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Topological insulators (TIs) are a new quantum state of matter discovered recently, which are
characterized by unconventional bulk topological invariants. Proposals for practical applications of
the TIs are mostly based upon their metallic surface or edge states. Here, we report the theoretical
discovery of a bulk quantum pumping effect in a two-dimensional TI electrically modulated in
adiabatic cycles. In each cycle, an amount of spin proportional to the sample width can be pumped
into a nonmagnetic electrode, which is attributed to nonzero spin Chern numbers C±. Moreover, by
using a half-metallic electrode, universal quantized charge pumping conductivities −C±e2/h can be
measured. This discovery paves the way for direct investigation of the robust topological properties
of the TIs.

PACS numbers: 72.25.-b, 73.43.-f, 73.23.-b, 75.76.+j

I. INTRODUCTION

Topological transport phenomena have been attracting a great deal of interest, because they exhibit universal
properties that are insensitive to perturbations and independent of material details. A classical example of such
a transport phenomenon is the integer quantum Hall (IQH) effect in two-dimensional (2D) electron systems, first
discovered in 1980,1 which is characterized by an integer quantization of the Hall conductivity in unit of e2/h. The
IQH effect has been observed in a large variety of materials, ranging from traditional semiconductors, to oxides,2

graphene,3 and topological insulators (TIs).4 Laughlin5 interpreted the IQH effect in terms of an adiabatic charge
pump. Thouless, Kohmoto, Nightingale, and Nijs6 established a relation between the quantized Hall conductivity of
the IQH system and a topological invariant, the first Chern number. Thouless and Niu7,8 also related the amount of
charge pumped in a 1D charge pump to the Chern number.

A variant of the IQH effect, the quantum spin Hall (QSH) effect, was proposed recently,9,10 which has been
experimentally realized in HgTe quantum wells11 and InAs/GaSb bilayers.12 Extension of the idea of the QSH effect
has led to the discovery of 3D TIs.13–16 A QSH system, which is also called a 2D TI, has an insulating band gap in
the bulk and a pair of gapless helical edge states at the sample boundary. When the electron spin is conserved, a
QSH system can be viewed as two independent IQH systems without Landau levels.17 Different from the charge, the
spin does not obey a fundamental conservation law. In general, when the spin conservation is absent, unconventional
topological invariants, either the Z2 index18 or the spin Chern numbers,19–21 are needed to describe the QSH systems.
The time-reversal (TR) symmetry is considered to be a prerequisite for the QSH effect, which protects both the Z2

index and gapless nature of the edge states. However, based upon the spin Chern numbers, it was shown that the
bulk topological properties remain intact even when the TR symmetry is broken.21 This finding evokes interest to
pursue direct investigation and possibly utilization of the robust topological properties of the TIs, besides using their
symmetry-protected gapless edge states which are more fragile in realistic environments.

Unlike the first Chern number underlying the IQH systems, which is embedded into the Hall conductivity, up
to now the topological invariants in the TIs have not been directly observable. Several experimental methods were
proposed, but have not been realized. One was to measure the topological magnetoelectric effect,22,23 for which
experimental complexities exist.23 Fu and Kane24 put forward an abstract 1D model, in which the spin pumping was
related to the Z2 index in the limit of weak coupling. However, how this fictitious model could be implemented is
still unknown. Furthermore, from the viewpoint of application, generalization of the idea of the Z2 pump to higher
dimension is meaningless, because according to the Z2 theory,24 only the states at the TR-invariant point of the
Brillouin zone can contribute to the spin pumping, and so the pumping rate cannot be enhanced by increment of
dimension. In a recent work,25 the more general case of finite coupling between the pump and electrode is investigated
by using the scattering matrix method. It was found that the spin pumping in the model of Fu and Kane can survive
finite scattering of magnetic impurities, and so may be attributed to the spin Chern numbers rather than the Z2

index. Some other authors26,27 proposed to pump quantized charge through the helical edge states by precessing a
magnet covering the edge of a 2D TI, so that the number of gapless edge channels can be counted through electrical
measurement. This method is indirect, in the sense that the topological invariants are intrinsic properties of the bulk
electron wavefunctions, which do not immediately determine the charge pumping in the edge channels.

Here we predict an intriguing bulk topological pumping effect, directly driven by nonzero spin Chern numbers,
in a QSH system electrically modulated in adiabatic cycles. As a consequence of the topological spectral flows of
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FIG. 1: Plot of the centers of mass of the SPWFs (horizontal axis) as functions of ω0t (vertical axis). The parameters are taken
to be ky = 0.4kc

y , M0 = vFeA0 = ~R0/a0 = 0.1t0, V0 = 0.3t0, and d = a0, with a0 as the lattice constant and t0 = ~vF/a0

(v′
F = vF) as the hopping integral of the tight-binding Hamiltonian.

the spin-polarized Wannier functions (SPWFs) in the bulk of the system, spin can be pumped into a nonmagnetic
electrode continuously without net charge transfer. The total amount of spin pumped per cycle is proportional to
the (cross-section) width of the sample, and insensitive to the material parameters and spin-mixing effect due to the
Rashba spin-orbit coupling. This electrical spin pump establishes a basis, on which spintronic applications taking
advantage of the robust topological properties of the TIs can be developed. Especially, if a half-metallic electrode with
spin polarization parallel (or antiparallel) to the z-axis is used, a quantized charge pumping conductivity, −C+e2/h
(or −C−e2/h), can be measured by electrical means, demonstrating a way to observe the spin Chern numbers C±

directly.

