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The physics of the epsilon-near-zero (ENZ) mode, which is supported by a nanolayer at the frequency where the 
dielectric permittivity vanishes, has recently been a subject of debate. In this paper, we thoroughly investigate and 
clarify the physics of this mode, providing its main characteristics and its domain of existence. This understanding 
will benefit all the applications that rely on ENZ modes in semiconductor nanolayers, including directional perfect 
absorption, voltage-tunable devices, and ultrafast thermal emission. 

PACS numbers: 78.20.-e; 78.20.Bh; 78.67.-n 
Thin films made of metals, doped semiconductors or polar materials can support plasmon- or phonon-polaritons 
eigenmodes [1-4]. For excitation conditions close to the dispersion of such eigenmodes, these structures can exhibit 
peculiar properties. A representative example is the Berreman absorption feature observed for p-polarized light 
illuminating dielectric thin films backed by a metal substrate [5-7]. This resonant absorption, close to the 
longitudinal phonon frequency, was recently attributed to the excitation of the so-called “Berreman mode” [8]. On 
thin plasmonic films, the same resonant absorption occurs near the plasma frequency and was attributed to a 
“Brewster mode” [9], whose dispersion was recently proven experimentally in [10]. These modes are radiative 
modes: their dispersion relation lies on the left of the light line and thus can be excited from free-space. The physics 
of such modes is well understood [11-15]: they appear when the dielectric constant is close to zero and are 
associated with a collective oscillation of charges in the thin films.  

Very recently, another mode – defined as the “epsilon-near-zero” (ENZ) mode – was observed in [8] and only 
when very subwavelength film thicknesses were used. This ENZ mode is a confined mode whose dispersion lies on 
the right of the light line and thus can be accessed using the Kretschmann geometry or grating couplers, for 
example. It was briefly shown that this mode corresponds to a long-range surface wave mode in the thin-film 
regime [16]. However, a clear theoretical investigation of the behavior and domain of existence of the ENZ mode 
has not been reported yet, and it is the purpose of this work. The understanding of the physics of the ENZ mode will 
benefit all the applications that could rely on it [17], such as directional perfect absorption and ultrafast thermal 
emission. 

We will consider in this paper the three-layer structure depicted in Fig. 1, where a nanolayer with thickness d 
and relative permittivity 2ε  is surrounded by two semi-infinite regions with relative permittivities 1ε  (top) and 3ε
(bottom).  

 
Fig. 1. A three-layer structure containing a layer with thickness d and two semi-infinite regions. 

A solution to Maxwell’s equations in the absence of excitation defines a mode of the structure. A mode is 
characterized by a pair ( )ω,//k , that satisfies the equation 
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where //k  is the transverse wavenumber, ω  the angular frequency, and 2
//2

2
2 k

c
k izi −= ωε  is the longitudinal 

wavenumber in medium 3,2,1=i  with Re kzi( ) + Im kzi( ) ≥ 0. Equation (1) can be easily derived from either the 
Fresnel reflection coefficient [18,19] or the transfer matrix method [20]. The monochromatic time harmonic 



convention expሺെ݅߱ݐሻ is implicitly assumed. Equation (1) deals with complex-valued variables and can be solved 
in two manners: (i) selecting a real-valued ω  and computing the complex-valued //k ; or (ii) selecting a real-valued 

//k  and computing the complex-valued ω . Both descriptions lead to different representations of the same mode but 
are equivalent as shown in [21]. We continue with description (ii) for the remainder of the paper as suggested in [1] 
and [8].  

For the sake of simplicity, and in order to extract the essential physics of the ENZ mode, we consider a metallic 

nanolayer, whose dielectric constant is described by a simple Drude model ( )
γωω

ωωε
i

P

+
−= 2
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2 1 , with Pω  

depicting the plasma angular frequency and γ  the damping, and surrounded by free space ( 131 == εε ). The 
dielectric constant of the film can vanish when the frequency is close to Pω , leading to the possibility to observe an 

