′) for the case (i).

(n, n′) Fn,n′

(0, 0) 0.199

(0, 1) 0.321

(0, 2) 0.259

(0, 3) 0.139

(1, 1) 0.075

(1, 2) 0.024

(1, 3) 0.166

(2, 2) 0.171

(2, 3) 0.031

(3, 3) 0.081
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TABLE IV: Franck-Condon factors for several transitions (n, n′) for the case (ii).

(n, n′) Fn,n′

(0,0) 0.00403

(0,p1) 0.00860

(0,p2) 0.00713

(0,p3) 0.00650

(p1,p1) 0.00516

(p1,p2) 0.0152

(p1,p3) 0.0139

(p1,q5) 0.0245

(p1,q6) 0.0112

(p2,p2) 0.00238

(p2,p3) 0.0115

(p2,q5) 0.00385

(p2,q6) 0.00928

(p3,p3) 0.00151

(p3,q5) 0.00268

(p3,q6) 0.000487
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