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Multiple zero-energy Majorana fermions (MFs) with spatially overlapping wave functions can survive only
if their splitting is prevented by an underlying symmetry. Here we show that, in quasi-one-dimensional (Q1D)
time reversal invariant topological superconductors (class DIII), a realistic model for superconducting Lithium
molybdenum purple bronze (Li0.9Mo6O17) and certain families of organic superconductors, multiple Majorana-
Kramers pairs with strongly overlapping wave functions persist at zero energy even in the absence of an easily
identifiable symmetry. We find that similar results hold in the case of Q1D semiconductor-superconductor het-
erostructures (class D) with t⊥ � t, where t⊥ and t are the transverse and longitudinal hoppings, respectively.
Our results, explained in terms of special properties of the Hamiltonian and wave functions, underscore the
importance of hidden accidental symmetries in topological superconductors.
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Introduction: Topological superconductors are character-
ized by a bulk superconducting gap and topologically pro-
tected gapless edge states1. Due to the presence of intrinsic su-
perconducting particle-hole symmetry (PHS) the gapless zero
modes constitute Majorana fermions (MFs), characterized by
the second quantized operator relation γ† = γ. In the con-
text of condensed matter, aside from being fascinating non-
elementary particles, MFs obey Ising type non-Abelian braid-
ing statistics which is useful in implementing a fault-tolerant
topological quantum computer2. These emergent excitations
are said to be topologically protected, in the sense that their
existence and properties are insensitive to many perturbations
so long as the system remains gapped. While MFs have not
yet been conclusively found in nature, they have been theo-
retically shown to exist in low dimensional spinless p-wave
superconducting systems3,4 as well as other systems which
are similar to them5–11. In particular the semiconductor het-
erostructure scheme has motivated tremendous experimental
efforts with a number of recent works claiming to have ob-
served experimental signatures consistent with MFs12–17, for
a review see Ref. [18].

Recent work19–21 has established that the quadratic Hamil-
tonians for gapped topological insulators and superconduc-
tors can be classified into ten topological symmetry classes
each of which is characterized by a topological invariant. The
symmetry classification is important as it provides an under-
standing of the effects of various perturbations on the sta-
bility of the protected surface modes such as MFs. For ex-
ample, recent work22–31 has proposed time-reversal (TR) in-
variant topological superconductivity (class DIII) with a Z2

invariant in a number of systems with intrinsic or proxim-
ity induced superconductivity in heterostructures while at the
same time an topological classification involving spatial crys-
talline symmetries has been developed32,33. Spin triplet, equal
spin pairing (ESP), p-wave superconductivity, which realizes
such a TR-invariant topological superconductor30, is thought
to be present in the quasi-one-dimensional (Q1D) transition
metal oxide Lithium molybdenum purple bronze Li0.9 Mo6
O17 (LiMO) and some organic superconductors34–39. These
systems posses a distinctly anisotropic electrical conductivity,
i.e. the hopping integrals along the crystallographic directions

vary as, tx � ty � tz , making them Q1D conductors. Be-
cause of its electronic anisotropy, LiMO may be modeled as
an array of parallel one dimensional systems coupled by weak
transverse hopping (with similar physics possibly being real-
ized in cold fermion systems40). As discussed below these
systems provide a natural platform to study interaction effects
between MFs.

In Q1D multi-chain systems multiple Majorana fermions
with spatially overlapping wave functions can remain at zero
energy only if their splitting is forbidden by an underly-
ing symmetry. In this work we show that, in Q1D TR-
invariant topological superconductors, multiple Majorana-
Kramers pairs (MKPs) with strongly overlapping wave func-
tions persist at zero energy even in the absence of an iden-
tifiable physical symmetry. We find similar results also
for Q1D semiconductor-superconductor heterostructures with
spin-orbit (SO) coupling and Zeeman field (class D with Z2

