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Abstract 

     The lattice thermal conductivities (κ) of binary compound materials are examined as a 

function of hydrostatic pressure, P, using a first-principles approach.  Compounds with relatively 

small mass ratios, such as MgO, show an increase in κ with P, consistent with measurements.  

Conversely, compounds with large mass ratios that create significant frequency gaps between 

acoustic and optic phonons (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing κ with increasing P, 

a behavior that cannot be understood using simple theories of κ. This anomalous P dependence 

of κ arises from the fundamentally different nature of the intrinsic scattering processes for heat-

carrying acoustic phonons in large mass ratio compounds compared to those with small mass 

ratios.  This work demonstrates the power of first principles methods for thermal properties and 

advances a new paradigm for understanding thermal transport in non-metals.   
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Introduction— Pressure dependence gives important insight into the understanding of a range of 

key materials properties.  In 1924, Bridgman published the first measurements of thermal 

conductivities, κ, of several non-metallic solids as a function of compressive hydrostatic 

pressure, P [1]. κ for these compounds increased with P from that at ambient pressure (i.e., P=0).  

Since then, measurements of the pressure dependence of κ have been made in numerous non-

metals including alkali halides [2-4], CuCl [5], ice [6, 7], and those residing in the earth’s 

interior, such as MgO [8, 9].  In all systems not approaching a pressure-induced phase transition 

(PIPT) [10], κ was found to increase with P, suggesting that this is a universal feature. 

     Explanations of the pressure dependence of κ in non-metallic crystalline materials have 

typically relied on the theory of Liebfried and Schlömann (LS) [11], which predicts that κ must 

increase with P [12], i.e., dκ/dP>0.  However, LS gives an empirical description of κ that relies 

on a number of approximations, which leads one to ask:  Is dκ/dP>0 really a universal property 

of materials, or are there materials for which dκ/dP<0?  What are the underlying physical 

properties that govern dκ/dP? 

     To address these questions, we have implemented first principles calculations of pressure 

dependent phonon thermal transport in a large range of materials.  We show that for a class of 

materials κ decreases with P, i.e., dκ/dP<0, a behavior not previously observed or thought 

possible for materials far from a PIPT.  In binary compounds, this anomalous behavior occurs 

when the mass ratio of the atoms is large enough to eliminate most of the intrinsic scattering of 

the heat-carrying acoustic phonons by optic phonons. 

First principles thermal transport—Intrinsic thermal resistance in non-metals arises from the 

anharmonicity of the interatomic potential, which causes interactions between phonons [13].  For 

the cubic systems examined here, the thermal conductivity is a scalar: 
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where the sum is over phonon modes ),( jq=λ  with q the phonon wave vector and j the phonon 

polarization, λω  is the phonon frequency, VTnC /)/( 0 ∂∂= λλλ ωh  is the mode specific heat at 

constant volume, )1)//(exp(10 −= Tkn Bλλ ωh is the Bose distribution, V is the crystal volume, λv  is 

the group velocity, and λτ  is the phonon transport lifetime obtained from the non-equilibrium 

phonon distribution, 10
λλλ nnn +=  [14, 15]. 

     The first principles approach for determining κ has been described previously [16-29], 

including examination of κ as a function of P [27-29].  This approach has no adjustable 

parameters and has demonstrated very good agreement with measured κ for a variety of systems, 

which has validated its predictive capability.  The present approach uses a full, iterative solution 

of the Peierls-Boltzmann equation for 1
λn . The only inputs are harmonic and anharmonic 

interatomic force constants (IFCs).  The harmonic IFCs were calculated within density functional 

perturbation theory [30] using the Quantum Espresso package [31, 32].  Calculations used the 

local density approximation and norm-conserving pseudopotentials for the core electrons.  

Typically, an 80-100 Ryd plane-wave energy cutoff was used with 6x6x6 k-point meshes for the 

electronic structure and phonon integrations.  Anharmonic IFCs were calculated within density 

functional theory [33, 34] using 80-100 Ryd plane-wave energy cutoffs and gamma point 

calculations in 216 atom supercells with interactions from 3rd or 5th nearest neighbors of the 

unit cell atoms.  Further details are in Ref. 21.  The harmonic IFCs give the phonon frequencies, 

velocities and specific heat.  Anharmonic IFCs are required for the three-phonon scattering rates.  

We take κ to be limited by only intrinsic three-phonon scattering [35].  The ground state is 

determined by adjusting the lattice constant, a, to minimize the total energy.  For each system, 
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we decrease a from this value to get a hydrostatic pressure [31], at which we calculate the 

harmonic and anharmonic IFCs. 

