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Abstract: The selfconsistent solutions of the Dyson equation are obtained using a plane wave
basis set for 7 small molecules. Such selfconsistent solutions can help to unify the different GW
selfconsistent schemes, reduce the scatter of results in current GW calculations, and shed light on
the true effects of GW selfconsistency. Unlike other works of selfconsistent GW calculations, in
the present work the Green’s function is expressed as a matrix under the plane wave basis set.
The algorithmic details which enable such calculations are presented. The ability to solve the full
Greens function using a plane wave basis set may open the door for future beyond-GW many-body
perturbation theory calculations.
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I. INTRODUCTION

GW method has been used as one of the most accurate methods to calculate the electronic structures of materials
from bulk crystals to molecules1. However, there is a strong dependence of the traditional GW results on the initial
input single particle electron wave functions {ψi} and eigen energies {ǫi}, especially for G0W0 calculations2–5 (e.g., up
to 1 eV for some oxide band gaps6) where the Green’s function G and screened electron-electron interaction W are not
updated. One way to solve this problem is to introduce selfconsistency in the solution. However, there are different
approaches to solve the GW problem selfconsistently. One can divide these approaches into two major categories.
In the first category, the Green’s function is still described by an noninteracting Green’s function using the eigen
functions and eigen energies of the single particle orbital,e.g., G0(ω) =

∑

i ψi(r1)ψ
∗
i (r2)/(ω + µ− ǫi ± iδi), although

ψi and ǫi will be updated during the selfconsistent iterations7–11. However, some of the selfconsistence conditions
could be a bit arbitrary since one can propose different selfconsistent schemes6. Furthermore, in some cases, there can
still be initial wave function dependence12. In the second category, for which we will focus on, the Dyson equation
is solved selfconsistently, and the Green’s function G can no longer be described by a noninteracting single particle
Green’s function G0. Schöne and Eguiluz13 have solved the Dyson equation by expanding the Green’s function G with
the input single particle orbital and used a truncation on the number of these orbital. They used the Baym-Kadanoff
formalism14 to express the Dyson equation. Similarly, Kutepov, Savrasov, and Kotliar15,16 also used the band states to
expand the Green’s function and iteratively solved the Dyson’s equation in a bulk. The Matsubara’s frequency mesh16

on imaginary time and frequency axis is used for frequency integrations. Caruso, Scheffler et al. have used atomic
orbital to solve the Dyson equation17,18, so is the group of Thygesen19,20, they have solved the Dyson equation using
localized atomic orbital for 34 different molecules. The atomic orbital has also been used by van Leeuwen et.al21,22

and Koval et al.23 to solve the Dyson equation. Computationally, the atomic orbital has the advantage for being
able to significantly reduce the dimension of the problem while still be able to cover the important high energy single
particle excitations. They are thus particularly suitable for isolated molecule systems, while the periodic crystals are
more traditionally solved with plane waves or full potential linearized augmented plane wave (FLAPW) methods. We
notice that, for the methods starting with plane wave, or FLAPW basis sets, the band states are often used to expand
the Green’s function G13. However, this could lead to issues related to the truncations of these band states24,25. In
this work, we will use a plane wave basis set to directly represent the Green’s function matrix G without any further
truncation. Although doing so will significantly increase the computational cost, as we will show in this work, with
the help of modern supercomputers, it is now possible to carry out such calculations. There could be other advantages
for adopting this approach. For example, by representing the Green’s function matrix in reciprocal and real space,
the formalism becomes simpler. This might ease the step to adopt other formalisms beyond GW approximation in
the future.

One might ask why one should choose the Dyson equation as the selfconsistent solution of the GW problem, given
all the possible ways for the GW selfconsistent calculations (i.e., an input equaling output criterion in an iterative
procedure). Baym and Kadanoff14,26 have shown that many conservation laws are preserved under the selfconsistent
solution of the Dyson equation. The same is true for the charge conservation law27. The Dyson equation is the
variational minimum (or stationary point) solution of Klein’s total energy expression28 under the random phase
approximation (RPA). This is like the Kohn-Sham equation is the variational minimum solution of the density
functional theory (DFT) total energy. Furthermore, it has been shown that29,30, under such a variational solution,
the differences of the RPA total energies after adding or subtracting one electron equal the GW quasi-particle eigen
energies. Recently, there is a surge of using RPA for total energy calculations29,31–33. But many such calculations
are based on the input (e.g., DFT) noninteracting single particle Green’s function G0. The selfconsistent solution of
the Dyson equation is to find the electronic ground state of the total energy expression. As an result, one can, for
example, use the Hellmann-Feynman theory to calculate the atomic force under the RPA total energy. Considering
all these factors, it is not difficult to conclude that the Dyson equation as derived from the original GW formalism34 is
the most natural choice for the GW selfconsistent calculations. However, the cost is to represent the Green’s function
G as a full matrix. It can non longer be represented by a set of single particle wave functions and eigen energies.