invariant) with t⊥ � t, pointing to the existence of a hidden
symmetry decoupling of the MFs. To demonstrate this result
we start with a strictly 1D (single chain) TR-invariant Kitaev
model superconductor (Eq. (1)), modeling the ESP spin-triplet
p-wave state proposed to be realized in LiMO. We first note
that, in addition to TR-invariance, the model has a chiral as
well as a mirror symmetry both of which allow an integer (Z)
invariant. In the physically realistic Q1D generalization of
this model (with t⊥ � tx) the Z invariant takes arbitrary inte-
ger values, allowing multiple MKPs localized at the same end
despite wave-function overlap. We show that, even in the ab-
sence of such symmetries, multiple MFs can still be protected
by symmetries such as spatial reflection. In realistic materi-
als, however, reflection symmetry is expected to be broken by
disorder. Remarkably, we find that disorder induced break-
down of reflection symmetry fails to lift the degeneracy of the
zero energy modes even with strong wave function overlap.
We find very similar results also for Q1D systems in class D.
These results, which we explain in terms of special proper-
ties of the Hamiltonians and wave functions, underscore the
importance of hidden symmetry decoupling of MFs in topo-
logical superconductors.

Hamiltonian and equivalent description by chiral and mir-
ror symmetries: We model a one dimensional spin-triplet
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topological superconductor by a lattice Hamiltonian which in-
cludes nearest neighbor hopping, on-site chemical potential
and a general p-wave superconducting order parameter which
reads,

H1D =
∑
i,σ

[−t(c†i+1σci,σ +H.c.)− µc†iσciσ]

+
∑
i,σ,σ′

[∆σσ′(c†i+1σc
†
iσ′ +H.c.)]. (1)

Here t = tx is the hopping integral between nearest neigh-
bor sites, i ∈ [1, Nx] is the lattice index and σ =↑, ↓ rep-
resents the spin index. Next, we Fourier transform Eq. (1)
to study the 1D bulk topological properties. The spin sym-
metry of Cooper pairing may be classified by the total spin
as either singlet (S = 0) or triplet (S = 1). A general
pair potential is expressed compactly in terms of a d-vector
as ∆αβ(k) = [∆s(k) + d(k) · σ] (iσy)αβ with a symmetric
singlet component ∆s(k) = ∆s(−k), and an antisymmet-
ric triplet d-vector d(k) = −d(−k). For most of this work
we consider a pure triplet order parameter with ∆s(k) = 0,
touching briefly on similar physics involving a singlet term
(see Fig. 3).

We now write the bulk Hamiltonian corresponding to Eq.
(1) as a momentum space Bogoliubov-de Gennes (BdG)
Hamiltonian, H1D = 1/2

∑
k Ψ†kHkΨk. With the Nambu ba-

sis Ψk = (ck↑, ck↓, c
†
−k↓,−c

†
−k↑)

T which absorbs the factor
iσy associated with the d-vector, the matrixHk then takes the
form

H1D
k = (ε(k)− µ)σ0τz + d(k) · στx. (2)

Here k = kx is the 1D crystal-momentum, ε(k) = −2t cos(k)

is the single particle kinetic energy, d(k) = d̂|d(k)| =
(dx, dy, dz)∆ sin(k) is the p-wave order parameter and σi,τi
indicate spin 1/2 Pauli matrices in the spin and the particle-
hole spaces respectively.

Superconducting Hamiltonians observe an intrinsic
particle-hole symmetry (PHS) which emerges from the
structure of the BdG equations. The BdG Hamiltonian in
Eq. (2) satisfies ΞHkΞ−1 = −H−k, where, in this basis the
anti-unitary PHS operator reads Ξ = σyτyK where K is the
anti-unitary complex conjugation operator. Ξ anti-commutes
with the real space representation of H1D

k and obeys Ξ2 = 1.
PHS which relates quasiparticle excitations at ±E through
Γ†E = Γ−E is fundamentally important for the formation of
Majorana modes which are a special case satisfying E = 0.
Additionally, H1D

k obeys the time-reversal symmetry (TRS)
relation ΘHkΘ−1 = H−k with the TR operator Θ = σyτ0K.
The presence of PHS and TRS leads to a unitary chiral
symmetry which is simply the product Π = Ξ · Θ = σ0τy .
When |µ| < 2t the system is in the topologically non-trivial
phase, characterized by a DIII class Z2 invariant which takes
a value ν = −1. This invariant may be viewed as a Kramers
polarization and, in the most general case, reduces to Kitaev’s
Pfaffian invariant for one spin block in the presence of spin
rotation symmetry41. When ν = −1 unpaired MFs at each
end of the wire form topologically protected MKP’s. This

(b)

�2 �1 1
hx�k�

�2

�1

1

2
hz�k�

(a)

�1 1 2 3 4
Re�Dk�

�2

�1

1

2

Im�Dk�

FIG. 1. (Color online) (a) Winding curve for the chiral topological
invariant W = 2 indicating two topologically protected MFs at each
end of a single chain as described by Eq. (2). (b) Mirror topological
invariant γM = 2 indicating two MFs at each end of a single chain
in Eq. (2). Here we have set the hopping parameter t to unity and
used µ = .2t, |∆| = t.

explains the robustness of the four zero energy modes in the
presence of TR-invariant perturbations.