Results—We have calculated the pressure dependence of κ for a large number of elemental, III-V 

and II-VI cubic compounds.  We have chosen cubic materials in part because the isotropy of κ 

gives simpler and more intuitive changes in κ with P.  Here, we provide illustrative results for:  

MgO, GaAs, SiC, BN, BP, BSb, BAs, BeTe, and BeSe, a set of compounds with widely varying 

mass ratios (see Table I).  The last four have much larger mass ratios of constituent atoms than 

do the first five.  This gives qualitatively different pressure dependences of κ.  We note that for 

the materials considered here pressures are far less than those at which measured or calculated 

phase transitions occur, e.g., BAs (125 GPa) [38], BeSe (56 GPa) [39], BeTe (35 GPa) [39], and 

BSb P=56 GPa [40].  For several compounds we examined—CuCl, Si, Ge, AlSb, InAs and 

InSb—calculated TA frequencies soften significantly with small applied P, indicating an 

approach to a PIPT.  We did not include these materials here since the focus of the present paper 

is identifying and explaining novel thermal transport behavior for which conventional theory 

fails both qualitatively and quantitatively in predicting κ(P). 

     Figure 1 shows the phonon dispersions for cubic MgO, an important constituent of the earth’s 

lower mantle whose P dependent κ has attracted wide attention [8, 9, 27]. The calculated phonon 

frequencies for both P=0 and P>0 agree well with measurements reflecting the accuracy of our 

harmonic IFCs.  Note that increasing P increases phonon frequencies. 

     The left panel in Fig. 2 gives the calculated and measured [9] κ for MgO as a function of P at 

T=300K.  Inclusion of phonon scattering by isotopes, impurities and sample boundaries [44, 45] 

gives reasonable agreement with the measured κ and confirms dκ/dP>0.  Calculated κ/κ0 versus 

P for BSb, BAs, BeTe and BeSe are shown in the right panel.  Values for κ0, the isotopically 
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pure κ at P=0, are given in Table I.  Although the changes in the phonon dispersions of these 

large mass ratio compounds with P are similar to those in MgO (see Fig. S1 in Ref. 46), κ 

decreases with P, opposite to the expected behavior.  Table I illustrates this distinction between 

the small and large mass ratio compounds for a number of materials.  Note that, in contrast to the 

ab initio results, the LS theory (discussed below) gives dκ/dP>0 for all materials.  We explain 

the different behaviors in terms of the fundamentally different scattering processes that govern κ 

in these systems. 

     Eq. 1 shows that κ(P) can be expressed in terms of two features: changes in specific heat and 

phonon velocities ( 2
λλvC ), and changes in phonon lifetimes ( λτ ).  For the large range of materials 

examined here, the change in κ with P is governed primarily by changes in phonon lifetimes. 

Thus, in order for κ to decrease with increasing P, phonon lifetimes must decrease. 

     To understand how λτ  changes with P, we group three-phonon scattering processes according 

to the number of participating acoustic (a) and optic (o) phonons.  While heat is carried primarily 

by acoustic phonons, their scattering by optic phonons contributes significantly to thermal 

resistance.  Typically, two intrinsic three-phonon scattering processes dominate:  aaa ↔+  

(aaa) and oaa ↔+  (aao) (see Fig. S2 in Ref. 46).  For materials with large LO-TO splitting, 

aoo processes can also give non-negligible contributions at low frequency.  However, for the 

materials considered here, the behavior of κ is still dominated by aaa and aao processes.  

Changes in λτ  can be understood from the aaa and aao contributions to the phonon-phonon 

scattering rates and their P dependence.  A key factor is the size of the frequency gap between 

acoustic and optic phonon branches (a-o gap).  For small a-o gap materials, such as MgO, both 

aaa and aao processes play significant roles in limiting κ.  With increasing P, aao scattering 

rates typically decrease (see Fig. S3 in Ref. 46) because the upward shift of the optic modes 
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gives decreased optic phonon populations and decreased phase space of aao processes, defined 

below.  This reduction dominates the change in κ giving dκ/dP>0 (see Table I) around room 

temperature, in qualitative agreement with measured data [2-4, 6-10].  It is interesting that the 

value (dκ/dP)/κ0=0.009 GPa-1 given in Table I for BN (also obtained independently from the 

ShengBTE code [47]) is significantly larger than that given in Ref. 29, which gives (dκ/dP)/κ0= 

0.003 GPa-1 for P<114 GPa.  Further, our calculations give a roughly linear dependence of κ 

with P up to P=300 GPa, unlike that in Ref. 29. The anharmonic IFCs calculated in the present 

work simultaneously satisfy point-group and derivative permutation symmetries and translational 

invariance conditions. This was not the case for anharmonic IFCs used in Ref. 29 and resulted in 

low-frequency scattering rates that were too large, which then gave suppressed and bimodal 

behavior of κ (P) for BN (see Fig. 1b of  Ref. 29) compared to the larger κ(P) values and linear 

trend for BN obtained by us. 