The effects of self-consistency for GW calculations for homogeneous electron gas has been studied by Holm and
Barth35. They found an over estimation of the free electron bandwidth and the disappearance of the plasmon satellite
structures in the spectral function due to selfconsistent calculations. They thus concluded that the nonselfconsistent
G0W0 calculation is preferred unless the vortex correction is included, despite the fact that the selfconsistent GW
total energy is found to be rather accurate. Nevertheless, their conclusion is based on model metallic systems. It
is thus interesting to test the selfconsistent GW results on real and nonmetallic systems. Ku and Eguiluz36 have
calculated bulk Si and Ge using selfconsistent GW (sc-GW) method, and concluded that the selfconsistency and core
level should be used together as their effects can cancel out each other, although this conclusion has been contested
by some later studies24,25 due to the band state truncation issue. In terms of molecules, Caruso et al.18 found that
the selfconsistency does not necessarily make the spectrum result worse than the nonselfconsistent results. Thus, this
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could be a right time to revisit many of the related issues, especially if more accurate sc-GW calculations become
available absent of the truncation issues.
We will use plane wave pseudopotentials to solve the GW problem. There has been a long debate for the effects

of ignoring the core levels and using the pseudo valence wave functions in GW calculations. For example, Ku and
Eguiluz36 have claimed that the use of pseudopotential will introduce a large error in the GW result. However,
Delaney et.al25, and Tiago et.al24 have debated this result, and concluded that the pseudopotential should be good
enough for most problems. More recently, Gomeze-Abal et.al37 have revisited this problem. They concluded that the
ignoring of core level and the use of pseudo wave function might indeed have some effects on the final results. How to
overcome these problems, e.g., by developing GW appropriate pseudopotentials, will be beyond the scope of current
paper. For example, perhaps the effects of core level can be included in a core level polarization model38, and the
effect of the pseudo wave function might be corrected by introducing additional terms in the exchange integral39,40.
Here, we like to point out that for the light elements to be used in the current study, the pseudopotential introduced
error should be small compared to the band gap, and highest occupied molecule orbital (HOMO), lowest unoccupied
molecule orbital (LUMO) energy levels studied here.
One technical issue for solving the Dyson equation under GW approximation is the frequency space integration.

This is a convolution in frequency, and there are different ways to carry it out. One approach, recently adopted by
Koval, et.al23 is to calculate this convolution integral directly in real frequency space together with the use of spectral
functions to avoid the singularity of G(ω). We will use the Fourier transformation to convert the functions to time
space, then use the direct products in time space. To avoid the singularities in real frequency, imaginary frequency
will be used. This is the approach used by Roja, Godby and Needs41 more than ten years ago, and it has also been
used recently by several other groups15,18. Very often, the Matsubara’s time and frequency mesh15 is used with an
artificial temperature. One often extrapolates the final result from an series of artificial temperatures15,22. Recently,
in an work by Caruso, et.al18, the scheme of McMahan et.al42 was adopted to carry out this frequency integration
without the use of artificial temperature. In this paper, we will introduce an alternative integration scheme, which
also has high accuracy without the use of artificial temperature.
We will calculate 7 small molecules: Si3, C3, O3, Al2, SiH2, HNO and CHF. These molecules are chosen because

their electron affinities are positive (LUMO level below the vacuum level). Thus, both experimental HOMO and LUMO
levels exist. In contrast, many of the small molecules studied previously (e.g., in Ref.19), only HOMO level exist. We
believe it is interesting to have both HOMO and LUMO levels since they might have very different characteristics.
Besides comparing the G0W0 calculation with the full sc-GW results, we will also study how the selfconsistent Green’s
function G is different from the single particle noninteracting Green’s function G0. There is also a practical question
to answer: can the full GW equation be solved using current day supercomputers by expressing the Green’s function
matrix directly using a plane wave basis set without any additional truncations beyond the plane wave kinetic energy
cutoff?