Additionally, the BdG Hamiltonian Eq. (2) belongs to the
topological class BDI, due to a co-existing chiral symmetry
given by SBDI = O ·Ξ = (d̂ ·σ)τy , which is the product of a
TR-like operatorO = (d̂ · ŷ+i(d̂× ŷ) ·σ)K withO2 = 1, and
the particle-hole operator Ξ. Note that while the explicit form
of this operator is dependent on the orientation of the d-vector,
its existence is guaranteed given a superconducting term of
the form given in Eq. 2. In d = 1 BDI Hamiltonians are clas-
sified by a bulk Z topological winding number invariant W .
To calculate the invariant we off-diagonalize the Hamiltonian
from Eq. (2) in the basis which diagonalizes SBDI . Writing
the determinant of the off-diagonal part in a complex polar
form, Dk = |Det(Dk)|eiθ(k), W is given by42,43 the num-
ber of times θ(k) winds about the origin as k varies through
the 1D Brillouin zone. As can be seen from Fig. [1], panel
(a), the invariant takes the value W = 2 in the topological
phase of Eq. (2) while W = 0 in the trivial phase. This chiral
symmetry explains the persistence of the zero modes to TR-
breaking terms including stray Zeeman fields (HZ = V ·στ0)
perpendicular to the d-vector, while a Zeeman field V ‖ dk
breaks the chiral symmetry (since a parallel Zeeman term does
not anti-commute with the chiral operator). In the latter case
there is no hidden symmetry and the spatially localized Ma-
jorana end modes hybridize into conventional gapped modes.
A generic SO coupling term aligned in an arbitrary direction
in spin space is written HSO = αR sin(k)a · στz meaning
that a ‖ dk preserves chiral symmetry while a SO term in
the plane perpendicular to the d-vector does not respect chiral
symmetry.

Recently, mirror symmetry has also been a proposed as
a topological protection mechanism for MFs44. The one-
dimensional Hamiltonian Eq. (2) is invariant ([M,Hk] = 0)
under the mirror symmetry operator M = id̂ · στ0. Be-
cause M and Hk commute, the Hamiltonian may be ex-
pressed in a block diagonal form (we choose to rotate the
Hamiltonian by a unitary matrix whose rows are the eigen-
vectors of the mirror operator M) where each block corre-
sponds to a mirror eigenspace subsector. Each block is writ-
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ten h± · σ where the ± is the mirror eigenspace index. Ex-
plicitly choosing d̂ along x̂, without loss of generality, we
find h± = (±∆ sin(k), 0, εk − µ) such that the mirror wind-
ing number invariant in each subsector C± is defined in the
(σx − σz) plane. Each mirror winding curve encloses the ori-
gin once, but with opposite helicity, leading to a mirror invari-
ant γM = C+ − C− = 2, which is illustrated in Fig. 1.

Multiple chains and multiple Majoranas: A realistic quasi-
1D spin triplet superconductor such as LiMO (or quasi-1D
TRI systems in cold fermions) may first be modeled as an
array of 1D chains coupled by a weak hopping amplitude
ty � tx. One may further consider a truly 3D system by
stacking 2D arrays and coupling them through a third hopping
integral tz � ty � tx. We consider a system which consists
ofNy parallel chains, indexed by l ∈ [1, Ny], coupled only by
transverse hopping ty . The quasi-1D Hamiltonian is a gener-
alization of Eq. (2) given by

HQ1D =
∑
kll′

Ψ†kl(H
1D
k δl,l′ +H⊥l,l′)Ψkl′ , (3)

where we have used the basis Ψkl =
(ckl↑, ckl↓, c

†
−kl↓,−c

†
−kl↑)