II. SPIN CHERN NUMBERS AND SPWFS

Let us consider a 2D model Hamiltonian HP = H0 + H1 with

H0 = vF [kxŝz σ̂x − (ky + eA(t)) σ̂y] − M(t)σ̂z . (1)

Here (−e) is the electron charge, k is the 2D momentum, A(t) = A0 sin(ω0t) is the vector potential of an ac electric
field −E0 cos(ω0t) applied along the y direction with A0 = E0/ω0 and frequency ω0 > 0 being designated, and
M(t) = M0 cos(ω0t). This model can describe both the QSH materials, the HgTe quantum wells,28–30 and InAs/GaSb
bilayers,31 in the linear order in momentum. For definity of discussion, we confine ourselves to the HgTe quantum
wells, for which ŝα with α = x, y, z are the Pauli matrices for spin, and σ̂α for the electron and hole bands. As will be
discussed below, the time-dependent mass term M(t) can be induced by varying the voltages of the dual gates. H1

represents the Rashba spin-orbit coupling32

H1 =
R0

2
(1̂ + σ̂z)[ŝykx − ŝx(ky + eA(t))] . (2)

To the linear order in momentum, the Rashba spin-orbit coupling is nonvanishing only in the electron band.32

Within the adiabatic approximation, for a bulk sample there exists a finite energy gap between the conduction and
valence bands for ω0t 6= π/2 or 3π/2. At ω0t = π/2 and 3π/2, the conduction and valence bands touch at kx = 0
and ky = kc

y or −kc
y with kc

y = e|A0| = e|E0|/ω0. To clarify the topological properties underlying the spin/charge

pumping, we consider ky as a parameter, and calculate the spin Chern numbers C± in the standard way,21 on the
torus of the two variables kx ∈ (−∞, ∞) and t ∈ [0, T ) with T = 2π/ω0 as the period. The spin Chern numbers are
obtained as

C± = ±sgn(E0M0) , (3)

for |ky| < kc
y, and vanish elsewhere. Not surprisingly, the band touching points ky = ±kc

y serve as the critical points.
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We now consider a system consisting of a pump for x < 0, an electrode for x > d, and a potential barrier in between.
The total Hamiltonian of the system reads

H =







HP (x < 0)
HE + V0σ̂z (0 < x < d)
HE (x > d)

, (4)

where HP has been given above, and HE = v′
Fkxŝzσ̂x is the Hamiltonian of the electrode. A possible experimental

setup for realizing this Hamiltonian is explained in Appendix A in more details. In the barrier region, the term V0σ̂z

opens an insulating gap of size 2V0, which accounts for contact deficiencies between the pump and electrode. The
crucial role of the nonzero spin Chern numbers in the spin/charge pumping process can be visualized by using the
SPWFs, which were first introduced in Ref.25. We construct a tight-binding Hamiltonian for the effective 1D system
at any given ky according to Eq. (4), and diagonalize the total Hamiltonian of the pump and electrode numerically.
Following the same procedure as calculating the spin Chern numbers,21 the space occupied by electrons is partitioned
into two spin sectors after diagonalizing the spin operator ŝz in the occupied space. By definition, the states in the
two spin sectors are essentially the maximally spin-polarized states. Then we construct the Wannier functions33,34

for the spin-up and spin-down sectors, respectively, which are called the SPWFs.
The evolution of the centers of mass of the SPWFs for ky = 0.4kc

y and R0 = 0.1vF is shown in Fig. 1. We see that the
Wannier centers for the spin-up sector move right and those for the spin-down sector move left, each center shifting
on average a lattice constant per cycle. Within the adiabatic approximation, time t ∈ [0, T ) plays the same role as the
momentum of an additional dimension,24 namely, kt ∈ [0, T ). Therefore, when ky is considered as a parameter, the
evolution of the Wannier functions of the effectively 1D system related to various kx with time t can be understood
from the static properties of a 2D system associated with various kx and kt. In the general theory,34 the relationship
between the Chern number and the spectral flows of the Wannier functions in a 2D system has been established.
According to this theory, the average displacement of each of the centers of the SPWFs in the spin-up (spin-down)
sector with changing kt (or t) from 0 to T , in units of the lattice constant, must equal to the spin Chern number
C+ = 1 (C− = −1). Therefore, the nontrivial transfer of the SPWFs observed in Fig. 1 is a direct manifestation of
the nonzero spin Chern numbers C± = ±1 in the pump (for E0M0 > 0). More interestingly, we see that such spectral
flows can go across the finite barrier (V0d > 0), and extend into the electrode, even though the barrier and electrode
are topologically trivial. Physically, because the system needs to recover its original eigenstates when each cycle ends,
the nontrivial spectral flows of the SPWFs in the TI need to constitute closed loops through formation of edge states
at the boundary,35 or extend into the electrode. However, localized edge states can not exist at the finite barrier due
to quantum tunneling effect, so the transfer of the spectral flows of the SPWFs into the electrode occurs. This result
will be further confirmed by direct calculation based upon the scattering matrix theory in the next section.

The SPWFs are just another equivalent representation of the occupied space, and so the counter spectral flows of
the Wannier centers in the two spin sectors represent the true movements of the electrons. If the Rashba spin-orbit
coupling were neglected, the Wannier functions would be the eigenstates of ŝz. The nontrivial spectral flows indicate
that at the given ky, in each cycle a spin-up electron goes from the pump into the electrode, and a spin-down
electron moves oppositely. Therefore, no net charge transfer occurs but a quantized spin of 2(~/2) is pumped into the
electrode. When the small Rashba spin-orbit coupling is turned on, while the topological spectral flows remain intact,
as seen from Fig. 1, the spin polarizations of the Wannier functions are no longer fully parallel to the z-axis, and may
also vary with time. As a consequence, the amount of spin pumped per cycle will deviate from the quantized value.