ENZ mode. Unless otherwise indicated, -1cm 10000=Pω  (corresponding to a plasma wavelength ߣ௉ ൌ  m) andߤ1
-1cm 100=γ , and are used as representative examples for the figures shown in this paper. For the same reasons of 

simplicity, we will not address the issue of non-local effects that could arise from very small film thicknesses. More 
complex environments will be studied at the end of the paper. The plasmonic film supports surface plasmon 
polariton (SPP) modes. When its thickness d is larger than the skin depth, (~100 nm), the layer can be considered as 
a semi-infinite medium. This is clearly observed in Fig. 2(a), where we report the dispersion of the real part of ω  
of the SPP supported by a 1µm-thick slab in free space (blue curve). The figure displays the classic growing trend 
to the right of the light line, approaching ( ) 2/1/Re =Pωω  for large //k . It is also known that when the thickness 
d is comparable to the skin depth, the SPP splits into the short-range SPP and the long-range SPP [22,23]. This is 
displayed in Fig. 2(b), where we show the dispersion relations of the two SPPs supported by a 100nm-thick slab. 
Similar to the case reported in Fig. 2(a), also the two SPPs in Fig. 2(b) approach ( ) 2/1/Re =Pωω  for large //k .  

However, limited discussion has been provided in the literature to the dispersion of short-range and long-range 
SPPs when the slab thickness is further reduced to values (much) smaller than the skin depth. Similar to what is 
reported in Fig. 2(b), Fig. 2(c) shows the dispersion relations of the two SPPs, but now for a 2nm-thick film (using 
the Drude values used before). In this case, we observe that the dispersion of the long-range SPP remains quite 
constant at ( ) 1/Re =Pωω  for increasing //k . Because of this peculiar condition, and although this is still a long-
range SPP, this part of the dispersion has been defined as an ENZ mode. Plotting the same dispersion in a wider //k  
range [Fig. 2(d)] confirms the behavior of short-range and long-range SPPs observed in Fig. 2(b), i.e. ω approaches 

( ) 2/1/Re =Pωω  for large //k . Thus, we infer that the so-called ENZ mode can exist only for certain ranges of 
thickness, frequency, and wavenumber, and our first objective is to define theses ranges.  

 
Fig. 2. (a) SPP supported by a layer with thickness of 1 µm, a value much larger than the skin depth. (b) The SPP splits into short-range (red) and 
long-range (blue) SPPs when the layer thickness is 100 nm, a value comparable to the skin depth. (c) Further decreasing the thickness to 2 nm, a 
value much smaller than the skin depth, a flat dispersion appears at ω /ωP =1  that is associated to an ENZ mode. In (a)-(c), the dotted and 

dashed-dotted horizontal green lines depict the limits ω /ωP =1  and ω /ωP =1/ 2 , respectively. The dashed green line depicts the light line. 

(d) As in (c), showing a wider range of //k . 
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It is straightforward to derive the asymptotic behavior for large //k . When ∞→//k  we know that 

kz1 = ik// 1− ω 2

c2k
//

2 ≈ ik// 1− ωP
2

c2k
//

2 ≈ ik// , and the same approximation can be made for ݇௭ଶ. It follows that for 

݇//݀ ՜ ∞, Eq. (1) leads to 12 −→ε  and ω → ωP

2
− i γ

2
. To understand now the conditions under which an ENZ 

mode can be defined and what its peculiar features are, we have to rewrite Eq. (1) when ω is close to ωP . For 
small values of the thickness such that kz2d <<1, Eq. (1) can be rewritten as  

2ε2kz1 = id ε2
2kz1

2 + kz2
2( )    (2) 

Noting again that //1 ikkz ≈ , Eq. (2) can be rewritten as 
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The second equality in Eq. (3) can be assumed if 2
//22

2
k

c
<<εω . Such a condition can be satisfied if 02 →ε . 

This is possible for ω ≈ ωP ; in such a case, we can rewrite Eq. (3) as ω 2 + iγω( ) 1+ k//d
2
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2  by neglecting the 

2
2ε  term on the right-hand side. Under this approximation, a new dispersion relation can be derived for the ENZ 

mode: 

