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We investigate the local electron temperature distribution in graphene nanoribbon (GNR) and
graphene junctions subject to an applied thermal gradient. Using a realistic model of a scanning
thermal microscope, we predict quantum temperature oscillations whose wavelength is related to
that of Friedel oscillations. Experimentally, this wavelength can be tuned over several orders of
magnitude by gating/doping, bringing quantum temperature oscillations within reach of the spatial
resolution of existing measurement techniques.
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Nanometer resolution temperature measurements are
technologically necessary, for instance, to characterize
the thermal performance and failure mechanisms of semi-
conductor devices1, or to investigate bioheat transfer at
the molecular level for the treatment of cancer or car-
diovascular diseases2. Fundamentally, local temperature
measurements of quantum systems can elucidate the cor-
respondence between phonon3–5, photon6–8, and electron
temperature9–12 measures. Moreover, quantum effects
may offer novel methods to circumvent long-standing
technological challenges, suggesting that the investiga-
tion of ‘phase sensitive’13 thermal effects could open the
door to quantum engineered heat transport devices14,15.

Quantum coherent temperature oscillations have been
predicted in 1-D ballistic systems16,17 and in small con-
jugated organic molecules11, but despite impressive ad-
vances in thermal microscopy18–21 that have dramatically
increased the spatial resolution of temperature measure-
ments, these predictions are not yet within reach of ex-
perimental verification.

In this letter, we investigate the local electron temper-
ature distribution of graphene nanoribbon (GNR) and
graphene junctions covalently bonded to two metallic
electrodes used to apply a thermal bias, and probed us-
ing a third scanning electrode acting as a local ther-
mometer. We find that the Friedel oscillations (an equi-
librium property) and temperature oscillations (a non-
equilibrium transport effect) in these systems are related,
in that techniques to modify the former22 can also be
used to modify the latter. Specifically, we investigate the
response of junctions to an applied gate voltage and find
that the temperature oscillation wavelength can be varied
over several orders of magnitude, bringing these oscilla-
tions within the spatial resolution of current techniques
in thermal microscopy18–21.

Theory – Defining a local electronic temperature in
a system out of equilibrium requires consideration of a
local probe (thermometer) that couples to the system

FIG. 1. A schematic representation of a three terminal GNR
junction with the hot and cold electrodes covalently bonded
to the GNR and a third scanning thermal probe positioned
over the GNR. The probe is allowed to come into thermal
and electrical equilibrium with the sample and measure the
temperature Tp.

and whose temperature is varied until the local properties
of the system are minimally perturbed16,17,23—a floating
probe. This should occur when the thermometer reaches
local equilibrium with the system, i.e., when there is no
longer any net flow of charge or heat between the system
and the probe11. Several variations on the later condition
have also been discussed in the literature9,24–26.
We consider junctions composed of a GNR or graphene

sheet, hot and cold electrodes bonded to the system, a
probe electrode, and the environment (see Fig. 1). The
hot and cold electrodes provide a thermal gradient, but
form an open electrical circuit in a thermal transport ex-
periment. Under these conditions, and in linear response,
the heat current flowing into the scanning thermal probe
is

IQp =

2
∑

β=1

κ̃pβ(Tβ−Tp)+ κp0(T0−Tp)+κph(Tph−Tp), (1)
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FIG. 2. The calculated spatial temperature profile for a zig-zag GNR probed by a Pt SThM fixed 2.5Å above the sheet shown
for two energies and for weak and strong environmental coupling with κp0=10−4κ0 and κp0=700κ0, respectively. In all panels
phonons are included with κph=0.01κ0. By adjusting |µ − µDirac| the temperature oscillation wavelength can be tuned. Even
with strong environmental coupling and significant phonon heat conductance, the quantum temperature oscillations are visible.
The phonon temperature Tph is taken to vary linearly between each electrode and the applied temperature gradient across the
nanoribbon is 50K.

where Tβ is the temperature of terminal β, κ̃αβ is the
thermal conductance between electrodes α and β, κp0

is the thermal coupling of the probe to the ambient en-
vironment at temperature T0, and κph is the thermal
conductance between the probe and a phonon bath with
temperature Tph. The environment could be, for exam-
ple, the black-body radiation or gaseous atmosphere sur-
rounding the circuit, or the cantilever/driver on which
the temperature probe is mounted11.

