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The development of numerical methods capable of simulating realistic materials with strongly
correlated electrons, with controllable errors, is a central challenge in quantum many-body physics.
Here we describe a framework for a general multi-scale method based on embedding a self-energy of
a strongly correlated subsystem into a self-energy generated by a method able to treat large weakly
correlated systems approximately. As an example, we present the embedding of an exact diagonal-
ization self-energy into a self-energy generated from self-consistent second order perturbation theory.
Using a quantum impurity model, generated from a cluster dynamical mean field approximation to
the 2D Hubbard model, as a benchmark, we illustrate that our method allows us to obtain accurate
results at a fraction of the cost of typical Monte Carlo calculations. We test the method in multiple
regimes of interaction strengths and doping of the model. The general embedding framework we
present avoids difficulties such as double counting corrections, frequency dependent interactions, or
vertex functions. As it is solely formulated at the level of the single-particle Green’s function, it
provides a promising route for the simulation of realistic materials that are currently difficult to
study with other methods.

PACS numbers: 71.15.-m, 71.20.-b, 71.30.+h,71.10.Fd

I. INTRODUCTION AND GENERAL
FRAMEWORK

The theoretical description of strongly correlated ma-
terials has proven to be challenging, mainly because
many of their interesting properties are caused by the
interplay of subtle electronic correlation effects on low en-
ergy scales. Since simultaneous treatment of both strong
and weak correlations is of major importance for the
quantitative description of these systems, two main con-
ceptual approaches are used: the reduction to a few ‘rel-
evant’ degrees of freedom or essential orbitals around the
Fermi level and the subsequent construction of a model
system or, alternatively, the treatment of the entire sys-
tem using methods which significantly approximate cor-
relation effects.

The first approach, with methods including exact di-
agonalization (ED)1–4 and its variants,5,6 density ma-
trix renormalization group (DMRG),7 dynamical mean
field theory (DMFT)8,9 and lattice quantum Monte Carlo
(QMC)10 applied to model Hamiltonians, can yield very
precise results for model systems. When applied to real-
istic systems, its main uncertainties and possible sources
of errors lie in the construction of the parameters of the
effective model.

The second approach, which includes implementations
of the density functional theory (DFT),11,12 Hartree
Fock (HF), GW,13 the random phase approximation
(RPA),14 Møller-Plesset second order perturbation the-
ory (MP2),15 GF216,17 or QMC,18 avoids constructing an
effective model by treating the full Hamiltonian with all
orbitals and interactions, but relies on potentially severe
approximations to the electronic correlations.

Multi-scale methods for extended systems combining
the best aspects of both approaches, e.g. by solving the
system using DFT or GW and using the result to con-

struct a model system, have been implemented as the
GW+DMFT19–32 and DFT+DMFT22,23 method.

Constructing a robust multi-scale method is a
formidable problem and an active field of research. First,
different energy scales have to be defined and a set of
strongly correlated orbitals requiring a higher level treat-
ment has to be chosen. Second, the non-local Coulomb
interactions present in realistic materials have to be in-
cluded by a suitable choice of ‘screened’ interactions.
Third, correlations in the weakly correlated orbitals
should not be completely neglected but rather be treated
perturbatively, if a quantitative material-dependent de-
scription is desired.

In this paper, we present a general framework for a
multi-scale algorithm in which a self-energy describing
strongly correlated orbitals is self-consistently embedded
into the a self-energy obtained from a method able to
treat long-range interaction and correlation effects. We
call this general framework ‘self-energy embedding the-
ory’ (SEET). A mathematically rigorous procedure for
identifying the strongly correlated orbitals and system-
atically increasing the accuracy of the treatment of the
weakly correlated orbitals is an integral part of our proce-
dure. The strongly and the weakly correlated subspaces
are treated using different methods. As an example, we
will choose exact diagonalization (ED) to yield the self-
energy for the strongly correlated orbitals and the self-
consistent second order Green’s function method (GF2)16

for the weakly correlated part, and call the resulting al-
gorithm SEET(ED-in-GF2). However,we note that our
scheme is general and independent of the algorithms used
to treat the weakly and strongly treated subspaces: ED
could be replaced by, e.g., CT-QMC, while GF2 could be
replaced with FLEX, GW, or the Parquet method.