ω ≈ ωP 1− k//d
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This approximation is valid only when Pωω ≈ . This equation is very similar to the approximation reported in [24] 
for the surface plasmon mode at a metallic surface with spatial dispersion. The existence domain of an ENZ mode is 

thus 
d

k
c

P 4
// <<<

ω . For instance, Fig. 3 shows the dispersion of the real and imaginary parts of ω  of the long-

range SPP for a layer thickness of 10 nm. In agreement with the previously defined domain, it is seen that the 
dispersion given by Eq. (4) (dashed black line) approximates quite well the real dispersion curve (solid blue line) in 

the region ωP

c
< k// < 1

10
4
d

 (gray shaded area) giving a phenomenological approximation of the previous inequality 

d
k 4

// << . Moreover, using field-continuity conditions dictated by Maxwell’s equations, it has been shown in 

previous studies that the z-component of the electric field is much stronger than the in-plane components, and that 
the electric field exhibits a constant field profile within the slab [8]. This last feature is observed only in the range 
indicated by the grey shaded area in Fig. 3. It turns out that the ENZ mode can appear only for small thicknesses 

given by 2π
λP

<< 1
10

4
d

 (where λP = 2πc
ωP

 is the plasma wavelength), corresponding to a relative difference between 

ω  and ωP  of less than 10%. A good rule of thumb is that the ENZ mode becomes apparent for nanoscale thickness 

50
Pd λ<≈  (in our case, nm20<≈d ). This explains why the ENZ mode was never observed in metals ( Pλ  on the 

order of hundreds of nanometers), but for example in doped semiconductors ( Pλ  on the order of 5 to 50 
micrometers) where this condition can be easily met. 



 
Fig. 3. The dispersion of the long-range (blue) SPP when the layer thickness is 10 nm. The dashed black line depicts the approximation 

Re ω( ) ≈ ωP 1− k//d
4

⎡
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. The shaded gray area depicts the range of k//  below Eq. (4). The inset shows the imaginary part of the mode dispersion, 

which becomes constant and equals to γ / 2  for large //k . These losses equal the well-known losses of the short-range SPP. 

Next, we show in Fig. 4 the dispersion of the real part of ω  of the long-range SPP for three layer thicknesses, 
namely 2, 20, and 150 nm. Together with the dispersion diagrams, we also show the profile of the intensity of the z-
component of the electric field versus the spatial variable z normalized by the thickness d and computed at 

ck P /2// ω= . We observe that when the dispersion curve falls within the existence range of the ENZ mode depicted 
by the shaded grey area, the field is rather constant within the slab. On the contrary, as shown in Fig. 4(c), the field 
exhibits a minimum in the middle of the slab if the dispersion is outside of the ENZ mode existence limits: this is 
the long range SPP behavior that has been known for decades for thin films. As predicted above, we see in Fig. 4 
that an ENZ mode is observed only if nm20<≈d . 

 
Fig. 4. (a). Dispersion (top) and profile of the intensity of the z-component of the electric field versus the spatial variable z normalized by the 
thickness d (bottom) computed at k// = 2ωP / c  for the long-range SPP supported by a 2nm-thick layer surrounded by free space. The shaded 
gray area describes the ENZ mode validity range. (b)-(c) As in (a), for a slab thickness of 20 and 150 nm, respectively. |ܧ௭|ଶ is normalized to the 
maximum value. When the dispersion curve does not lie within the ENZ mode validity range, the field is not constant inside the layer. 

Because larger fields are expected in thinner films, our next objective is now to derive the dependence of the 
electric field on the thickness of the film. We first compute the Poynting vector along the x direction 
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It is possible to show that ( ) 0Im 2 =ε  for the complex frequency of the mode, so that ( ) ( ) ( )2
*
2

* ReReRe εωεω = , 

with
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Now, due to the fact that the ENZ mode exhibits constant zE , we integrate along the z axis to obtain  
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The electric field is normalized in such a way that the mode carries 1 Watt of power per meter of wavefront, i.e. 

W/m1S =∫
z

x  [25]. This leads then to 2
0

2 4
d

E
P

z ωε
≈ , or 

d
Ez

1∝ . This linear dependence with 
d
1  is shown in 

Fig. 5(a) where the magnitude of the z-component of the electric field (blue crosses) is computed at the center of the 
slab as a function of thickness. Figure 5(b) represents the magnitude of the z-component of the electric field versus 
the spatial variable z for different thicknesses d. As predicted, we observe a field increase of 10 times when 
comparing the 2 nm case to the 20 nm one. The linear dependence mentioned above can also be inferred by the 
results shown in [26]. 