Using Eq. (1), the condition IQp = 0 can be solved
for the temperature of a probe in thermal and electrical
equilibrium with, and coupled locally to the system

Tp =
κ̃p1T1 + κ̃p2T2 + κp0T0 + κphTph

κ̃p1 + κ̃p2 + κp0 + κph

. (2)

Here the thermal conductance κ̃αβ between electrodes
α and β within the three-terminal thermoelectric circuit
formed by the probe and hot and cold electrodes is11

κ̃αβ =
1

T
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where L
(ν)
αβ is an Onsager linear-response coefficient,

L̃
(0)
αβ = L

(0)
αβ+L

(0)
αγL

(0)
γβ/(L

(0)
αγ+L

(0)
γβ ) and 1/L(0) = 1/L

(0)
12 +

1/L
(0)
1p + 1/L

(0)
2p .

We envision experiments performed in ultrahigh vac-
uum (UHV) with the electronic temperature probe op-
erating in the tunneling regime and scanned across the
sample at fixed height. The temperature imaged by this
probe is a linear combination of the electron and lat-
tice (phonon) temperatures. We assume that these two
temperatures coincide in each bulk electrode but not in
the graphene nanostructure itself. Under linear-response
conditions, electron-phonon interactions and inelastic
scattering are weak in graphene, so the indirect phonon

contributions to L
(0)
αβ and L

(1)
αβ can be neglected. Thermal

transport from phonons is included via κph. The linear
response coefficients needed to evaluate Eq. (2) may thus
be calculated using elastic electron transport theory27,28

L
(ν)
αβ = 1

h

∫

dE (E − µ0)
ν Tαβ(E)

(

−
∂f0
∂E

)

, where f0 is

the equilibrium Fermi-Dirac distribution with chemical
potential µ0 and temperature T0. The transmission
function29,30 Tαβ(E) = Tr

{

Γα(E)G(E)Γβ(E)G†(E)
}

is expressed in terms of the tunneling-width matrices
Γα and the retarded Green’s function of the junction
G(E) = [SE −Hmol −ΣT(E)]−1, where the overlap ma-
trix S reduces to the identity matrix in an orthonormal
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basis and ΣT(E) = −i
∑

α Γα(E)/2. Throughout this
work we consider transport in the wide-band limit where
Γα(E) ≈ Γα.

In the vicinity of the Dirac point, a simple tight-
binding Hamiltonian has been shown to accurately de-
scribe the π-band dispersion of graphene31. The molec-

ular Hamiltonian is Hmol =
∑

〈ij〉 tijd
†
idj + H.c, where

t = −2.7eV is the nearest-neighbor hopping matrix el-
ement between 2pz carbon orbitals of the graphene lat-

tice, and d†i creates an electron on the ith 2pz orbital.
To be specific, we consider here a scanning thermal mi-
croscope (SThM) with an atomically-sharp Pt tip op-
erating in the tunneling regime but near contact. The
tunneling-width matrix may be described in general as32

Γp
nm = 2πVnV

∗
m ρp, where n and m label π-orbitals of the

graphene, ρp(E) is the local density of states on the apex
atom of the probe electrode, and Vm is the tunneling ma-
trix element between the quasi-atomic apex wavefunction
and orbital m of the graphene. We consider all s, p, d or-
bitals of the Pt SThM’s apex atom and the π-system of
the carbon sheet, meaning that the transport into the
probe is multi-channel32.

Results – The calculated local temperature distribu-
tion of a zig-zag GNR bonded to hot and cold electrodes
held at T1=325K and T2=275K, respectively, is shown
for several gate potentials and environmental coupling
strengths in Fig. 2. In these calculations, the SThM is
scanned 2.5Å above the plane of the carbon nuclei and
the Γ matrices describing the lead-system coupling are
diagonal. Non-zero elements of Γ, drawn as small red or
blue circles in the figure, indicate contact between the
electrode and the carbon atoms of the nanoribbon and
are equal to 2.5eV. The probe is operating in the tun-
neling regime since the sum of Pt and C covalent radii is
∼2.03Å33. As indicated in the figure, the wavelength of
the temperature variations changes as the quasiparticle
energy is adjusted close to the Dirac point µDirac.

