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We study fermions on a triangular lattice model that exhibits topological flatbands characterized by nonzero
Chern numbers. Our scheme stems from the well-known Hofstadter model but the next-nearest-neighbor hop-
ping is introduced, which is crucial for tuning the lowest band to be nearly flat. Differing from previous propos-
als with necessity of multi-particle interactions, we consider the more realistic long-range dipolar interaction
combined with two-body short-range attractions between fermions. We show the realization of the non-Abelian
ν = 1/2 Moore-Read fractional Chern insulators, and strong evidence for the existence of the more exotic
ν = 3/5 Read-Rezayi fractional Chern insulators. Our results provide insights for the experimental realization
of these exotic states by realistic two-body interactions and thus facilitates the implementation of the universal
topological quantum computation.

PACS numbers: 73.43.Cd, 03.65.Vf

Introduction.— The cousins of fractional quantum Hall
(FQH) effect1,2 on two-dimensional (2D) lattices have been
attracting great interest recently. In a Chern band possess-
ing nonzero Chern number as an analogue of a single Landau
level3–5, the interaction of particles in the fractionally filled
band leads to strongly correlated states named as fractional
Chern insulators (FCIs)6–16. Compared with their FQH coun-
terparts, a strong net external magnetic field is no longer an in-
dispensable element, and FCIs are expected to be much more
robust against high temperature3.

Among various FCIs, the most exotic members are those
that support excitations, i.e. anyons, obeying non-Abelian
statistics17,18. These non-Abelian anyons are essential re-
sources in topological quantum computation19. However, the
realization of non-Abelian FCIs (as well as non-Abelian FQH
states) in realistic models is usually very difficult. Up to now,
except in a few cases of bosons13,20,21, almost all numeri-
cally confirmed non-Abelian FCIs are stabilized by peculiar
multi-particle interactions22–28 (the stabilization of bosonic
non-Abelian FQH states is also usually much easier than that
of the corresponding fermionic states). Considering that elec-
tronic materials and fermions in optical lattices are natural
platforms for Chern bands, the discovery of non-Abelian FCIs
stabilized by realistic two-body interactions in fermionic sys-
tems is highly demanded. This construction is of fundamental
interest and facilitates the future implementation of topologi-
cal quantum computation.

In this paper, we report the first progress in this direction.
We choose a simple generalization of the triangular Hofstadter
model. By introducing the next-nearest neighbor hopping, the
lowest Bloch band can be tuned to be very flat even for a large
value of flux density. This is a compelling feature that makes
this model an ideal platform to search for non-Abelian FCIs.
Enlightened by the positive effect of long-range interactions
on the stabilization of bosonic non-Abelian FCIs21, we turn on
the experimentally realistic dipolar interaction29–31 between
fermions, supplemented by two-body short-range attractions
that might be controlled by Feshbach resonances32. By us-
ing exact diagonalization, we study the many-body system in

Figure 1. (Color online) (a) The schematic graph of our triangular
lattice model with (~a1,~a2) and (~b1,~b2) representing lattice vectors
and reciprocal lattice vectors respectively. (m,n) labels the lattice
site. (b) Complex hopping amplitudes between NN sites. (c) Com-
plex hopping amplitudes between NNN sites. One can easily verify
that the magnetic flux per each plaquette (two triangles) is φ in units
of the flux quantum φ0.

several aspects, such as the energy spectrum, the particle-cut
entanglement spectrum10,33,34, and the adiabatic continuity to
the system with multi-particle interactions. We obtain con-
vincing numerical results to confirm the existence of the non-
Abelian ν = 1/2 Moore-Read FCIs17. Through the analysis
of two-particle energy spectrum, we show that our choice of
the attraction strength is reasonable to stabilize the Moore-
Read FCIs. Some encouraging evidence that supports the Z3

ν = 3/5 Read-Rezayi FCIs35 are also discovered. The sta-
bilization of the fermionic ν = 3/5 Read-Rezayi FCI is very
exciting because its Fibonacci anyon excitation is necessary
for universal quantum computation.