Here we illustrate SEET(ED-in-GF2) and calibrate
it using impurity problems, since a method capable of
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treating multi-scale problems such as realistic materials
should also yield accurate results for model systems. Im-
purity problems have a continuous dispersion but only a
finite number of interaction terms. Nevertheless, they ex-
hibit strongly and weakly correlated regimes and a num-
ber of phases and phase transitions that are very well
understood and for which numerically exact comparison
algorithms exist.33 The restriction to these models allows
us to provide stringent tests on the accuracy of SEET in a
well controlled test environment. In the future, we aim to
apply SEET to realistic materials, where it has the poten-
tial to become a method complementary to GW+DMFT
or DFT+DMFT.

In order to generate a wide range of correlated phases,
we generate our impurity parameters from a four-site dy-
namical cluster approximation (DCA)9,34 to the 2D Hub-
bard model, i.e. test our method as a ‘DCA impurity
solver’, so that our results can be compared against nu-
merically exact continuous time CT-QMC data.35,36 We
emphasize that while we have developed a numerically
efficient impurity solver, we do not envisage this as the
main use of SEET, and we mainly resort to impurity
models for the sake of generating comparisons to reliable
known results.

SEET in the ED-in-GF2 variant is computationally af-
fordable, as GF2 scales as O(N5), where N is the number
of orbitals in a unit cell. Additionally, SEET is amenable
to parallelization on large machines. The scaling of GF2
can further be reduced to O(N4) by employing density
fitted integrals,16 and the strongly correlated orbitals can
be treated by ED as pairs, further reducing the numer-
ical cost. Consequently, large systems containing many
unit cells or k-points containing multiple orbitals can be
treated simultaneously, providing non-local effects and
momentum dependence.

In Section II, we introduce SEET(ED-in-GF2). Sec. III
shows results for our test model, and Sec. IV contains
conclusions of our work.

II. THE SEET(ED-IN-GF2) METHOD APPLIED
TO AN IMPURITY MODEL

We consider an impurity problem with N impurity or-
bitals ai coupled to an infinitely many bath orbitals cµ
described by a general Hamiltonian

Ĥ =
∑

ij

tija
†
iaj +

∑

ijkl

Uijkla
†
ia
†
jalak+

+
∑

iλ

Viλa
†
i cλ +

∑

λ

ελc
†
λcλ + h.c.,

(1)

where t and U are material specific one- and two-body
operators, V is the hybridization strength, and ελ is the c-
electron dispersion. The single-particle properties of this
Hamiltonian are described by a non-interacting Matsub-
ara Green’s function for a-electrons

G0(iω) = [iω + µ− t− ∆(iω)]−1, (2)

with ∆(iω) encapsulating the properties of the c-
electrons and µ being the chemical potential. In
SEET(ED-in-GF2), we obtain the interacting Green’s
function GGF2 of this N -orbital impurity problem it-
eratively, starting from GGF2 = G0, by self-consistent
second order perturbation theory (GF2),16,17

[ΣGF2(τ)]ij = −
∑

klmnpq

[GGF2(τ)]kl[G
GF2(τ)]mn×

×[GGF2(−τ)]pqUiqmk
(
2Ulnpj − Unlpj

) (3)

and the corresponding GF2 Green’s function

GGF2(iω) =
[
[GGF2

0 (iω)]−1 − ΣGF2(iω)
]−1

. (4)

Note that GF2 can be solved self-consistently and in-
cludes an exchange diagram important for describing sys-
tems with a localized electronic density, but does not in-
clude higher order RPA-like diagrams that are present,
e.g., in GW. We then evaluate the one-body density
matrix using the converged GF2 Green’s function and
choose a set of n < N orbitals corresponding to eigenval-
ues of the one-body density matrix which are significantly
different from 0 or 2. These n orbitals, which we will call
‘strongly correlated’, are used to build an n-orbital im-
purity problem which is then solved with a method more
accurate than GF2 to compute a self-energy. Here, we
use ED37 to solve this impurity problem. The resulting
ED self-energy is used to modify the GF2 self-energy and
to obtain the total self-energy in the natural orbital basis
as

[Σ]ij = [ΣEDstrong]µν + [ΣGF2]ij − [ΣGF2
strong]µν . (5)

The indices i and j run over all N orbitals, while µ and
ν run only over the n strongly correlated orbitals. The
total self-energy is schematically illustrated in Fig. 1.