II. THE BASIC FORMALISM

We will follow the ”space-time” method on the imaginary iω axis first used by Roja, Godby and Needs41. Under
this scheme, the Greens function will be solved along the imaginary axis iω + µ (to be denoted as G(iω))in the ω
complex plane, where µ is the electron Fermi energy (thus in our notation, both ω and µ are real numbers). The
Dyson equation can be written as:

G−1(iω) = iω + µ−H0 − Σ(iω) (1)

where G, H0 and Σ are all matrices either represented in real space r index, or reciprocal space q index. H0 =
− 1

2∇
2 + V (r) +

∑

l |φl >< φl| is the noninteracting single electron Hamiltonian, with |φl >< φl| being the nonlocal

pseudopotential projector. The single particle potential is calculated as: V (r) =
∑

R vat(r −R) +
∫ ρ(r′)

|r−r′|d
3r′, where

vat is the local part of the atomic pseudopotential, the ρ is the electron charge density. The Σ(iω) is the self-energy
term. For the ω dependent matrices X(iω) (e.g, G and Σ), they can also be represented in the time (τ) space as
X(iτ). The transformation between these temporal duel representations are:

X(iτ) =
i

2π

∫ ∞

−∞

X(iω)eiωτdω

X(iω) = −i

∫ ∞

−∞

X(iτ)e−iωτdτ (2)
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The above equation is carried out separately for every element of the matrix. On the other hand, the r and q space
transformation can be carried out as:

X(q1, q2, z) =
1

Ω

∫

X(r1, r2, z)e
iq1r1eiq2r2d3r1d

3r2

X(r1, r2, z) =
1

Ω

∑

q1,q2

X(q1, q2, z)e
−iq1r1e−iq2r2 (3)

where z can be either iω or iτ , and Ω is the volume of the periodic unit cell.
With the above definition, the electron charge density can be calculated as ρ(r) = −iG(r, r, iτ)|τ→0+ . The correct

total electron charge can be obtained by adjusting the Fermi energy µ. Within the GW approximation34, the self-
energy term Σ can be expressed as:

Σ(r1, r2, iτ) = iW (r1, r2, iτ)G(r1, r2, iτ) (4)

where the screened Coulomb interaction W can be calculated in (q,iω) space as:

W (q1, q2, iω) =
4π

q21
ǫ−1(q1, q2, iω) (5)

and the dielectric function ǫ is calculated as:

ǫ(q1, q2, iω) = δq1,q2 − χ(q1, q2, iω)
4π

q22
. (6)

Finally the polarizability χ can be calculated as:

χ(r1, r2, iτ) = −iG(r1, r2, iτ)G(r2, r1,−iτ). (7)

The above equations form a close loop for the calculation of G. The key is the transformation of the matrix
between the real space (r1, r2, iτ) representation and the reciprocal space (q1, q2, iω) representation, and matrix
inversion (Eqs.(1),(5))in reciprocal space representation for each iω. A plane wave (PW) energy cutoff Ecut is used
to select the PW vector q1,q2 in G(q1, q2, z) and Σ(q1, q2, z). However, in the expressions of W (q1, q2, z), χ(q1, q2, z),
and ǫ(q1, q2, z), their q1,q2 are defined within an energy cutoff Ecut2 = 4Ecut. This is because these matrices are the
squares of the Green’s function G (Eq.(7)). In practice, a smaller Ecut2 can often be used, much like in a conventional
plane wave DFT calculation. In the following, we will introduce numerical methods to calculate the above equations.

III. NUMERICAL TECHNIQUES

We first introduce an algorithm to numerically transform G(q1, q2, iω) obtained from Eq.(1) to G(q1, q2, iτ) vias

Eq.(2). We will set up an exponential grid to discretize ω: ωk = sign(k)α1(β
|k|
1 −1) for k=-200,200, and the maximum

ω equals to 3× 106 Hartree, while the smallest interval ω1−ω0 equals 2× 10−4 Hartree. A similar exponential grid τk
is used for τ , with k=-20,20, and maximum τ of 200 Hartree−1, while the smallest interval τ1 − τ0 is 0.01 Hartree−1.
The grid convergence has been tested to ensure the resulting error in quasi-particle eigen energy is less than 0.01 eV.
To carry out the Fourier transformation of Eq.(2) from G(iω) to G(iτ), the

∫

dω is carried out piece wise analytically
for each interval [ωk, ωk+1]. To do this, for each matrix element (q1, q2) within the interval [ωk, ωk+1], we first fit the
G(q1, q2, iω) using an expression f1(iω) = C1

iω−Z1
+ C2

iω−Z2
. Assuming G1 = G(q1, q2, iω1), G2 = G(q1, q2, iω2) and

G3 = G(q1, q2, iω3) for a given (q1, q2) element, where ω1 = ωk−1, ω2 = ωk, ω3 = ωk+1, then the complex C1,C2 and
real Z1,Z2 can be obtained through the following equations:

I1 = −(ω3 − ω2)ω
2
1G1 − (ω1 − ω3)ω

2
2G2 − (ω2 − ω1)ω

2
3G3

I2 = i[−(ω3 − ω2)ω1G1 − (ω1 − ω3)ω2G2 − (ω2 − ω1)ω3G3]
I3 = (ω3 − ω2)G1 + (ω1 − ω3)G2 + (ω2 − ω1)G3

(8)
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and

x =
Re(I1)Im(I3)−Re(I3)Im(I1)

Re(I2)Im(I3)−Re(I3)Im(I2)

y =
Re(I2)Im(I1)−Re(I1)Im(I2)

Re(I3)Im(I2)−Re(I2)Im(I3)
(9)

Then the real Z1 and Z2 can be obtained from the following formulas

Z1 =
x

2
+

√

x

2

2
− y

Z2 =
x

2
−

√

x

2

2
− y (10)

After Z1, and Z2 are obtained, the C1 and C2 can be obtained by a simple linear equations using the corresponding
analytical expressions of G1 and G2.
After the Z1, Z2, C1, C2 are obtained, to carry out the integral within [ωk, ωk+1], we need an analytical expression

for

I =

∫ ω3

ω2

eiωτ

iω − Z
dω (11)

We first define t1 = Zτ − iω2τ , t2 = Zτ − iω3τ . Then for large |t1| and |t2|, say bigger than 8, one can use:

I = −ieZτ{
e−t1

t1

N1
∑

n=0

n!

(−t1)n
−
e−t2

t2

N2
∑

n=0

n!

(−t2)2
} (12)

Here N1, N2 are the order of terms which make the minima of n!
(−t1)n

and n!
(−t2)n

respectively. For |t1| < 8 and

|t2| < 8, one can use

I = −ieZτ [ln(t1/t2) + Ein(t2)− Ein(t1)] (13)

and the Ein(t) function is:

Ein(t) =

∞
∑

k=1

(−1)k+1tk

k × k!
(14)

Using above formulas, one can get the analytical ω integral within an interval [ω1, ω2] for the G(iω) to G(iτ) Fourier
transform.
To test this integration scheme, we have used the noninteracting G0 for the Si3 molecule with LDA {ψi, ǫi}, where

its analytical expression in both iω and iτ spaces are known. More specifically, the G0(q1, q2, iω) can be written down
as:

G0(q1, q2, iω) =
∑

i

ψi(q1)ψi(q2)

iω − (ǫi − µ)
(15)

while its analytical expression in iτ space is:

G0(q1, q2, iτ) = i
∑

i,ǫi<µ

ψi(q1)ψ
∗
i (q2)e

τ(ǫi−µ), for τ > 0

= −i
∑

i,ǫi>µ

ψi(q1)ψ
∗
i (q2)e

τ(ǫi−µ), for τ < 0 (16)
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FIG. 1. The G0(q1, q2, iω) for an typical off diagonal (q1, q2) element (a); and its fitting error within each interval [ωk, ωk+1]
using the analytical formula with coefficients obtained from Eqs.(8)-(10). The horizontal line with ticks in (a) indicates the ωk

positions.

The G0(q1, q2, iω) for a typical off diagonal element (|q1| = 1.43 a.u, |q2| = 1.66 a.u, and q1, q2 are not in the
same direction) is illustrated in Fig.1(a) together with its grid points ωk, while the error of f1(iω) fitting is shown
in Fig.1(b). We have also calculated the average relative fitting error using the formula {

∑

ω,q1,q2a
|G0(q1, q2, iω) −

Gfit(q1, q2, iω)|
2/

∑

ω,q1,q2
|G0(q1, q2, iω)|

2}1/2, where Gfit is the fitted G0 using f1(iω) = C1

iω−Z1
+ C2

iω−Z2
, and ω is

taken at the center of the interval [ωk, ωk+1] where the error is maximum as shown in Fig.1. The average error
so calculated for the Si3 system is 5.2 × 10−5, similar to the one shown in Fig.1(b). The numerically transformed
G0(q1, q2, iτ) together with its grid points τk are shown in Fig.2(a), and its error when compared with the analytical
expression Eq.(16) is shown in Fig.2(b). As we can see, the errors are rather small, typically 10−4 times smaller than
its absolute values.