III. THE PROCESS OF SPIN CHERN PUMPING

A. Spin pumping for a nonmetallic electrode

In general, the amount of the spin pumped can be conveniently calculated by using the scattering matrix for-
mula.36,37 The z-component of the spin pumped per cycle is given by36,37

∆sz(ky) =
~

4πi

∮

T

dt
(

r∗
↑↑

dr↑↑

dt
− r∗

↓↓

dr↓↓

dt
− r∗

↓↑

dr↓↑

dt
+ r∗

↑↓

dr↑↓

dt

)

, (5)

where rαβ (α, β =↑, ↓) is the reflection amplitude for an electron at the Fermi energy incident from the spin-β channel
of the electrode and reflecting back into the spin-α channel. In the following calculations, the Fermi energy is set to
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FIG. 2: Argument of the complex reflection amplitude, ϕ(t) = arg(r↑↑), as a function of ω0t for four sets of (ky, γ0d). The
other parameters are taken to be R0 = 0 and vFeA0 = M0 with kc

y = e|A0|. Inset: trajectories of r↑↑ in a cycle on the complex
plane.

be zero (EF = 0), and the Rashba spin-orbit coupling is treated as a perturbation. As shown in Appendix B, to the
linear order in R0, we obtain

r↑↑ = −cos(2θ) + i[sh(2γ0d) − sin(2θ)ch(2γ0d)]

ch(2γ0d) − sin(2θ)sh(2γ0d)
+ O(ǫ2) , (6)

r↓↑ =
ǫ

2

sin(2θ)[1 − cos(2θ)]

ch(2γ0d) − sin(2θ)sh(2γ0d)
+ O(ǫ2) , (7)

and r↓↓ = r↑↑|2θ→(π−2θ) and r↑↓ = −r↓↑|2θ→(π−2θ), where γ0 = V0/~v′
F and 2θ = arg[vF(ky +eA(t))+ iM(t)]. We note

that the dimensionless quantity ǫ = R0/vF appears as the small expansion parameter. Since r↓↑ and r↑↓ are always
real, the contributions from the third and fourth terms in Eq. (5) vanish. Consequently,

∆sz(ky) =
~

4πi

∮

T

(

r∗
↑↑dr↑↑ − r∗

↓↓dr↓↓

)

. (8)

This expression has a geometric explanation: the amount of spin pumped per cycle equals to the difference between
the areas enclosed by the directional trajectories of r↑↑ and r↓↓ on the complex plane, multiplied by ~/2π. Due
to the relation r↓↓ = r↑↑|2θ→(π−2θ), yielding r↓↓ = −Re(r↑↑) + iIm(r↑↑), the two terms in Eq. (8) make an equal
contribution, so that we can focus on the first term. While the expression (6) for r↑↑ is independent of the Rashba
spin-orbit coupling, as will be shown soon, a combination of Eqs. (6) and (7) allows us to evaluate the amount of spin
pumped up to the second order in R0/vF.

We first consider the case of R0 = 0. From Eq. (6), it is easy to show |r↑↑(ky)| = 1. In Fig. 2, we plot the argument
ϕ(t) of r↑↑(ky) as a function of ω0t for several parameter sets. For either γ0d = 0 (ideal contact) or 1.0 (strong
potential barrier), ϕ(t) always increments 2π in a cycle as long as |ky| < kc

y. In this case, the trajectories of r↑↑(ky)
always form a unit circle on the complex plane, oriented counterclockwise, as shown in the inset of Fig. 2, suggesting
∆sz(ky) = ~ (for E0M0 > 0). For |ky| > kc

y, however, the situation is quite different. ϕ(t) does not change after going
through a cycle, and the trajectory of r↑↑(ky) does not enclose a finite area, so that ∆sz(ky) = 0. Apparently, the
present result conforms to the spin Chern numbers given by Eq. (3) and the spectral flows of the SPWFs.

Next we study the correction to ∆sz(ky) due to nonzero Rashba spin-orbit coupling. By expressing r↑↑ = ρeiϕ =
√

1 − δρ2ei(ϕ(0)+δϕ) in the polar coordinate system, where ϕ(0) is the argument at R0 = 0, and δϕ and δρ2 stand
for the second-order corrections to ϕ and ρ2, respectively, due to the Rashba spin-orbit coupling, Eq. (8) becomes
∆sz(ky) = (~/2π)[

∮

T
(1 − δρ2)dϕ(0) +

∮

T
dδϕ] + O(ǫ3). We notice that δϕ is a small quantity fluctuating around

0 and periodic in time, δϕ|t=0 = δϕ|t=T , so that
∮

T dδϕ = 0. Using the identity δρ2 = |r↓↑|2, we then obtain

∆sz(ky) = (~/2π)
∮

T
(1 − |r↓↑|2)dϕ(0), where dϕ(0) can be calculated from Eq. (6) and r↓↑ has been given by Eq.