Single-particle model and band topology.— We consider
spinless fermions on a 2D triangular lattice penetrated by an
uniform magnetic field. Assuming fermions only hop between
nearest-neighbor (NN) and next-nearest-neighbor (NNN) sites
(Fig. 1), the single-particle Hamiltonian is

H0 = −
∑

〈i,j〉,〈〈i,j〉〉

tije
iφijc†i cj , (1)

where ci (c†i ) is the fermionic annihilation (creation) operator



2

- 0 . 4

0 . 4
0 . 0 0 . 3 0 . 6

 

k x / π

ky/
π

0 . 3 9 0 0

0 . 4 0 7 5

0 . 4 2 5 0

0 . 4 4 2 5

0 . 4 6 0 0
F ( k )

- 4

- 2

0

2

φ = 1 / 5

 

 

E
ΓM K M- 4

- 2

0

2

 

 
E

ΓM K M
φ = 1 / 3

( a ) ( b ) ( c )

Figure 2. (Color online) Band structure for (a) H0(φ=
1
3
), t′/t =

0.16; and (b) H0(φ=
1
5
), t′/t = 0.10. (c) The Berry curvature of the

lowest band for H0(φ=
1
3
) with t′/t = 0.16. The region within the

white solid line is one third of a Brillouin zone.

on site i, tij = t for NN sites and tij = t′ for NNN sites, and
φij is indicated in Fig. 1. Our model is actually the triangu-
lar version of the well-known Hofstadter model36 with extra
hopping between NNN sites.

If the magnetic flux density φ = p/q, where p and q are
coprime integers, each unit cell consists of q sites in the ~a1

direction. The band structure should exhibit q Bloch bands,
each of which can be labeled by a Chern number37. For the
special case of p = 1, all bands are separated from each other
by finite gaps. Their Chern numbers can be described by a
simple picture: the (q− 1) lower bands have unit Chern num-
ber Ci<q = 1, while the qth (highest) band has Chern number
Cq = −q + 1, satisfying

∑q
i=1 Ci = 0. This Chern number

distribution is different from the one on the square lattice16,38

because of the different butterfly structures of the energy spec-
tra.

By optimizing the ratio of t′/t, we can tune the lowest band
to be nearly flat. For example, when φ = 1/3 and t′/t = 0.16,
the flatness of the lowest band, defined as the ratio between the
band gap ∆ and the bandwidth w, reaches ∆

w ≈ 64 [Fig. 2(a)].
With larger q, we can even obtain more than one flatband.
For φ = 1/5 and t′/t = 0.10, the flatness of the lowest two
bands are ∆1

w1
≈ 1449 and ∆2

w2
≈ 284 respectively [Fig. 2(b)].

Interestingly, the fluctuation of the Berry curvature F of the
lowest band is much smaller than that on the square lattice
with the same flux density21. For φ = 1/3 and t′/t = 0.16, F
of the lowest band is quite uniform [Fig. 2(c)] and close to the
mean value F =

√
3q

4π ≈ 0.4135. This suggests that the lowest
band of our triangular lattice model is a more suitable host
for fractional Chern insulators than that of the square lattice
model.

Moore-Read FCIs at ν = 1/2.— Now we consider Ne in-
teracting fermions partially filled in the lowest flatband on
the torus. We assume dipolar potential v(r) = 1/|r|3 be-
tween fermions, which is experimentally realistic for neu-
tral fermions and can be realized by trapping ultracold polar
molecules in optical lattices29–31. We also include short-range
two-body attractive Hubbard terms between n-th NN terms
[n = 1 corresponds to the NN interaction, n = 2 corresponds
to the NNN interaction, etc.]. It has been proposed in Ref.32

that the n = 1 NN term due to the s-wave scattering between
fermions in optical lattices can be controlled by Feshbach res-
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Figure 3. (Color online) Evidence of the ν = 1/2 MR FCIs as the
ground states of H2b with φ = 1/3, t′/t = 0.16, nmax = 1 and
U1 = 0.79. (a) The net potential for the combination of dipolar
interaction and two-body attractive NN interaction as a function of
distance r on the lattice. (b) The low-energy spectra at ν = 1/2
for Ne = 6, 8, 12 on N1 × N2 = 6 × 6, 6 × 8, 9 × 8 lattices,
respectively. (c) The x-direction spectral flow for Ne = 8 on the
N1 ×N2 = 6× 8 lattice. (d) The PES for Ne = 12 and NA = 5 on
the N1 × N2 = 9 × 8 lattice. The number of states below the gap
(indicated by the green arrow) is 30648.