To carry out the ω to τ Fourier transformation, massively parallel processing can be used to distribute the q2 into
different computer processors. Typically, we have the number of processors in the same order as the number of q2.
After G(q1, q2, iτ) is obtained, it is Fourier transformed into G(r1, r2, iτ) using fast Fourier transformation (FFT) one
τk at a time, so there is no need to store the full G(r1, r2, iτ) for all τ .

After G(r1, r2, iτ) is obtained for each τk, the χ(r1, r2, iτk) for this τk is calculated using Eq.(7), and it is followed by a
(r1, r2, iτk) to (q1, q2, iτk) transformation to store χ(q1, q2, iτk) for all τk. After the values for all τk are obtained, a time
Fourier transformation for all elements (q1, q2) are carried out to obtain χ(q1, q2, iω). Note, in the iω representation
of χ(iω), ǫ(iω) and W (iω), we have used a different ω grid ω′

k with k = −50, 50 points, and ω′
50 = 200 Hartree, and

ω′
1 − ω′

0 = 2 × 10−3 Hartree. This is allowed since these functions decay much faster than that of G(iω). For each
matrix element (q1, q2), in transforming χ(iτ) to χ(iω) we have represented χ(iτ) within the interval [τk, τk+1] with
an analytical expression of f2(τ) = (C3 + C4(τ − τk))exp(−β2(τ − τk)). An analytical expression is then used to
represents the interval integral −i

∫ τk+1

τk
f2(τ)exp(−iωτ)dτ of Eq.(2). The resulting χ(q1, q2, iω) is used in Eq.(6) and

Eq.(5) to get W (q1, q2, iω). The inversion of the matrix ǫ(q1, q2, iω) for each iω
′
k value is done with the scalapack with

additional parallelization on k index.

The W (q1, q2, iω) is then transformed into W (q1, q2, iτ). For this Fourier transformation, a linear expression C5 +
C6(ω−ω′

k) is used to represent W (iω) within interval [ω′
k+1, ω

′
k]. With W (q1, q2, iτ) obtained, we can now transform

it to W (r1, r2, iτk) at each τk point, together with G(r1, r2, iτk) to get Σ(r1, r2, iτk) according to Eq(4). After
Σ(r1, r2, iτk) for each τk is calculated, it is immediately transformed and stored as Σ(q1, q2, iτk). After Σ(q1, q2, iτk)
for all τk are calculated, it is Fourier transformed to Σ(q1, q2, iωk) to be used in Eq.(1). In this transformation, the
Σ(q1, q2, iτk) within [τk, τk+1] is represented as f3(τ) = C7 + C8(τ − τk). Through the iterations over the loops of
Eqs(1) to (7), the potential V(r) is updated with a Kerker potential mixing43.
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IV. RESULTS AND DISCUSSIONS

The molecules studied are listed in Table.I, along with their atomic positions. These atomic positions are obtained
starting from the literature reported experimental atomic positions, followed by density functional theory (DFT)
atomic relaxations using generalized gradient approximation (GGA) PBE functional.
To calculate these systems with our sc-GW method, the molecules are placed in periodic boxes about 10 to 12

Å in size. To avoid dipole-dipole interactions for the Coulomb interaction and exchange integrals from the periodic
imaging molecules, a special technique is used to truncate the range of the unscreened electron-electron interaction
1/|r − r′|. This truncated interaction is then Fourier transformed back to q-space as v(q). This v(q) is then used
to replace the 4π/q2 in Eqs.(5) and (6), which can avoid the possible correlation effects between periodic imaging

molecules (e.g., van der Waals interactions). The Poisson equation
∫ ρ(r′)

|r−r′|d
3r′ is solved using a double box technique

where a box twice the size of the original box is used to place the ρ(r′) at the center, then a longer range truncated
1/|r − r′| can be used to calculate the Hartree potential vias a FFT technique. The convergence of this procedure is
tested using LDA calculations with different box sizes to ensure the finite box size results are similar to the large box
limit results. Note that, we could also use post-process extrapolation to get the converged results without using the
above truncation techniques. In such a scheme, several box sizes will be used to carry out the calculations44.
The plane wave cut off energies Ecut are listed in Table.I, along with the resulting number of plane waves Nq and