(B26). This is an expression for ∆sz(ky) accurate to the second order in R0/vF. At γ0d = 0, we obtain ∆sz(ky) as

∆sz(ky) ≃ ~

2

[

1 − 5

32

(

R0

vF

)2
]

(C+ − C−) , (9)
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FIG. 3: ∆sz(ky) (in unit of ~/2) as a function of γ0d for ky = 0.4kc

y and three different values of R0. The other parameters
are taken to be the same as in Fig. 2. Inset: the trajectory of r↑↑ in a cycle for R0 = 0.1vF and γ0d = 1.0, with the unit circle
indicated by the dotted line.

for |ky| < kc
y, and ∆sz(ky) = 0 elsewhere. As expected, nonzero Rashba spin-orbit coupling causes ∆sz(ky) to deviate

from its quantized value, i.e., (C+−C−)~/2. In real materials, R0 is usually much smaller (by an order of magnitude or
more) than vF,32 so that the deviation is less than a percent for an ideal connection between the pump and electrode.

For γ0d 6= 0, ∆sz(ky) can be evaluated numerically and its calculated result is plotted in Fig. 3 as a function of γ0d
for three different strengths of the Rashba spin-orbit coupling. For R0 = 0, ∆sz(ky) is quantized to ~, independent of
γ0d. For R0 = 0.05vF and 0.1vF, weak potential barrier (γ0d ≪ 1) has little effect on ∆sz(ky). This is reasonable as
the leading-order correction of small γ0d must be O(ǫ2γ0d). Appreciable deviations from the quantized value occur for
strong potential barrier (e.g., γ0d ≃ 1). We note that δϕ does not affect the orbit of r↑↑, as it represents a variation

in the tangent direction of the orbit, and the orbit can be determined by r↑↑ =
√

1 − |r↓↑|2eiϕ(0)

. Inset shows the
trajectory of r↑↑ on the complex plane for R0 = 0.1vF and γ0d = 1.0. For such a strong potential barrier, the orbit
of r↑↑ deviates from the unit circle visibly. The above result suggests that improving the contact quality between the
pump and electrode is helpful for obtaining a nearly integer-quantized value of the pumped spin.

By summing over ky between −kc
y and kc

y, we obtain for the total spin pumped per cycle

∆Sz = σs(2|E0|Ly/ω0) , (10)

with

σs ≃ e

4π

[

1 − 5

32

(

R0

vF

)2
]

(C+ − C−) , (11)

for a good contact (γ0d ≪ 1). ∆Sz is in scale with width Ly of the pump. By noting that ω0 is proportional to the
number of cycles per unit time, σs can be considered as the spin pumping conductivity.

B. Charge pumping for a half-metallic electrode

Now we discuss a possible way to experimentally observe the spin Chern numbers, by using a half-metallic electrode,
in which conducting channels for electron spin antiparallel to the spin polarization are absent. We first consider the
case, where the spin polarization of the electrode is parallel to the z axis. The Hamiltonian of the electrode is taken
as HE = v′

F
(ky)kxŝzσ̂x + V1(1̂ − ŝz)σ̂z/2. In this case, as shown in Appendix C, r↑↑ is still given by Eq. (6) but

r↓↑ ≡ 0. It follows that for any ky between −kc
y and kc

y, the charge pumped per cycle is integer-quantized and equal to
∆q(ky) = (−e)C+. Similarly, for the spin polarization of the electrode antiparallel to the z axis, the charge pumped
is equal to ∆q(ky) = (−e)C−. Therefore, the total charge pumped per cycle is given by

∆Q = σc(2|E0|Ly/ω0) , (12)

with

σc = −C±

e2

h
, (13)
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where the spin Chern number C+ (C−) is taken for the spin polarization of the electrode parallel (antiparallel) to the
z axis. We emphasize that Eqs. (12) and (13) obtained above are valid for finite Rashba spin-orbit coupling and finite
potential barrier between the pump and electrode, indicating that the quantized charge pumping is robust against
small perturbations. Experimentally, ∆Q can be obtained by measuring the electrical current in the electrode, and
from Eqs. (12) and (13), C± can be evaluated, yielding an experimental method to measure the spin Chern numbers
directly. The sign inversion of ∆Q with reversing the spin polarization of the half-metallic electrode, as indicated by
Eqs. (12) and (13), is a hallmark of the present spin Chern charge pump, which can be used to distinguish it from
the conventional Thouless charge pump7,8.

We have used the single-electron approximation, where the electron interaction is not taken into account. In
particular, in the half-metallic electrode case, one of the spin channel is blocked at the boundary, which naturally
induces some charge and spin accumulations, and consequently changes the potential profile. However, owing to
the screening effect, the change in the potential profile is expected to be localized at the boundary, which in effect
modifies the potential barrier between the pump body and the electrode. As has been shown above, the charge
pumping effect is independent of the existence and details of the potential barrier, and so we believe that the pumping
effect will survive the charge and spin accumulations.

IV. DISCUSSION

Up to now, all the results obtained from the scattering matrix formula are apparently in complete agreement with
the spin Chern numbers given by Eq. (3). These results cannot be explained within the framework of the Z2 theory.24

While one can define a Z2 index at the TR-invariant point ky = 0, the effective 1D Hamiltonian given by Eqs. (1) and
(2) for any given nonzero ky does not preserve the TR symmetry, as its TR partner is at −ky, making the Z2 index
invalid. The Z2 theory predicted that the TR symmetry is crucial for the topological spin pumping,24 suggesting
that only the states at the TR-invariant point ky = 0 can contribute to the spin pumping. This clearly contradicts
the present result that all the states with |ky| < kc

y contribute equally, which is obtained directly from the scattering
matrix formula. This point is also evidenced by the fact that the total amount of charge or spin pumped per cycle is
in proportion to the sample width Ly. For the same reason, the pumping effect found in this work is also essentially
different from that via edge states in Refs.26,27, where the amount of spin or charge pumped per cycle is proportional
to the number of the gapless edge channels.