onances. The whole two-body interaction Hamiltonian is

H2b =
∑
i<j

Vd-d(ri − rj)ninj −
nmax∑
m=1

Um

( ∑
(i,j)∈Nm

ninj

)
,

(2)
where

Vd-d(r) =

+∞∑
s,r=−∞

v(r + sN1~a1 + rN2~a2) (3)

that is periodic for N1 × N2 lattice sites. We assume that
the strength of interaction is much smaller than the band gap
but larger than the bandwith, so H0 is quenched and we
can project H2b onto the occupied lowest band. We diago-
nalize the projected Hamiltonian H2b. Because each mag-
netic unit-cell contains q sites, there are N

¯ 1 × N
¯ 2 unit cells

with N
¯ 1 = N1/q and N

¯ 2 = N2. The band filling factor
ν is defined as ν = Ne/(N

¯ 1N
¯ 2). Since the total transla-

tion operator commutes with both H0 and H2b, each energy
level can be labeled by a 2D total momentum (K1,K2) with
K1,2 = 0 ∼ (N

¯ 1,2−1).
We first focus on ν=1/2 to look for the non-Abelian

Moore-Read (MR) FCIs. Compelling evidence, as displayed
in Fig. 3, demonstrates that the ground states are indeed in the
MR phase for flux densities as high as φ = 1/3. By choos-
ing nmax = 1, U1 = 0.79 to weaken the repulsion between
NN sites [Fig. 3(a)], we observe six quasidegenerate ground
states for each system size that we study, and they are sep-
arated from the excited levels by an energy gap much larger
than the ground-state splitting [Fig. 3(b)]. This degeneracy
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Figure 4. (Color online) The adiabatic continuity between the ground
states of H3b and H2b. We choose U3b = 1.16 in H3b and φ = 1/3,
t′/t = 0.16, nmax = 1, U1 = 0.79 in H2b. (a) The low-energy
spectrum of H3b for Ne = 12 on the N1 ×N2 = 9× 8 lattice. The
number of ground states in each sector is labeled on the chart. (b)
The evolution of the low-energy spectrum of Hint(λ) with λ from 0
to 1 for Ne = 12 on the N1 ×N2 = 9× 8 lattice. The energy gap is
made equal at λ = 0 and λ = 1.

is robust against the twisted boundary conditions, i.e., the six
ground states never mix with excited levels in the spectral flow
[Fig. 3(c)]. In order to further investigate the topological order
of the ground-states, we compute the commonly used particle-
cut entanglement spectrum (PES)10,23,39 to rule out the possi-
bility of other effect such as the charge density wave. Af-
ter dividing the whole system into two parts A and B with
NA and NB particles respectively, and tracing out part B from
the density matrix ρ = 1

m

∑m
i=1 |Ψi〉〈Ψi| of the ground state

manifold, where |Ψi〉 represents the i-th state of m degener-
ate ground states in the manifold, we can obtain the PES level
defined as ξi = − lnλi with λi the eigenvalues of the reduced
density matrix ρA = TrBρ. We find that a clear gap (which
may increase for smaller NA) exists in the PES, below which
the number of levels matches the quasihole excitation count-
ing of the MR state predicted by the (2, 4)−admissible rule23

[Fig. 3(d)]. All these results above conclusively confirm the
existence of the ν = 1/2 MR FCIs in the presence of dipo-
lar interaction and attractive NN interaction (2) at high flux
densities.

Similar results can also be obtained for different system
sizes and flux densities. For example, we can choose a smaller
flux density φ = 1/5 and project H2b to either the lowest
or the second lowest flatband [Fig. 2(b)]. As both of these
two flatbands have unit Chern number, we can stabilize the
ν = 1/2 MR FCIs on each of them. Which band is fraction-
ally filled is determined by the chemical potential.