     In contrast to κ(P) for the small mass ratio materials, the κ for BSb, BAs, BeTe and BeSe 

decrease with P.  To understand this behavior, note that the size of the a-o gap is controlled in 

part by the mass ratio, mheavy/mlight, of the atoms.  As mheavy/mlight increases from one (the smallest 

possible value) the a-o gap increases.  For sufficiently large mheavy/mlight, the a-o gap becomes so 

large that aao processes are no longer possible because phonon energy and momentum cannot be 

conserved.  This aao freeze-out condition occurs roughly when the a-o gap exceeds the 

maximum acoustic phonon frequency, which is satisfied for the large mass ratio compounds in 

Fig. 2 (see Table I).  In such cases, λτ  and κ depend on aaa scattering.  Acoustic phonon 

branches are typically bunched together in large mass ratio compounds. In these, TA and LA 

branches separate with increasing P giving increased aaa phase space and phonon-phonon 
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scattering rates (see Figs. S1 and S4 in Ref. 46).  The resulting smaller acoustic phonon lifetimes 

prevail against the increased acoustic velocities giving decreasing κ with P. 

     Consider how κ and dκ/dP vary as the size of the a-o gap is increased [48].  Figure 3 shows 

the calculated κ at 300K for P=0 and for P=16 GPa of a hypothetical crystal in which BAs IFCs 

are retained but m2/m1 is varied keeping the unit cell mass fixed:  m1+m2=mB+mAs=85.73 amu.  

This changes the phonon frequencies and the size of the a-o gap.  For m2/m1=1, the a-o gap is 

zero, so both aao and aaa scattering rates are strong giving much reduced κ compared to the 

actual BAs compound.  Then increasing P increases κ since the reduction in aao scattering rates 

with P has a larger effect than the increase in aaa scattering rates.  As m2/m1 increases, zone 

boundary LA frequencies decrease while optic frequencies increase.  This widens the a-o gap 

causing the aao scattering rates to decrease and κ to increase.  Also, increasing m2/m1 pushes the 

LA and TA branches together, which decreases the phase space for aaa scattering.  There is a 

cross-over in the P=0 and P=16GPa curves at m2/m1≈5.  For m2/m1<5, κ increases with P, i.e., 

dκ/dP>0, while for m2/m1>5 dκ/dP<0.  This reflects the transition between the region where aao 

scattering dominates (m2/m1<5) and that where aaa scattering dominates (m2/m1>5).  We note 

that the large mass ratio compounds considered have strong chemical bonds and reasonably 

small LO-TO splittings.  Compounds with weak bonds and/or large LO-TO splittings would 

require correspondingly larger mass ratios to achieve the freeze-out condition. 

     The above behavior can be understood qualitatively by examining the three-phonon scattering 

phase space [49]: 

       ∑
′

′′′−′′′′′+′′
−

′′′ −−+−+∝
qq

K)q(qqqK)q(qqq ))(
2
1)((3
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which is constrained by the energy and momentum conservation conditions: jjj ′′′′′′ =± qqq ωωω   

and Kqqq +′′=′±  where K is a reciprocal lattice vector.  For small mass ratio, the aao processes 

contribute significantly to ph
aao

−3ϕ , and these combined with the aaa processes give a large phase 

space for three-phonon scattering (see Fig 3 inset).  With increasing m2/m1 the aao and, to a 

lesser extent, the aaa phase spaces decrease contributing to the increase in κ seen in Fig. 3.  

Beyond the aao freeze-out condition, only aaa scattering occurs giving a phase space that 

weakly decreases with increasing mass ratio. Table I shows that the aao phase space typically 

decreases with increasing P while the aaa phase space typically increases with increasing P (see 

Figs. S3 and S4 in Ref. 46). 

     Why does the LS theory not capture the decrease in κ with P?  It gives [7, 11]:  

)/(κ 233/1 TAV D γω= , where A is a constant, ωD is the acoustic Debye frequency and γ  is a mode-

averaged Grüneisen parameter [46].  Upon compression, V decreases, while ωD increases as 

phonons are shifted to higher frequencies, and γ  decreases because of the stiffening of the 

interatomic potential.  The decrease in V is more than compensated by the increase from 23 / γωD

giving an increased κ.  Phonon-phonon scattering rates are affected by anharmonicity and by the 

scattering phase space.  The LS theory represents the anharmonicity through γ .  However, it 

does not capture the details of the three-phonon phase space.  This phase space and its changes 

with P can be highly variable across materials.  With increasing P the energy-momentum 

conserving surfaces for aaa processes become larger. On the other hand, for aao processes, the 

a-o gap increases more rapidly than the maximum acoustic frequency, which typically decreases 

the aao phase space.  Such changes are not accounted for in LS theory. For small a-o gap 
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materials, they contribute to give dκ/dP>0, consistent with LS theory.  For large a-o gap 

materials, they contribute to give dκ/dP<0, contrary to LS theory. 