In conclusion, our work uncovers a bulk topological pumping effect due to direct transfer of the SPWFs between
the pump and electrode, without the participation of edge states. This measurable effect reveals the bulk topological
properties of the system that are neither captured by the Z2 index nor reflected by the number of gapless edge
channels. It can be accurately described by the spin Chern numbers. This spin Chern pump may lay the foundation
for direct experimental study and possibly utilization of the robust topological properties of the TIs.

The previous experimental work38 evidenced the difficulty of modulating in time the properties of an open quantum
dot without generating undesired bias voltages due to stray capacitances. This problem might not be significant in
our pumping setup, where a much larger bulk sample of the TI can be used and the stray capacitances can be greatly
reduced. Moreover, a possible way around the obstacle is to use the ac Josephson effect to induce periodically time-
dependent Andreev reflection amplitudes in a hybrid normal-superconducting system.39 Concrete design of a spin
Chern pump based upon the Josephson effect will await future work. While the proposed spin pumping scheme may
have the advantage of low noises, its practical application in spintronic devices still relies on the discovery of new TIs
with bulk band gaps much greater than room temperature, which determine the temperature range where the spin
Chern pumping effect can survive. Currently, precessing magnetization is a feasible method to generate robust spin
currents in spintronic devices at room temperature.40
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FIG. 4: A schematic view of a experimental setup for realization of a 2D spin Chern pump. A CdTe/HgTe/CdTe quantum
well heterostructure, with dual gates on its top and bottom, is placed between two conductive plates. When the voltages of
the gates and plates are adiabatically modulated in proper cycles, spin or charge can be pumped into electrodes coupled to the
quantum well along the x direction.

Appendix A: A POSSIBLE EXPERIMENTAL REALIZATION OF THE SPIN CHERN PUMP

In what follows we expand on the model setup and possible experimental realization of the spin Chern pump in
more details.

1. The pump

A possible experimental realization of the Hamiltonian Eq. (1) for the pump is illustrated in Fig. 4. A HgTe/CdTe
quantum-well heterostructure with dual gates (top and bottom) is placed between two conductive plates. It is known
that when the width of the quantum well (thickness of the HgTe film) is above a critical size dc = 6.3nm,28,29 the
band structure is inverted, characterized a negative mass term −M0σ̂z in the Hamiltonian, corresponding to the QSH
state. If the width of the quantum well falls below dc, the band structure will be aligned in a “normal” way with a
positive mass term M0σ̂z, corresponding to a normal insulator. As has been discussed in Refs.30 and31, the topological
phase transition between the QSH phase and normal insulator can also be tuned by applying a gate voltage, which
effectively reduces the width of the quantum well. It is assumed that the quantum well under consideration has a
width somewhat greater than dc, and so has a negative mass term −M0σ̂z initially. With increasing the gate voltage,
the electron mass increases, and can invert its sign. Usually, increasing the gate voltage may also adjust the carrier
density. Nevertheless, it has been shown30,31 that, by using dual gates and properly tuning their voltages V1(t) and
V2(t), it is generally possible to change the electron mass in the desired manner to be −M0 cos(ω0t), while keeping
the electron Fermi energy still in the band gap.

The effect of the conductive plates is easily understood. When a voltage drop U(t) is applied across the plates,
a uniform electric field E(t) = E(t)ŷ will be generated in the space between the two plates. The electrons in the
quantum well experience a vector potential A(t) = A(t)ŷ with A(t) defined as E(t) = −∂A(t)/∂t. If the electric field
is chosen to be E(t) = −E0 cos(ω0t), one gets A(t) = A0 sin(ω0t) with A0 = E0/ω0, as desired. We point out that
the exact time dependencies of M(t) and A(t) are not essential for realizing the spin Chern pump, provided that they
have the same periodicity and a constant relative phase shift.

2. The nonmagnetic electrode

The pumping effect is insensitive to material details of the electrode. The electrode is taken to be a normal metal
with a 2D parabolic Hamiltonian HE = −E0+p2/2m. When E0 is sufficiently large, for a given py, we can linearize the

effective 1D Hamiltonian HE at the right and left Fermi points px = ±mv′
F(ky) with v′

F(ky) =
√

2m(EF + E0) − k2
y/m.

A Pauli matrix σ̂x is introduced to describe the two branches. To be consistent with the form of the Hamiltonian in
the pump, we use σx = 1 and −1, respectively, to represent the right-moving and left-moving branches for sz = 1 and
oppositely for sz = −1. As a result, the Hamiltonian of the electrode becomes HE = v′

F(ky)kxŝzσ̂x at EF = 0, where
ky = py and kx = px ∓ mv′

F
(ky). The spin pumping effect is usually dominated by small ky, so that we can further

approximate v′
F(ky) ≃ v′

F(ky = 0) ≡ v′
F, with purpose to minimize the number of adjustable parameters in the model.
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3. The barrier

For the present Dirac-like Hamiltonian, an ordinary potential barrier has a very weak effect on the electron trans-
mission due to the Klein paradox. Therefore, we take the Hamiltonian for the barrier to be HB = HE + V0σ̂z . The
inclusion of potential V0σ̂z opens up an insulating energy gap of size 2V0 around the Fermi level, which presumably
is more efficient for describing the contact deficiencies and structural mismatch between the pump and electrode.