In the simulations presented here, we consider
both a weak environmental coupling κp0=10−4κ0, and
a realistic environmental coupling κp0=700κ0, where
κ0=(π2/3)(k2BT/h) = 0.284nW/K is the thermal con-
ductance quantum at 300K34. The weak coupling value
κp0=10−4κ0 corresponds to the radiative coupling be-
tween a tip with effective radius ∼100nm and the black-
body environment, a fundamental limit on κp0

11. At
larger values of κp0, the amplitude of the quantum tem-
perature oscillations is reduced due to the reduced sen-
sitivity of the thermal measurement11,20, but the quali-
tative features of the interference pattern are preserved.
For comparison, the UHV SThM of Kim et al.20 recently
achieved κp0≈700κ0. The phonon heat conductance κph

is small since the Debye frequency of Pt and the GNR’s
phonon distribution are incommensurate and, at 2.5Å
above the GNR, the probe is not in contact with the
GNR meaning that the thermal conduction across the
vacuum tunneling gap into the probe is dominated by
the electronic contribution. We consider a realistic value
of κph=0.01κ0, and let Tph vary linearly between the hot

and cold electrodes. Although phonons carry consider-
able heat current in graphene35, many different phonon
wavelengths contribute to the heat transport at room
temperature, washing out any coherent oscillations of the
phonon temperature.
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FIG. 3. The power spectral density (PSD) of a slice through
the edge row of the GNR shown in Fig. 2 as a function of gate
potential. The temperature oscillation wavelength increases
as µ − µDirac is decreased, in reasonable agreement with Eq.
4, whose values are indicated by vertical blue lines. The PSD
spectra are complex because of the small size of the GNR, the
multi-mode nature of the Pt SThM, and the phonon conduc-
tance. The temperature data within 10Å of each electrode
have been neglected in the PSD spectra and κp0 = 10−4κ0.

The spatial temperature variations are a consequence
of quantum interference10, where the flow of heat from
the hot and cold electrodes into the probe is determined
by position-dependent interferences and the molecular
density of states11. According to Eq. (2), a maximally
hot spot will be observed whenever κp1 ≫ κp2, and
vice versa for a maximally cold spot. In general, the
largest variations in temperature will be observed when
the thermal conductance from one of the two electrodes
into the probe is suppressed by destructive quantum
interference11, which occurs when the phase between
thermal transport paths differs by π, so that 2kF∆L =
2π. Such 2kF oscillations are ubiquitous in electron sys-
tems at low temperatures, the best known example being
the Friedel oscillations in the density of states or charge
density22.
Due to its unique dispersion relation, the Friedel oscil-

lation wavelength in graphene depends strongly on the
energy of the quasiparticles, which may be controlled via
the application of a gate voltage22

λFriedel(E) =
hvF
2E

, (4)

where E is the energy away from the Dirac point. In our
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FIG. 4. The simulated temperature profile of a graphene fragment without (left panel) and with (right panel) impurities
contacted by a hot (T1=350K) needle electrode (the benzene-like contact pattern is indicated with red circles) and a ‘cold’
electrode (T2=T0=300K) bonded to the periphery of the sheet (blue circles) probed by a Pt SThM tip scanned 2.5Å above the
plane of the carbon nuclei. In these simulations, we use κp0=700κ0 (extracted from experiment) and κph=0.01κ0. The hot
needle and periphery electrodes have per orbital coupling strengths of 1eV and 0.1eV, respectively. In the right panel, 0.33%
boron (black circles), 0.33% nitrogen (white circles), and 0.33% vacancy impurities were included. Here µ− µDirac = −1eV.

tight-binding Hamiltonian ~vF = 3ta/2, where t=2.7eV
is the tight-binding matrix element and a=1.42Å is the
C-C distance36. The power spectral density (PSD) of a
slice through the edge row of the GNR shown in the left
panels of Fig. 2 is shown for µ−µDirac=-1.20eV, -0.258eV,
-0.144eV (corresponding λFriedel ∼ 15Å, 70Å, and 125Å,
respectively) in Fig. 3. As shown in the figure, a spectral
peak shifts as µ−µDirac changes, in reasonable agreement
with Eq. 4 (shown as vertical blue lines in the figure).
Closer to the Dirac point, where the Friedel oscillation
wavelength becomes comparable to the linear dimensions
of the system simulated, it is not straightforward to re-
solve this peak above the background of peaks at small
wavevectors arising from finite-size effects. Nonetheless,
it is clear from Fig. 2 (lower panels) that the dominant
wavelength of the temperature oscillations grows dramat-
ically as µ → µDirac. It should be emphasized that al-
though the Friedel oscillations and the quantum temper-
ature oscillations both have components at wavevector
2kF , there is no direct relationship between the equilib-
rium Friedel oscillations (local density of states oscilla-
tions) and the oscillations of the nonequilibrium temper-
ature distribution (see Supporting Information).