Adiabatic continuity to the ground states of three-body in-
teractions.— It is already known that the ν = 1/2 MR FCIs
can be stabilized by NN three-body repulsive interactions23,24.
In our lattice model, we consider the three-body repulsion on
each triangular plaquette, i.e.,

H3b = U3b

∑
〈i,j,k〉∈4,5

ninjnk (4)

with U3b > 0. The low-energy spectrum of this three-body
interaction for Ne = 12 fermions at ν = 1/2 with φ = 1/3
is displayed in Fig. 4(a). As expected, we find a ground-state
manifold of six-fold degeneracy. Moreover, further analysis
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Figure 5. (Color online) The two-particle spectrum analysis of H2b

with φ = 1/3, t′/t = 0.16, nmax = 1 and U1 = 0.79. (a) The
two-particle spectrum on the N1 × N2 = 12 × 12 lattice. Only
the highest levels are plotted. The energy levels form pairs and are
identified as Haldane’s pseudopotential parameters V1,V3,V5. (b)
The two-particle energy level En (rescaled by the highest level E1)
in the (K1,K2) = (0, 0) sector versus n on theN1×N2 = 12×12
lattice. The case of pure dipolar interaction (U1 = 0) is also plotted
for comparision.

including the quasihole excitations and PES supports that the
ground states are indeed in the MR phase.

The existence of MR FCIs for the three-body interaction
enables us to investigate the adiabatic continuity between the
ground states of H2b and H3b. In order to achieve this, we
construct a Hamiltonian interpolating between H2b and H3b,
i.e.,

Hint(λ) = (1− λ)H2b + λH3b, (5)

where λ ∈ [0, 1] is the interpolation parameter. When λ con-
tinuously increases from 0 to 1, this Hamiltonian evolves from
H2b toH3b. We diagonalizeHint(λ) to study how does the en-
ergy spectrum evolve with λ. The result forNe = 12 fermions
is shown in Fig. 4(b). The parameters in H0 and H2b are the
same as those used in the previous section. During the in-
terpolation from λ = 0 to λ = 1, we find that there are al-
ways six quasidegenerate ground states well separated from
high excited levels. The fact that the energy gap does not
close during the interpolation suggests that the ground states at
λ = 0 and λ = 1 are adiabatically connected and in the same
phase. This adiabatic continuity provides another convincing
evidence that the ground states of the two-body long-range
interaction H2b at ν = 1/2 are indeed MR FCIs.

Two-particle spectrum analysis.— In the Landau level
physics, any rotation (translation) invariant two-body Hamil-
tonian is determined by its Haldane’s pseudopotential param-
eters Vm40, which can be calculated analytically. Although we
do not have an elegant formula for Chern band like for Lan-
dau levels, we can still approximately extract pseudopoten-
tial parameters from the energy spectrum of two interacting
particles15. These pseudopotential parameters in the Chern
band provide guidance for what interaction should we use to
stabilize a target FCI21. Therefore, in order to further under-
stand why the Hamiltonian H2b can stabilize the ν = 1/2 MR
FCIs, we consider the two-fermion problem.

In Fig. 5(a), we show the high-energy spectrum of two
fermions interacting by H2b with the parameters used to sta-
bilize the ν = 1/2 MR FCIs. The energy levels form pairs
and are almost independent on (K1,K2). We can tentatively
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Figure 6. (Color online) Evidence of the ν = 3/5 RR FCIs as the
ground states of H2b. We choose ( – ) nmax = 1, U1 = 1.26, t′/t =
0.11 for φ = 1/4; (×) nmax = 3, (U1, U2, U3) = (1.31, 0.2, 0.02),
t′/t = 0.10 for φ = 1/5; and (4) nmax = 1, U1 = 1.55,
t′/t = 0.08 for φ = 1/6. (a) The net potential for the combina-
tion of dipolar interaction and attractive NN, NNN and NNNN in-
teractions as a function of distance r on the lattice with nmax = 3,
(U1, U2, U3) = (1.31, 0.2, 0.02). The attractions are so strong that
net potentials for NN and NNN sites become negative. (b) The low-
energy spectrum forNe = 12 at ν = 3/5 with different flux densities
φ = 1/4, 1/5 and 1/6 on N1 × N2 = 8 × 10, 10 × 10, 12 × 10
lattices, respectively. (c) The x-direction spectral flow for Ne = 12
with φ = 1/4 on the N1 × N2 = 8 × 10 lattice. (d) The NA = 4
PES for Ne = 12 with φ = 1/6 on the N1 ×N2 = 12× 10 lattice.
The number of states below the entanglement gap (indicated by the
green arrow) is 4765.