number of real space grid points Nr. We can see that Nq is around 5000 to 8000, while Nr can be about 57000
(because plane wave vectors are within a sphere defined by Ecut while Nr is defined by the full FFT gride points).
Thus G(q1, q2, iω) could be a 8000 by 8000 matrix for each iω point, requiring 1GB of memory for each iω point. The
number of real space grid points Nr is much larger. Hence we cannot store the real space matrix like G(r1, r2, iτ)
for all iτ points. Instead, we only store the G(r1, r2) matrix for one iτ as discussed above. This G(r1, r2, iτ) is
obtained by spatial FFT from G(q1, q2, iτ) for the same iτ . Note, we can store all the G(q1, q2, iτ) and G(q1, q2, iω)
in memory (for all iτ points and iω points). Also note that, unlike the conventional GW calculations were only a
limited number of conduction bands are used in the Green’s function expression, here there is no such cut off. The
full matrix, hence in a sense, all the conduction band states, are used in the G expression. In our calculation, norm
conserving pseudopotentials are used. As discussed in the introduction, the pseudopotential introduced GW error
is relatively small24,25,37. This should be particularly true for our molecules consisted with mostly light elements
where the semi-core effect is small39. The calculations are carried out on the Titan supercomputer in the Oak Ridge
Leadership Computing Facility using about 50,000 CPU processors. It takes about a few hours to finish one molecule
calculation.
We first test the selfconsistent convergence of the iterations. During the iterations, the single electron poten-

tial is mixed with results from previous steps using the conventional Kerker mixing scheme43, while the self-energy
terms Σ(q1, q2, iω) are used directly in the next iteration without any mixing. We found that, with the local den-
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sity approximation (LDA) ψi, ǫi as the inputs, the iteration converges typically in 10 to 20 steps. Fig.3(a) shows
the convergence of Si3, HNO and Al2 molecules. Note, to judge the convergence, we have used the eigen values of
H0 + Σ(iω = 0). All the eigen values ǫ′i(iter) of all the occupied states plus one unoccupied state are used, where
iter is the iteration number. The convergence shown in Fig.3(a) is measured as

∑

i |ǫ
′
i(iter) − ǫ′i(converged)|/N ,

where N is the number of states ”i” in the summation. We can see that the system converged in about 15 it-
erations. We have also measured this selfconsistent convergence directly by the change of the Green’s function
as: {

∑

ω,q1,q2
|Giter(q1, q2, iω) − Giter−1(q1, q2, iω)|

2/
∑

ω,q1,q2
|Giter(q1, q2, iω)|

2}1/2. This is shown in Fig.3(b). As
we can see, the convergence measured this way has similar rate as it is measured by the eigen energies. We also
found that the final results are independent of the initial input wave functions and eigen energies. Fig.3(c) shows
the convergence between a initial LDA ψi, ǫi result and a initial Hartree Fock (HF) ψi, ǫi result measured by
∑

i |ǫ
′
i(iter, LDA)− ǫ′i(iter,HF )|/N . Despite the large initial difference, they converge into the same final result after

15 iterations. Note, here, the initial HF result is first calculated using the same GW program with the screening in
W turned off.

In the introduction, we asked how are the full Green’s function different from the noninteracting Greens function
of Eq.(15), which is used in many current selfconsistent (category one) or nonselfconsistent GW calculations. The
first difference is the non-Hermissian part of the self-energy term Σ, which is ignored in the construction of G0 in
Eq.(15). The non-Hermissian part of Σ can be as large as the Hermissian part, as indicated by the imaginary part of
its expectation value shown in Fig.4(a). Its amplitude can be around 1 eV. Besides, both its real and imaginary parts
vary significantly with ω, while for the G0 it is assumed to be a constant ǫi. Besides the eigen energy ω dependence,
the H(iω) = H0+Σ(iω) = iω+µ−G−1(iω) has also a iω dependence for its eigen vector wave functions, while in G0

these eigen wave functions are assumed to be iω independent. To show how large is this wave function ω dependence,
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we have first Hermittized H(iω) as H ′(iω) = 1
2 (H(iω) +HT (iω)), then diagonalize H ′(iω) to get ψ′

i(iω) for different

ω. To check whether ψ′
i(iω) is changing with ω, we have calculated di(iω) = 1 −

∑

j | < ψ′
i(iω)|ψ

′
j(iω = 0) > |4.