T , and H⊥l,l′ = −t⊥σ0τz(δl,l′+1 +

δl,l′−1).
We proceed by first examining a double chain setup with

l = 1, 2 as an illustrative example (the generalization is
straighforward). For a two-chain system the Hamiltonian is
expressed as 2 × 2 matrix where every entry is itself a 4 × 4
matrix (see Eq. 2). This reads,

HQ1D =
∑
k

(Ψ†k,1,Ψ
†
k,2)

(
H1D
k −t⊥σ0τz

−t⊥σ0τz H1D
k

)(
Ψk,1

Ψk,2

)
(4)

Introducing a new Pauli matrix (ρ) in the double chain
Hilbert space allows us to write Eq. (4) compactly as
H1D
k ρ0 + t⊥σ0τzρx. Using this, we may generalize the chiral

operator to the double chain space as SBDI = σxτyρ0. We
are now able to calculate a generalized multi-chain winding
number W counting the number of MFs at each edge which
are now localized across both chains. Just as in the single
chain case, the magnitude of the chiral invariant |W | is equal
to the number of topologically protected MFs present at each
end. This is illustrated by the phase diagram presented in Fig.
2 which shows that for small transverse hopping 2×Ny = 4
Majorana modes are present. In general, as long as one can
define a chiral and/or mirror invariant, and the transverse hop-
ping is small enough, the number of MFs at each end grows
with the size of the sample (|W | = 2×Ny).

Broken chiral symmetry and the role of reflection symme-
try: Let us now investigate the fate of multiple Majoranas in
the event of broken chiral and mirror symmetries, which may
occur due to intra-chain spin-orbit coupling perpendicular to
the d-vector. This modifies the Hamiltonian in Eq. (2) to,

H1D
k 7→ H1D

k + αR sin(k)σyτz (5)

altering Eq. (4) accordingly. In the two-chain problem, the
two distinct sets of MKPs may interact, each hybridizing to
finite energies. We note however, that the Hamiltonian (Eq.
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FIG. 2. (Color online) Topological phase diagram for a two channel
configuration consisting of two TR-invariant Kitaev chains coupled
by weak transverse hopping ty � tx (with tx set to unity). For
small ty a broad range of µ accommodates the topological phase
indexed by the topological invariant |W | = 4. As ty increases and
the splitting between the two sets bands increases topological phases
with single Majorana Kramers pairs emerge as seen by the |W | = 2
phase.

4) commutes with the spatial reflection operator R = σ0τ0ρx
which interchanges the chain index, i.e. ĉkx,1(2) 7→ ĉkx,2(1).
Writing Eq. (4) in the eigenbasis of R results in a block-
diagonalized form which reads H1D

k ρ0 + t⊥σ0τzρz . In this
form it is clear that transverse hopping modifies the effective
chemical potential in two independent bands. Notice also that
[Θ,R] = [Ξ,R] = 0, so that every diagonal block in the
eigenbasis of R is particle-hole and time-reversal invariant.
Because of this invariance each independent, non-interacting
block constitutes a DIII topological superconductor hosting a
zero energy MKP at each end. The extension of this argu-
ment to decouple Ny chains is straightforward. A general-
ized ρx is a totally symmetric Ny × Ny dimensional matrix
given by ρx = (δl,l′+1 + δl,l′−1) with l, l′ ∈ (1, 2, ..., Ny),
that is, the superdiagonal and subdiagonal elements connect
nearest neighbor sites are +1 and all other matrix elements
are zero. The eigenvalues of ρx come in pairs of equal mag-
nitude and opposite sign (±λ1,±λ2,±λ3, ...) for Ny even
and (0,±λ1,±λ2,±λ3, ...) when Ny is odd. In this case
the rotated Ny chain Hamiltonian involves a generalized ρz .
Because ρz and ρx have the same eigenvalue spectrum, the
block diagonal Hamiltonian consists of non-interacting sec-
tors where the chemical potential in sector is modified by±λi.