Summary—The pressure (P) dependence of the lattice thermal conductivities, κ, of a large 

number of cubic binary compounds has been studied using an ab initio theory of thermal 

transport.  For compounds with similar masses, κ increases with P because anharmonic three-

phonon scattering involving two acoustic phonons and one optic phonon (aao processes) gets 

weaker.  This increase is consistent with previous measurements and with simple theory.  In 

contrast, for large mass ratio compounds having a large frequency gap between acoustic and 

optic phonons, aao processes do not occur.  Then scattering between acoustic phonons limits κ, 

which decreases with P due to increased scattering phase space.  Such behavior is not predicted 

by the simple theory [11] commonly used to analyze κ(P), and it has not been observed 

previously in crystals far from a pressure-induced phase transition.  These results demonstrate 

the power of ab initio methods for elucidating the underlying physics of thermal transport and 

motivate the growth of new classes of materials with large mass ratios. 
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Table I Caption 

Calculated values for κ0, the mass ratio, the a-o gap (scaled by the largest acoustic frequency), 

(dκ/dP)/κ0, comparing ab initio values with those from LS theory for several materials at 

T=300K [37].  The ph
aaa

−3ϕ  and ph
aao

−3ϕ  are the three-phonon scattering phase spaces (Eq. 2).  The up 

and down arrows indicate increases or decreases with P.  Bold red arrows give the type of 

scattering processes (aaa or aao) that dominate the behavior of κ with P. 
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 κ0 
(Wm-1K-1) 

mass 
ratio 

scaled a-o 
gap 

(dκ/dP)/κ0  
ab initio 

(GPa-1×100) 

(dκ/dP)/κ0 
LS  

(GPa-1×100) 
ph

aaa
−3ϕ  ph

aao
−3ϕ  

MgO 72.45 1.52 0 5.8 3.5 ↑ ↓ 
BN 2157 1.30 0 0.9 2.9 ↑ ↑ 

GaAs 55.4 1.07 0.09 3.9 19 ↓ ⎯ 
SiC 572.0 2.34 0.19 2.1 3.6 ↑ ↓ 
BP 554.1 2.87 0.36 4.1 4.9 ↑ ↓ 

BAs 3239 6.93 0.97 -1.9 4.4 ↑ N/A 
BeSe 621.6 8.76 1.08 -1.6 9.0 ↑ N/A 
BSb 1087 11.26 1.42 -2.4 5.9 ↑ N/A 
BeTe 367.6 14.16 1.68 -2.8 15 ↑ N/A 

 

 

Table I  
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Figure Captions 

 

Figure 1:  Calculated phonon dispersions for MgO at P=0 (solid black curves) and P=35GPa, 

(dashed red curves).  Black circles give measured data from Refs. 41 and 42, and red circles give 

measured data from Ref. 43.  Note the upward frequency shifts of phonons with P. 

Figure 2:  Left panel:  Calculated κ (dashed red line) and that including isotopes, impurities and 

sample boundaries (solid red line), along with measured thermal conductivity (red circles) versus 

P for MgO [9].  Right panel: κ/κ0 for BSb (dotted black), BAs (solid orange), BeTe (dashed 

green) and BeSe (short dashed blue).  BeSe has a relatively large contribution to the three-

phonon scattering phase space from processes involving one acoustic phonon and two optic 

phonons.  The decrease in this contribution as P increases from zero gives the initial increase in 

κ seen here in Fig. 2. 

Figure 3  Calculated κ versus mass ratio (m2/m1) for a hypothetical BAs material for which m1 

(light mass) and m2 (heavy mass) are varied, but m1+m2 stays fixed at m1+m2=mB+mAs.  Solid 

black and dashed red curves give κ using the BAs IFCs for P=0 and P=16 GPa, respectively.  

The square symbols on each curve give the calculated κ for the actual BAs mass ratio, mAs/mB=7, 

which occurs near the freeze-out condition, 03 =− ph
aaoϕ .  The inset gives the phase space for aaa 

scattering, ph
aaa

−3ϕ , (red curve) and aao scattering, ph
aao

−3ϕ , (black curve) vs. m2/m1 for the 

hypothetical material for P=0. 
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