Larger the change, larger is the value of di (0 means no change). The di(iω) for the first 12 states from the Si3
molecule are shown in Fig.5. As can be seen, for all the occupied states (i ≤ 6), di is rather small. Only for some
high conduction band states, di become large. This means the eigen wave functions have minimum ω dependence.
We thus conclude that while the eigen energy ω dependence and the imaginary parts of the eigen energies are both
large, which can render the Eq.(15) invalid, the wave function ω dependence is small. This suggests a direction for
future approximations of the Green’s functions if the full Green’s function is not to be used.
We next study the quasi-particle eigen energies. As shown in Fig.5, for the HOMO and LUMO states, their ψ′

i(iω)
do not change significantly with ω in the imaginary axis. Thus we can also assume they do not change much along the
real ω axis based on their analytic extension properties. As a result, we can approximate ψ′

i(iω) with ψ
′
i(0) (which is

ψ′
i(iω = 0)). To get the corresponding quasi-particle energy, we can find the ω solution of < ψ′

i(0)|G
−1(ω)|ψ′

i(0) >= 0
(the pole of G). This requires us to get Σ̄i(ω) =< ψ′

i(0)|Σ(ω)|ψ
′
i(0) > on the real axis. From the above calculations,

we can get Σ̄i(iω) on the imaginary axis. To analytically extend it to real axis, we have followed the procedure from
Ref.41. An analytical expression

∑

l Cl/(iω − Zl) (with typically three l terms and complex Cl and Zl) is used to
fit the Σ̄i(iω) on imaginary axis, with the fitting accuracy shown in Fig.3(a). Then the same analytical expression
is used to obtain the values of Σ̄i(ω) on real axis, as shown in Fig.3(b). By testing different numbers of l, we found
this procedure very reliable in obtaining Σ̄i(ω) on real axis for ω within 1 or 2 Hartree from µ. The quasi particle
energy ǫi on real axis can be obtained by solving the equation: ω + µ = ǫi(0) + Re(Σ̄i(ω) − Σ̄i(0)), here ǫi(0) is the
eigen energy of H ′(0). The resulting ǫi can be compared with the experimental EA and IE45,46 as shown in Table.II.
We see that the GW results agree well with the experimental results, but the GW root mean square (RMS) error is
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similar to the G0W0 results. However, we do not see a systematic increase of the GW band gap compared to the
G0W0 band gap. This is different from the conclusions based on selfconsistent GW calculations by only updating the
eigen energies in G and W using the G0 formalism of Eq.(15)9,47,48. Our result is similar to Ref.19, where they found
the mean average errors (MAE) of sc-GW, G0W0(HF-initial), G0W0(PBE-initial) as 0.5, 0.4 and 0.5 eV respectively
(taken from the HOMO levels of 34 molecules). In our case, the MAE of sc-GW, and G0W0 (LDA-initial) are 0.6
and 0.7 eV respectively (taken from HOMO and LUMO levels of the 7 molecules studied).
In the work of Holm and von Barth35, it is the valence band bandwidth and spectral functions which are evaluated

and compared to experiment, not the band gap. Here, we also calculate the spectral functions of the molecules. The
spectral functions can be defined as

A(ω) = 1/πTr[ImG(ω)] (17)

Here ”Tr” is the trace of the matrix G. Thus, it can also be expressed as:

A(ω) =
1

π

∑

i

Im〈ψ′
i(0) |

1

ω − µ−H0 − Σ(ω)
| ψ′

i(0)〉 (18)

If we further assume ψ′
i(0) are a set of good eigen vectors in the energy range we are interested, then the expectation

values under ψ′
i(0) can be applied to the denominator, and the above equation can be approximated as:

A(ω) =
1

π

∑

i

Im[
1

ω − µ− ǫi(0)− Σ̄i(ω) + Σ̄i(0)
] (19)

here Σ̄i(ω) =< ψ′
i(0)|Σi(ω)|ψ

′
i(i) > can be obtained from above analytical extension from imaginary axis to real

axis, as shown in Fig.4. The resulting A(ω) for Al2, CHF and HNO are shown in Fig.6. The fully selfconsistent GW
result for A(ω) are compared with the nonselfconsistent G0W0 results. A few features are worth noticing. First,
the widths of the valence bands, counted from the lowest occupied valence state to the highest occupied valence
state, are slightly wider in sc-GW than G0W0 results, similar to what is found in the homogeneous electron gas35.
Unfortunately, for these systems, there is no experimental data for comparison. Second, in the G0W0 result, one can
indeed see some satellite peaks (e.g., the peak around -20 eV in Al2, and the small peak around -48 in CHF). Such
satellite peaks disappear in sc-GW calculations. It will be interesting to see whether such satellite peaks are real in
future experiments. Lastly, we notice that the A(ω) peaks in sc-GW are much sharper than in the ones in G0W0.
This conclusion is in contrast with the results found in the case of homogeneous electron gas35, but is consistent with
the results found in Ref.18. The sharpness of A(ω) peaks for molecules is expected, especially for HOMO and LUMO
states. Note that, the sc-GW spectral peak widths for deep levels (e.g, the ones near -40eV in CHF and HNO)are
significantly larger than the ones for HOMO. This is expected, as for such large excitation energies, there could be
other excitation modes involving two shallow levels being excited to continuous spectrum of the vacuums. Hence
different excitation modes can be mixed together, reducing the quasiparticle life time and increasing the peak width.
To describe such excitation properly, one needs to describe all the continuous states accurately, which highlight the
advantages of plane wave basis sets.