Persistence of multiple Majoranas in the absence of reflec-
tion symmetry:

In any realistic system however, reflection symmetry is ap-
proximate since some disorder will always be present. The ad-
dition of δµi, with a random magnitude within a normal distri-
bution, to the tight-binding Hamiltonian in Eq.1 (additionally
including the Rashba spin-orbit coupling term introduced in
the last section, which takes the system from topological class
BDI to DIII) effectively models local disorder. As illustrated
in Fig. 3, by solving the BdG equations on a double chain sys-
tem, we find that the presence of on-site disorder minimally
affects the bulk spectrum, while the zero-energy modes are
insensitive to this perturbation. Note that the Majoranas per-
sist even in the absence of chiral, mirror, and reflection sym-
metries, each of which are now explicitly broken (note that we
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FIG. 3. (Color online) Low energy BdG quasiparticle spectrum
for TR-symmetric Kitaev system (class DIII superconductor) for
Nx = 100, Ny = 2 (red circles) in the absence of chiral and mirror
symmetries. The eight MFs (four on each end) are presumably pro-
tected from splitting by spatial reflection. Blue squares show same
number of protected zero modes in the presence of local chemical
potential disorder which breaks spatial reflection. Green diamonds
and black triangles show two MFs at each nanowire end for a class
D system (again we have Ny = 2) with and without spatial re-
flection respectively. Numerical parameters used in this figure are
t = 1, ty = 0.1t, µ = 0.2t,∆s = ∆p = t, αR = 0.2t, Vz = 1.5t.

take the Zeeman coupling to vanish here and hence the system
is in the TR invariant class DIII). We achieve similar results
for Ny > 2, with the number of Majorana fermions scaling
directly with the number of chains existing in the transverse
direction. Likewise a TR-breaking class D system based on
the semiconducting Majorana wire Hamiltonian given by

HSMW =
∑
i,σ

[−t(c†i+1σci,σ +H.c.)− µc†iσciσ] (6)

+
∑
i

[∆sc
†
i↑c
†
i↓ +H.c.] +

∑
i,σ,σ′

(V · ~σ)σ,σ′ c†iαciσ′

+
∑
i,σ,σ′

[αR(iσy)σ,σ′ c†iσci+1σ′ +H.c.]

which contains s-wave paring ∆s, Rashba spin orbit coupling
of strength αR, and a Zeeman splitting V yield similar results
for a Ny = 2 dimensional chain.

In order to understand the response of the MFs to reflection
breaking perturbations we consider first the two-chain Hamil-
tonian describing the chemical potential imbalance written as,

HQ1D
k =

(
H1D
k + δ −t⊥
−t⊥ H1D

k − δ

)
(7)

where t⊥ is understood to be t⊥σ0τz , δ = δµσ0τz , and we
continue to work in the (Ψ†k,1,Ψ

†
k,2) basis. Note that we

still consider k = kx to be a good quantum number and
break reflection symmetry only by introducing a chemical po-
tential imbalance among the chains. Can we systematically
block-diagonalize this Hamiltonian with a unitary eigenvalue-
conserving transformation that commutes with time reversal
and particle-hole symmetries? If yes, MFs will persist in each
block due to a ‘hidden symmetry’ associated with this trans-
formation. Since Hk1D appears with an identity matrix in
chain space, this problem amounts to finding a matrix which
diagonalizes the remaining terms leavingHk1D invariant.

We search for a hidden unitary transformation in a sys-
tematic way by first considering the eigen-decomposed form
of the non-diagonal terms in Eq. (7), which we call A =
δρz − t⊥ρx. This is expressed as A = QΛQ−1, where
Q is a matrix whose columns are the eigenvectors of A,

v± = 1/(
√

2N±)
(
−(δ ±

√
t2⊥ + δ2)/t⊥, 1

)T
and N± =√

1 + δ2

t2 ±
δ
√
t2+δ2

t2 is the normalization constant. Also re-
member that each entry in Q involves an identity in spin and
particle-hole spaces. The unitarity of Q is a direct conse-
quence of the Hermiticity of A. Note that in the limit δ → 0,
this reduces to the eigenbasis of R which was the reflection
transformation operator used in the presence of R. Rotating
the full 8× 8 Hamiltonian in Eq. (7) by the Q operator we see
Q−1HQ1D

k Q = [−(εk − µ)σ0τx + αRk σyτz + ∆σxτx]ρ0 −√
t2⊥ + δµ2σ0τzρz . The transformed Hamiltonian consists of

two non-interacting topological DIII sectors, each block re-
specting both particle-hole and time reversal symmetries, sub-
ject to a modified chemical potential of magnitude

√
t2⊥ + δ2

and a sign change for the single particle kinetic energy. The
commuting hidden symmetry operator associated with the Q
transformation is R

′
=
(

1 + δµ2

t⊥2

)
−1/2

(
ρx − δµ

t ρz

)
. This

explains why the multiple MKPs with spatially overlapping
wave functions persist even with broken reflection symmetry,
as shown in Fig. 3 (given kx is a good quantum number).