As the n correlated orbitals are chosen in the eigenbasis
of the one-body density matrix, a transformation of the
one-body and two-body integrals in this n-orbital sub-
space to the eigenbasis is necessary. Note, that even for
cases where model Hamiltonians with simplified (e.g. lo-
cal or density-density) interaction structures are studied,
this transformation generates general interactions Uijkl.
This n-orbital impurity problem with non-local interac-
tion Uijkl is then treated by the ED solver requiring an
additional bath discretization step which may introduce
fitting errors. We emphasize that these are small for the
cases studied here and that, in principle, any solver suit-
able to describe strong correlations and able to treat gen-
eral multi-orbital interactions can be employed, includ-
ing QMC solvers based on the hybridization expansion38

which do not require a bath discretization step.
The ED-in-GF2 procedure is iterated, and the GF2

calculation updates [ΣGF2]ij for the N orbitals since
i, j = 1, . . . , N where

[ΣGF2
weak]µν = [ΣGF2]µν − [ΣGF2

strong]µν (6)
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FIG. 1. The total self-energy in natural orbital basis produced
in the SEET with ED-in-GF2 scheme.

is responsible for removal of diagrams later included at
the ED level. Subsequent ED calculation updates the
strongly part of self-energy [ΣEDstrong]µν . The iterative up-
dates stop when the total self-energy in Eq. 5 is converged
to a predefined accuracy. We present a detailed algorith-
mic description of this framework in the supplementary
material.

The algorithm, both in its general form and in the ED-
in-GF2 variant, is based on a diagrammatic formulation
in which a ‘double counting’39 problem does not appear.
The single-particle formulation avoids vertex functions,
which are often difficult to handle, and is based on static
(or frequency-independent) interactions.40–42

III. RESULTS

We calibrate SEET(ED-in-GF2) for the 2 × 2 dynam-
ical cluster approximation (DCA) to the 2D Hubbard
model,9,34 and consequently the Hamiltonian from Eq. 1
is defined for t describing nearest neighbor hopping only
and U exclusively on-site interactions. DCA provides the
non-interacting Green’s function (in Eq. 2) which is then
employed to obtain the GF2 self-energy from Eq. 3. Sub-
sequently, we construct the one-body density matrix and
choose a pair of two-site impurities to be treated by ED.
The occupations of the four site cluster in natural or-
bitals are 2-x, 1, 1, x, where for most regimes x is not
a small number, thus the orbitals with occupations 2-x,
and x are not any longer weakly correlated. This moti-
vates us to choose two separate impurity problems with
orbitals occupied as (1,1) and (2-x,x) and treat them as
a pair of two-site impurities embedded into the GF2 de-
scription. This means that only the interactions between
these two-site impurities are treated at the GF2 level. A
schematic description of the DCA+ED-in-GF2 iterative
scheme is shown in Fig. 2. SEET allows us to treat mul-
tiple embedded impurities which is computationally ad-
vantageous since in realistic cases the number of strongly
correlated orbitals may be too large for current solvers
such as ED or the hybridization expansion.