4. The half-metallic electrode

The half metal, e.g., CrO2, La2/3Sr1/3MnO3, etc., is a substance that acts as a conductor to electrons of one spin
orientation, but as an insulator to those of the other spin orientation. From the viewpoint of the electronic structure,
one of the spin subbands is metallic, whereas the Fermi level falls into an energy gap of the other spin subband. To
simulate the half-metallic electrode, HE is taken to be HE = v′

F
(ky)kxŝzσ̂x + V1(1̂ ∓ ŝz)σ̂z/2, where ∓ stands for

the spin polarization of the electrode parallel and antiparallel to the z-axis, respectively. The second term opens an
energy gap of size 2V1 around the Fermi level for electron spin antiparallel to the spin polarization of the electrode,
without affecting the other spin subband. As a result, the electron density of states is fully spin-polarized at the
Fermi energy. V1 is set to be infinity in the final result.

Appendix B: CALCULATION OF THE REFLECTION AMPLITUDES FOR A NONMAGNETIC

ELECTRODE

1. Electron wavefunctions in the pump and potential barrier

We now solve the scattering problem for an electron at the Fermi energy incident from the electrode. The Fermi
energy will be taken to be EF = 0, which is in the band gap of the pump. Therefore, the incident electron will be
fully reflected back into the electrode. The Rashba spin-orbit coupling is treated as a perturbation, and the result will
be calculated to the linear order in the small quantity ǫ = R0/vF. The wavefunctions of the pump (x < 0), barrier
(0 < x < d) and electrode (x > d) are denoted by ΨP (x), ΨB(x), and ΨE(x), respectively. We have two boundary
conditions: ΨP (0−) = ΨB(0+) and ΨB(d − 0+) = ΨE(d + 0+).

We use ↑ and ↓ to represent the eigenstates of ŝz, and +1 and −1 to represent those of σ̂z . On the basis | ↑, +1〉,
| ↑, −1〉, | ↓, +1〉, and | ↓, −1〉, the Hamiltonian of pump (the Eqs. (1) and (2) in the manuscript) can be expanded as
a 4 × 4 matrix

HP =









−M(t) vF(kx + ik̃y) R0(−ikx − k̃y) 0
vF(kx − ik̃y) M(t) 0 0
R0(ikx − k̃y) 0 −M(t) vF(−kx + ik̃y)

0 0 vF(−kx − ik̃y) M(t)









(B1)

where k̃y = ky + eA(t). For energy E = EF = 0, the eigen-equation is obtained from Eq. (B1)

[M2(t) + v2
Fk̃2]2 − M2(t)R2

0k̃2 = 0 , (B2)

with k̃2 = k2
x + k̃2

y , and up to a normalization factor, the eigenfunctions are









A1M(t)/vF

−A1(kx − ik̃y)
A2M(t)/vF

A2(kx + ik̃y)









eikxx/~ , (B3)

where A1 = −(ikx + k̃y)M(t) and A2 = [M2(t) + v2
F
k̃2]/R0. We need to solve kx from the eigen-equation Eq. (B2).

We notice that the equation is a 4th-degree polynomial of kx with real coefficients, so complex conjugate roots must
appear in pairs. Moreover, Eq. (B2) is even in kx, so positive and negative roots appear in pairs. In combination, Eq.
(B2) must have four roots of the form kx = a + ib, a − ib, −a + ib, and −a − ib. By substitution of the four roots into
Eq. (B3), we can in principle obtain four different eigenfunctions. For the present scattering problem, we only need
the two eigenfunctions that are decaying into the pump, which correspond to the two roots with negative imaginary
parts.
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For R0 = 0, it is easy to obtain for the roots for the two decaying modes: kx = −i~η with ~η =
√

M2(t) + k̃2
y,

which are two-fold degenerate. The corresponding two decaying eigenfunctions are given by

ϕ+(x) = | ↑〉 ⊗
(

sin θ
i cos θ

)

eηx , (B4)

ϕ−(x) = | ↓〉 ⊗
(

cos θ
−i sin θ

)

eηx , (B5)

where 2θ = Arg[vFk̃y + iM(t)]. For R0 6= 0, we write the roots of kx as kx = −i~η + δkx, and also write k2
x as

k2
x = −(~η)2 + δk2

x. To the second order in ǫ, we can solve for δk2
x from the eigen-equation Eq. (B2)

δk2
x =

(

±i
R0

vF

+
R2

0

2v2
F

)

(~η)2 sin2(2θ) + O(ǫ3) . (B6)

Noticing that the expression for A2 given below Eq. (B3) has a factor R0 in the denominator, we keep δk2
x to the

second order, for the purpose to calculate A2 to the linear order. By using the relation δk2
x = −2i~ηδkx + O(ǫ2), we

derive from Eq. (B6)

δkx = ∓ R0

2vF

~η sin2(2θ) + O(ǫ2) . (B7)

With these relations, we obtain for A1 and A2

A1 = −vF(~η)2 sin(2θ)[1 + cos(2θ)] (B8)

± i
R0

2
(~η)2 sin3(2θ) + O(ǫ2) , (B9)

and

A2 =

(

±i +
R0

2vF

)

vF(~η)2 sin2(2θ) + O(ǫ2) . (B10)

We can always eliminate any common factor that appears in all the four components of Eq. (B3), whenever possible.
By eliminating a common factor 2vF(~η)2 sin(2θ) cos θ, we rewrite A1 and A2 as

A1 = − cos θ ± i
R0

2vF

sin θ sin(2θ) + O(ǫ2) , (B11)

and

A2 =

(

±i +
R0

2vF

)

sin θ + O(ǫ2) . (B12)

Then the two decaying wavefunctions can be derived to be

ϕ1,2(x) =

















− cos2 θ sin θ
(

1 ∓ i R0

vF
sin2 θ

)

−i cos3 θ
(

1 ∓ 2i R0

vF
sin2 θ

)

±i sin2 θ cos θ
(

1 ∓ i R0

2vF

)

± sin3 θ
[

1 ∓ i
(

1
2 + cos2 θ

)

R0

vF

]

















eη∓x , (B13)

where η∓ = η
[

1 ∓ R0

2vF
sin2(2θ)

]

.