V. CONCLUSIONS

We have demonstrated that, with the help of supercomputers, it is now possible to solve the Dyson equation
selfconsistently with a plane wave basis set. The space-time scheme on the imaginary frequency axis is used. Some
numerical techniques to solve this problem have been presented. In particular, a new method is introduced to carry out
the numerical Fourier transformation for the Greens function from frequency space to time space. The selfconsistent
iteration converges well within about 15 iterations, and different initial single particle wave function and eigen energy
inputs result in the same final solution. Seven small molecules are calculated. We found that for their HOMO and
LUMO quasiparticle eigen energies, the sc-GW results have similar errors as the G0W0 results when compared to
experiments. For the spectral functions, we found sc-GW results have sharper peaks than the G0W0 results, while the
satellite peaks in some of the G0W0 results disappear in the sc-GW results. The sc-GW gives slightly wider valence
band width than the G0W0 results. For the self energy term, we found that while its expectation values have large
imaginary parts and frequency dependents, the eigen vectors of the Hamiltonian (after being Hermittized) have much
less frequency dependents. This perhaps points out a way for future Green’s function approximation, which maintains
the noninteracting Green’s function form of Eq.(15), but with frequency dependent and complex eigen energies ǫi(ω).
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systems atoms x (Å) y (Å) z (Å) Ecut(Ryd) Nq Nr

Si3 Si 0 0 0 30 6272 55296

Si 0 2.817 0

Si 1.664 1.409 0

C3 C 0 0 0 50 7210 46080

C 1.302 0 0

C -1.302 0 0

O3 O 0 0 0 50 8484 57600

O -1.284 0.016 0

O 0.593 1.139 0

Al2 Al 0 0 0 30 6072 46080

Al 2.838 0 0

SiH2 Si 0 0 0 30 6290 43200

H -1.412 -0.606 0

H -0.586 1.420 0

HNO N 0 0 0 50 8484 57600

O 1.215 -0.080 0

H -0.409 -0.998 0

CHF C 0 0 0 50 8484 57600

H -1.009 -0.528 0

F -0.373 1.278 0

TABLE I. The atomic coordinations of the small molecules calculated in this work. The coordinates are relaxed using DFT
PBE functional. The Ecut is the plane wave cut off energy used for the GW calculation. Nq is the resulting number of plane
waves, while Nr = n1n2n3 is the total number of grid points in real space, where n1, n2, n3 are the real space grids of the
supercell in 1, 2, 3 directions respectively.

system LDA G0W0 GW Exp

Si3 LUMO -4.75 -2.88 -3.01 -2.4

HOMO -5.39 -8.17 -7.72 -8.0

C3 LUMO -5.69 -2.76 -2.67 -2.0

HOMO -8.01 -11.46 -11.91 -13.0

O3 LUMO -6.44 -3.05 -3.46 -2.10

HOMO -8.14 -12.32 -12.63 -12.53

Al2 LUMO -3.72 -1.81 -1.20 -1.46

HOMO -4.07 -6.40 -5.93 -5.4

SiH2 LUMO -4.09 -1.54 -1.04 -1.12

HOMO -5.90 -9.50 -9.28 -8.92

HNO LUMO -4.70 -0.25 -0.29 -0.34

HOMO -5.62 -9.96 -10.40 -10.1

CHF LUMO -4.40 -0.19 -0.19 -0.54

HOMO -5.89 -10.22 -10.52 -10.06

MAE err 3.64 0.65 0.59 –

TABLE II. The quasiparticle lowest unoccupied molecule orbital (LUMO) and highest occupied molecule orbital (HOMO)
energies, and comparison with the experimental EA and IE (in the unit of eV). The mean averaged error (MAE) (taken as
the root mean square average of the errors) for the calculated values are measured against the experimental results. The
experimental EA and IE are taken from Ref.45 and 46. For the G0W0 calculation, the input single particle wave functions and
eigen energies are from LDA calculations.
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