What is the fate of the topological phase that hosts the
Majorana modes in the presence of a perturbation Hp that
breaks the reflection symmetry and also the translation sym-
metry along the chains? Our strategy is to identify the generic
structure of the Majorana wave functions φν based on the
symmetries of the system, then calculate the matrix elements
〈φν |Hp|φν′〉. If all matrix elements are zero, the multiple Ma-
joranas are preserved; otherwise, the perturbation splits the
Majorana modes and the systems becomes topologically triv-
ial. Note that virtual transitions to finite energy states do not
affect the energy of the zero-modes. This can be seen by writ-
ing the Green’s function G = (ω−HQ1D−Hp)

−1 projected
onto the Majorana subspace as Gνν′ = [ωδνν′ −Σνν′(ω)]−1,
in terms of the self-energy

Σνν′(ω) =
∑
n

1

En
〈φν |Hp|Ψn〉〈Ψn|Hp|φν′〉, (8)

where Ψn is an eigenstate of energy En. Since |En| ≥ ∆qp,
where ∆qp is the quasiparticle gap, Σνν′ = 0 in the limit
∆qp → ∞. Furthermore, any system with a finite quasiparti-
cle gap can be adiabatically connected to the superconductor
with infinite ∆qp without crossing a topological phase tran-
sition; hence, the two systems belong to the same topologi-
cal class and have the same number of Majorana modes, i.e.
Σνν′ = 0 for both. Explicit numerical calculations confirm
this result.

To identify the generic form of the Majorana wave func-
tion, we make the key observation that HQ1D commutes with
the unitary operator U = σyτzρ0. The Majorana spinor
φν = (uν↑, uν↓, vν↓,−vν↑)T , which satisfies the constraint
vνσ = u∗νσe

iϕ due to particle-hole symmetry, has to be
an eigenstate of U . Consequently, uν↓ = iλumλ↑, where
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ν = (m,λ), λ = ±1 and m takes Ny values to label the
multiple Majoranas localized near each end of the system.
Finally, time-reversal symmetry requires umλ↑ = umλ(l, i)
to be a real function of position and chain index satisfy-
ing the condition um+ = um−, in addition to the phase
condition ϕ|λ=+1 = −ϕ|λ=−1. We conclude that the Ma-
jorana wave functions have the generic form φmλ(l, i) =
umλ(l, i)[1, λi,−λieλiϕ,−eλiϕ]T . We note that the phase ϕ
takes the value ϕ = π in a system with chiral symmetry, i.e.
in the absence of spin-orbit coupling (αR = 0). Using the
above wavefucntion, it is straightforward to show that all ma-
trix elements 〈φmλ|Hp|φm′λ′〉 of a spin-independent disorder
potential Hp = Vdis(l, i)σ0τz vanish; hence, such a perturba-
tion does not destroy the Majoranas as long as the quasiparti-
cle gap is nonzero. This explains the numerical BdG results
and persistence of the end MFs presented in Fig. 3.

Conclusion: Multiple Majorana fermions with spatially
overlapping wave functions are expected to split and acquire

non-zero energies, unless such splitting breaks an underly-
ing symmetry. By working with a realistic model for TR-
invariant topological superconductors (class DIII) appropriate
for LiMO, we study such interaction effects with multiple Ma-
joranas and show that they can remain protected in topological
superconductors even in the absence of an identifiable physi-
cal symmetry. We find similar results for Q1D semiconductor-
superconductor heterostructures with spin-orbit coupling and
Zeeman field (class D). Our results, which we explain in terms
of properties of the Hamiltonians and wave functions, under-
score the importance of hidden symmetry (which may be bro-
ken by additional couplings such spin-depended disorder po-
tential and electron-electron interactions) decoupling of MFs
in topological superconductors.
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