Some remarks are in order. With respect to the wavefunctions at R0 = 0, namely, Eqs. (B4) and (B5), nonzero
R0 leads to nonperturbative change in the wavefunctions Eq. (B13), in the sense that Eq. (B13) will not recover Eqs.
(B4) and (B5) in the limit R0 → 0. This is reasonable, just as what always happens in the degenerate perturbation
theory of the quantum mechanics. For the present problem, the wavefunction ΨP (x) in the pump is always expressed
as an arbitrary linear superposition of the two decaying modes: ΨP (x) = B1ϕ1(x) + B2ϕ2(x). By defining ϕ+(x) =
−[ϕ1(x) + ϕ2(x)] and ϕ−(x) = −i[ϕ1(x) − ϕ2(x)], we can rewrite ΨP (x) as ΨP (x) = D1ϕ+(x) + D2ϕ−(x). The
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final result for the reflection amplitudes depends only on ΨP (x = 0−), so we explicitly write out the expression for
ΨP (x = 0−) as follows

ΨP (x = 0−) = D1ϕ+(0−) + D2ϕ−(0−) , (B14)

where

ϕ+(0−) =









sin θ
i cos θ

− sin2 θ
cos2 θ cos θ R0

2vF

i
(

1
2 + cos2 θ

)

sin3 θ
cos2 θ

R0

vF









, (B15)

ϕ−(0−) =









cos2 θ sin θ R0

vF

2i cos3 θ R0

vF

cos θ
−i sin θ









(B16)

Now we see that in the limit R0 → 0, the total wavefunction ΨP (0−) will go back to the form of a superposition of
the two decaying wavefunctions given in Eqs. (B4) and (B5). In conclusion, while small Rashba spin-orbit coupling
may cause a nonperturbative change of the individual decaying wavefunctions, it modifies the “space” spanned by the
two decaying modes in a perturbative manner. It is this “space” which determines the final result of the reflection
amplitudes. This is the physical reason why in the final result, the Rashba spin-orbit coupling modifies the reflection
amplitudes in a perturbative manner. The wavefunction in the potential barrier can be written as

ΨB(x) =
C1√

2
| ↑〉 ⊗

(

1
−i

)

eγ0x +
C2√

2
| ↑〉 ⊗

(

1
i

)

e−γ0x +
C3√

2
| ↓〉 ⊗

(

1
i

)

eγ0x +
C4√

2
| ↓〉 ⊗

(

1
−i

)

e−γ0x , (B17)

where γ0 = V0/~v′
F.

2. An electron incident from the spin-up channel

For an electron incident from the spin-up channel, the wavefunction in the electrode is given by

ΨE(x) =
1√
2

| ↑〉 ⊗
(

1
−1

)

+
r↑↑√

2
| ↑〉 ⊗

(

1
1

)

+
r↓↑√

2
| ↓〉 ⊗

(

1
−1

)

. (B18)

First, matching the wavefunctions Eqs. (B17) and (B18) at x = d, one obtain

C1 =
1

2
[(1 − i) + r↑↑(1 + i)]e−γ0d , (B19)

C2 =
1

2
[(1 + i) + r↑↑(1 − i)]eγ0d , (B20)

C3 =
r↓↑

2
(1 + i)e−γ0d , (B21)

C4 =
r↓↑

2
(1 − i)eγ0d . (B22)

In the next step, we will match wavefunctions at x = 0. Substituting Eqs. (B19-B22) into Eq. (B17), we can write
Eq. (B17) at x = 0+ as

ΨB(0+) =
1√
2







Γ+(2γ0d) + r↑↑Γ−(2γ0d)
−Γ−(2γ0d) + r↑↑Γ+(2γ0d)

r↓↑Γ−(2γ0d)
−r↓↑Γ+(2γ0d)






(B23)
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where Γ(ξ) = ch(ξ) ± ish(ξ). Now equating Eq. (B14) with Eq. (B23), we obtain

(

i sin2 θ sin θ cos θ
− sin θ cos θ i cos2 θ

) (

Γ−

−Γ+

)

r↓↑

i R0

vF
cos θ sin3 θ

=

(

Γ+(2γ0d) + r↑↑Γ−(2γ0d)
−Γ−(2γ0d) + r↑↑Γ+(2γ0d)

)

+ O(ǫ2) (B24)

It follows from Eq. (B24)

r↑↑ = −cos(2θ) + i[sh(2γ0d) − sin(2θ)ch(2γ0d)]

ch(2γ0d) − sin(2θ)sh(2γ0d)
+ O(ǫ2) , (B25)

and

r↓↑ =
ǫ

2

sin(2θ)[1 − cos(2θ)]

ch(2γ0d) − sin(2θ)sh(2γ0d)
+ O(ǫ2) . (B26)