 
Fig. 5. (a). The magnitude of the z-component of the electric field dependence on the inverse of the layer thickness, calculated at the center of the 
slab as detailed in the inset and computed at k// = 2ωP / c . The black line represents a linear fit of the crosses. (b) Magnitude of the z-component 
of the electric field versus the spatial variable z for various slab thicknesses. The lower the thickness is, the larger the field generated within the 
slab. In both figures, the electric field is normalized to the value exhibited for a thickness d = 20 nm. 

Up to now, we have analyzed Drude layers in free space. If we were to assume the surrounding media to be 

dielectrics with permittivities 31 εε = , and still assuming ( )
γωω

ωωε
i
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2 1 , it is easy to demonstrate that the 

approximate ENZ mode dispersion would become ω ≈ ωP 1− ε1k//d
4

⎡
⎣⎢

⎤
⎦⎥
− i γ

2
. We aim to show now that this result can 

be generalized if the thin layer permittivity does not follow a Drude model. For this reason, let us consider the 
structure studied in [8]. The thin film is a now a glass layer, which can support an ENZ mode close to the 
longitudinal phonon frequency. The layer is deposited on a gold substrate and the upper medium is free space. All 
the material parameters are provided in [8] ( μm8=Pλ ). In the ENZ mode regime, the dispersion relation remains 
linear (not shown here, see [8]). The dispersion slope Δ Re ω( ) / Δk//  is reported in Fig. 6 versus thickness d. It is 
seen that this slope has a linear dependence on d, suggesting that the properties analyzed earlier can be generalized 
to any structure supporting an ENZ mode. More generally, Fig. 6 suggests that the ENZ mode dispersion relation 

can always be written as ω ≈ ωP 1−α × k//d[ ] − i γ
2

, with α  being a coefficient that depends on the permittivities of 

the semi-infinite media 1 and 3. 
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Fig. 6. Slope of the ENZ mode dispersion versus d computed for different thicknesses d for the structure in the inset.  

From a practical point of view, these findings allow us to give some rule of thumb on material systems that 
can support ENZ modes. We map in Fig. 7 the ENZ wavelength (zero crossing of the permittivity, obtained for 
example in plasmonic or films supporting optical phonons) Pλ  versus thin layer thickness d for some (non-
exhaustive) material systems, and overlap colored boxes for each material system representing the experimentally 
achievable thickness. Thicker films are possible, but for example there are experimental lower bounds to the 
thickness of metals where they can still maintain good properties. The red dashed line depicts the thickness 
threshold, under which the ENZ mode can exist. From this figure, we conclude that the ENZ modes can be 
observed mainly in oxides, doped semiconductors, and polar materials, but not in metals, due to the combination of 
values of plasma wavelength and experimentally achievable thicknesses.  

 
Fig. 7. Classification of some (non-exhaustive) material systems that may support ENZ modes, obtained by mapping the plasma wavelength λP  
versus thin layer thickness d. The color boxes for each material system extend horizontally and to the left to the minimum experimentally 
achievable thickness. The red dashed line defines the relation λP = 50d , which represents a boundary to determine if the structure supports an 
ENZ mode (left area).     

The so-called ENZ mode has been discovered and used in pioneering papers [8,16,27]. Although the main 
features of this mode – almost-flat dispersion relation and large electric field in the thin layer – were briefly 
described, a complete study of this mode, including its domain of existence in for a general layered structure, was 
still missing. To the best of our knowledge, we have reported in this paper the first thorough description of this 
promising mode. In the simple case of a thin Drude nanolayer surrounded by free space, we have demonstrated that 
the ENZ mode is definitely a part of a long-range surface wave mode, which is characterized by a very large and 
almost constant electric field in the film. The electric field is inversely proportional to the thickness of the film. We 
have derived a useful form of the dispersion relation for this mode, leading to a simple definition of the 
frequency/wavevector range in which this mode can exist. This has allowed us to determine the range of thicknesses 
for which a film can support such a mode, and has provided us with a rule of thumb to understand which material 
systems can support an ENZ mode. We have further shown that the behaviors given by this very simple case are 
rather robust, since we can find the same behaviors in very different geometries and for different materials. This 
paves the way to very interesting possibilities, particularly in semiconductors, in which such ultrathin layers can be 
easily fabricated, and opens up possibilities in many applications, such as directional perfect absorption [19,28,29], 
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ultrafast voltage-tunable strong coupling with metamaterials [27], electro-optical modulation [30], and ultrafast 
thermal emission [16,31]. 
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