identify the first (highest) pair as V1, the second pair as V3,
and the third pair as V5 (note that the pseudopotential param-
eters of even order do not appear in the two-particle spectrum
for fermions)15,21. The pairing of energy levels can be easily
seen in Fig. 5(b), where we choose (K1,K2) = (0, 0) sec-
tor and rescale the highest energy level as 1. We find that
V3/V1 ≈ 0.6 for H2b with U1 = 0.79, while V3/V1 is only
roughly 0.3 for the pure dipolar interaction. Considering a
large V3/V1 is also crucial for the stabilization of MR states
in the second Landau level41, the pseudopotential parameters
of our dipolar interaction supplemented by two-body NN at-
tractions are very reasonable.
Z3 Read-Rezayi FCIs at ν = 3/5.— Compared with the

ν = 1/2 MR FCIs, the ν = 3/5 Z3 Read-Rezayi (RR) FCIs
are more appealing because the Fibonacci anyon excitations of
these states can be used to perform universal quantum compu-
tation (the Majorana anyon excitations of the MR FCIs can-
not). However, the RR FCIs are more fragile and sensitive to

the interactions and sample sizes. In order to stabilize these
state, we need finer tuning of the interaction than what we do
in the search of MR FCIs.

The higher filling fraction and its odd denominator make
the number of available lattice samples accessible by exact
diagonalization at ν = 3/5 is much less than that at ν =
1/2. However, we still obtain encouraging evidence of the RR
FCIs at high flux densities. By setting appropriate nmax and
Um, we observe 10 quasidegenerate ground states in the low-
energy spectrum for Ne = 12 fermions with φ = 1/4, 1/5
and 1/6 [Fig. 6(b)]. This 10-fold degeneracy is robust against
the twisted boundary conditions [Fig. 6(c)]. The counting of
levels below the gap of the PES also matches the requirement
of the (3, 5)-admissible rule23[Fig. 6(d)]. All these evidence
support that the ground states at ν = 3/5 are the RR FCIs.

Conclusion.— In this paper, we have demonstrated that a
combination of long-range dipolar interaction and two-body
short-range attractions for interacting fermions on a triangu-
lar lattice can exhibit ground states as non-Abelian fractional
Chern insulators. Our single-particle model is a simple gener-
alization of the triangular Hofstadter model by adding an extra
next-nearest-neighbor hopping. This extra term is crucial for
tuning the lowest band to be nearly flat. After switching on in-
teractions in this flatband, we have observed robust ν = 1/2
Moore-Read FCIs for flux densities as high as 1/3. Besides
the topological degeneracy, spectral flow and entanglement
spectrum, the adiabatic continuity to the ground states of the
three-body interaction also proves the ground states of our
two-body long-range interaction are indeed in the MR phase.
We compute the two-fermion energy spectrum and extract the
Haldane’s pseudopotential parameters of our long-range inter-
action, which are reasonable compared with the known results
in Landau levels. The encouraging evidence is also discov-
ered for the more exotic ν = 3/5 Z3 Read-Rezayi FCIs at
flux densities as high as 1/4. The interactions discussed in
our scheme are quite promising to be realized29–32. Consider-
ing the recent successful experimental realizations of the Hof-
stadter model42,43, our results may provide insights into the
experimental preparation of fermionic FCIs in optical lattices.

It is promising that the fermionic non-Abelian FCIs can be
similarly stabilized by appropriate two-body long-range inter-
actions in Chern bands of other lattice models44, including
those with higher Chern number bands11,45. We highlight the
physical significance of our scheme for the realistic dipolar in-
teraction, applicable possibly in various lattice configurations
and crucial role in topological quantum computation.
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