3. An electron incident from the spin-down channel

The reflection amplitudes for an electron incident from the spin-down channel can be solved similarly. Now the
wavefunction in the electrode is given by

ΨE(x) =
1√
2

| ↓〉 ⊗
(

1
1

)

+
r↓↓√

2
| ↓〉 ⊗

(

1
−1

)

+
r↑↓√

2
| ↑〉 ⊗

(

1
1

)

. (B27)

The forms of the wavefunctions in the pump and barrier remain to be the same. By some algebra, we arrive at

ΨB(0+) =
1√
2







r↑↓Γ−(2γ0d)
r↑↓Γ+(2γ0d)

Γ+(2γ0d) + r↓↓Γ−(2γ0d)
Γ−(2γ0d) − r↓↓Γ+(2γ0d)






. (B28)

Equating Eq. (B14) with Eq. (B28), we obtain

(

−i cos2 θ sin θ cos θ
− sin θ cos θ −i sin2 θ

) (

Γ−

−Γ+

)

r↑↓

i R0

vF
cos3 θ sin θ

=

(

Γ+(2γ0d) + r↓↓Γ−(2γ0d)
Γ−(2γ0d) − r↓↓Γ+(2γ0d)

)

+ O(ǫ2) (B29)

It follows from Eq. (B29)

r↓↓ =
cos(2θ) − i[sh(2γ0d) − sin(2θ)ch(2γ0d)]

ch(2γ0d) − sin(2θ)sh(2γ0d)
+ O(ǫ2) , (B30)

and

r↑↓ = −1

2

sin(2θ)[1 + cos(2θ)]

ch(2γ0d) − sin(2θ)sh(2γ0d)

(

R0

vF

)

+ O(ǫ2) . (B31)

4. A verification of the result

The total Hamiltonian of the system is invariant under the transformation

(−iŝyσ̂z)H(−k̃y)(iŝyσ̂z) = H(k̃y) , (B32)
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so the corresponding transformation of Eq. (B18)

(−iŝyσ̂z) ΨE(x)|k̃y →−k̃y
=

1√
2

| ↓〉 ⊗
(

1
1

)

+
r↑↑|k̃y→−k̃y√

2
| ↓〉 ⊗

(

1
−1

)

−
r↓↑|k̃y→−k̃y√

2
| ↑〉 ⊗

(

1
1

)

, (B33)

must also be an eigenstate of H(k̃y). This result tells that an electron incident from the spin-down channel will be
reflected into the spin-down channel with amplitude r↑↑|k̃y→−k̃y

, and also into the spin-up channel with amplitude

−r↓↑|k̃y→−k̃y
. Comparing it with Eq. (B27) and noticing that k̃y → −k̃y is equivalent to 2θ → (π − 2θ), we find

immediately the following relations

r↓↓ = r↑↑|2θ→(π−2θ) , (B34)

and

r↑↓ = −r↓↑|2θ→(π−2θ) . (B35)

The reflection amplitudes given in Eqs. (B25), (B26), (B30), and (B31) apparently satisfy these relations.

Appendix C: CALCULATION OF THE REFLECTION AMPLITUDES FOR A HALF-METALLIC

ELECTRODE

To simulate the half-metallic electrode, the Hamiltonian of the electrode is taken to be HE = v′
F(ky)kxŝzσ̂x +

V1(1̂ ∓ ŝz)σ̂z/2. Consider first the case, where the spin polarization of the electrode is parallel to the z-axis. Now the
Hamiltonian of the potential barrier becomes

HB = HE +

(

0 0
0 V1σ̂z

)

. (C1)

For simplicity, we will take V1 → ∞ limit in the final result. In this case, an electron incident from the spin-up channel
has some probability to be reflected into the spin-down channel from the pump, but the reflected wave will decay
quickly to 0 within the barrier, and has no chance to reach the electrode. Therefore, r↓↑ ≡ 0 and the wavefunction in
the electrode becomes

ΨE(x) =
1√
2

| ↑〉 ⊗
(

1
−1

)

+
r↑↑√

2
| ↑〉 ⊗

(

1
1

)

. (C2)

The wavefunction in the potential barrier can be written as

ΨB(x) =
C1√

2
| ↑〉 ⊗

(

1
−i

)

eγ0x +
C2√

2
| ↑〉 ⊗

(

1
i

)

e−γ0x +
C3√

2
| ↓〉 ⊗

(

1
−i

)

e−γ1x , (C3)

where γ0 = V0/~v′
F

and γ1 = V1/~v′
F

→ ∞. The wavefunction in the pump remains to be same. Repeating the same
calculation as in sec. II, it is straightforward to obtain

r↑↑ = −cos(2θ) + i[sh(2γ0d) − sin(2θ)ch(2γ0d)]

ch(2γ0d) − sin(2θ)sh(2γ0d)
+ O(ǫ2) . (C4)

This expression is identical in form to Eq. (B25) obtained in Sec. II for a nonmagnetic electrode. However, an
important difference is r↓↑ ≡ 0. As a result, |r↑↑|2 ≡ (1 − |r↓↑|2) ≡ 1 up to any order in ǫ. This means that O(ǫ2)
in Eq. (C4) must be a correction only to the argument of r↑↑, which as discussed in the manuscript, will not modify
the orbit of r↑↑ on the complex plane. The orbit is always a unit circle for |ky| < kc

y, and the amount of charge
pumped per cycle by the ky state is quantized to ∆q(ky) = −eC+. Similarly, for the spin polarization of the electrode
antiparallel to the z-axis, the charge pumped per cycle is ∆q(ky) = −eC−.
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