The wide tunability of the temperature oscillations
over orders of magnitude in wavelength in graphene in-
dicates that they are within the spatial resolution of cur-
rent SThM technology, which has achieved spatial and
thermal resolution of 10nm and 15mK, respectively20,
provided the phase coherence length of the carriers is
sufficiently long. In pure graphene the dominant de-
phasing mechanism is deformation potential scattering

by acoustic phonons37. Using the scattering rate de-
rived in Ref. 37 and assuming that the momentum re-
laxation time is equivalent to the phase-relaxation time,
the phase-coherence length is given by

Lφ(E) =
4~3ρmv3fv

2
s

D2
AkBTE

(5)

where DA is the deformation potential, vph=2×106cm/s
is the acoustic phonon velocity, ρm ∼7.6×10−8g/cm2 is
the graphene ion mass density, and vf ∼1.53×105m/s is
the Fermi velocity. The experimentally observed defor-
mation potential ranges from 10-30eV. As an example,
with DA=30eV and T=300K, Lφ(1.0eV)=68.4nm and
Lφ(0.05eV)=1.36µm. These estimates, which are in good
agreement with recent experimental phase-coherence
length measurements of graphene nanoribbons38, clearly
indicate that quantum thermal oscillations in graphene
can occur on length scales well within the resolution of
existing SThM techniques. Moreover, the electron-lattice
cooling length is directly related to the inelastic mean-
free path of the electrons given by Eq. 5, supporting the
argument that electronic temperature oscillations can be
observed in SThM measurements even with substantial
phonon heat currents. Indeed, the more formidable ex-
perimental challenge is likely to be reducing the environ-
mental coupling κp0 of the probe to increase the ampli-
tude of the thermal oscillations above the threshold for
observation (cf. Fig. 2).
As a final example of an experimentally realistic sys-

tem which may be used to investigate quantum temper-
ature oscillations, we consider a graphene flake with a
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hot needle-like terminal in the center, and the edge of
the flake held at ambient temperature. The tempera-
ture profile for this junction is shown with and without
impurities in the left and right-hand panels of Fig. 4,
respectively, for κp0 = 700κ0–corresponding to the cur-
rent experimental sensitivity20. In Fig. 4, we have taken
µ − µDirac = −1eV; the predicted temperature profile
exhibits a strong dependence on gate voltage and ex-
hibits quantum oscillations within the resolution of cur-
rent state-of-the-art SThM techniques. The temperature
distribution in the right-hand panel includes a large to-
tal impurity concentration of 1%, split evenly between
vacancies, boron adatoms (black circles), and nitrogen
adatoms (white circles). The temperature oscillations
are not destroyed by the addition of impurities, although
the specific temperature wave pattern depends on the
microscopic realization of disorder–serving as a finger-
print of the sample’s impurity distribution. Adatom im-
purities are treated as onsite potential variations as dis-
cussed in Ref. 39. We stress that although computational
resources have limited our discussion to small graphene
structures, longer wavelength oscillations should be ob-
servable in larger systems provided the transport is phase
coherent and coupling to the environment is minimized.

Conclusion –Using a realistic model of a scanning ther-
mal microscope operating in the tunneling regime, we
investigate the local electron temperature in graphene
nanostructures subject to an applied thermal bias. We
find that the wavelength of the temperature oscillations
in these systems can be readily tuned via an applied gate
voltage or doping, bringing quantum temperature oscil-
lations within reach of the spatial resolution of existing
measurement techniques for the first time. Graphene
nanostructures are thus ideal systems for both funda-
mental and device related studies into the nature of tem-
perature and heat transport at the nanoscale.
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