Testing ED-in-GF2 using SEET on the DCA approxi-
mation to the 2D Hubbard model provides a worst case
scenario for a multi-scale embedding scheme, since in
multiple regimes the 4-site cluster does not display a sep-
aration of energy scales or any ‘weakly’ and ‘strongly’
correlated orbitals as typically found in realistic mate-
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FIG. 2. Schematic view of the DCA+ED-in-GF2 procedure
used for treating the 4-site cluster DCA approximation to the
2D Hubbard model. Note that ‘strong’ denotes quantities in
the correlated subspace, and ‘weak’ quantities defined on the
entire system.
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FIG. 3. The imaginary part of the on-site CT-QMC, GF2 and
ED-in-GF2 self-energy obtained for a 4-site cluster of the half-
filled 2D Hubbard model for various regimes with β = 10t.

rials. Rather, in the Mott regime of the 2D Hubbard
model, all orbitals are strongly correlated, providing a
stringent test of the SEET with ED-in-GF2 method.

In Fig. 3, the imaginary part of the self-energy is
plotted for the half-filled case. For weak coupling, i.e.
U/t < 4, GF2 recovers the QMC results well. While for
U/t = 3 ED-in-GF2 corrects the GF2 result only slightly,
for U/t = 4, the improvement is more substantial. In
this case, the ED-in-GF2 recovers QMC results and is a
quantitative correction to the qualitatively correct GF2
curve.
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FIG. 4. The imaginary part of the on-site CT-QMC, GF2
and ED-in-GF2 Matsubara Green’s function obtained for a
4-site cluster of the 2D Hubbard model at 10% doping, for
U/t = 3, 4, 5, and 6 with β = 10t.

As expected, in the Mott regime, U/t = 6 and 8, GF2
fails to recover the self-energy even qualitatively. Note
that an IPT-like fitting of the large-U limit to the atomic
limit would be possible for this particular example but
not in general, as it requires the determination of the
local physics at exponential (in n) cost. In the Mott
regime, ED-in-GF2 recovers to a decent quantitative ac-
curacy the QMC self-energy for both U/t = 6 and 8.

In Figs. 4 and 5, we examine several interesting regimes
at 10% doping, where the system exhibits the behavior of
a strongly correlated Fermi liquid. In these cases, we re-
port real and imaginary parts of Green’s functions rather
than self-energies, since a slight difference in chemical po-
tentials between different methods results in a shift of the
Hartree term in the large-ω limit.

The imaginary part of Green’s function shows a good
quantitative agreement between CT-QMC and ED-in-
GF2 for multiple U/t regimes. The real part of Green’s
function shows more differences than the imaginary part.
In the weak coupling regime illustrated in Fig. 5, for
U/t = 3 and U/t = 4, all the QMC, GF2 and ED-in-GF2
real parts of Green’s functions are close. The U/t = 5
and U/t = 6 regimes are more correlated and GF2 yields
a qualitatively incorrect result. ED-in-GF2 corrects this
result and provides a quantitative agreement with CT-
QMC.

IV. CONCLUSIONS

We introduced a general self-energy embedding theory
(SEET) for correlated systems and performed a compari-
son of SEET(ED-in-GF2) on a strongly correlated system
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FIG. 5. The real part of the on-site CT-QMC, GF2 and ED-
in-GF2 Matsubara Green’s function obtained for a 4-site clus-
ter of the 2D Hubbard model at 10% doping, for U/t = 3, 4, 5,
and 6 with β = 10t.

for which the exact solution is known, the 4 site cluster
DCA approximation to the 2D Hubbard model. This
model has a continuous dispersion and shows a range
of correlated phases, thus providing us with a detailed
assessment of strengths and weaknesses of our method.
However, it does not illustrate the effect of non-local in-
teractions. Since in multiple regimes a clear separation
of energy scales is not present, this model provides a rig-
orous test for a multi-scale method. We were able to
show that ED-in-GF2 provides accurate results for the
4 site Hubbard model in the weakly correlated, interme-
diately correlated, and strongly correlated regimes, at
and away from half-filling. While the solution in the
strongly correlated embedded subset of orbitals has ex-
ponential scaling in our case, the total self-energy for
the strongly correlated orbitals can be assembled using
solutions of multiple small impurity problems. The cal-
culation of the properties of the weakly coupled orbitals
with GF2 scales asO(N5), making SEET(ED-in-GF2) an
ideal tool for the simulation of realistic materials. Exten-
sions using other diagrammatic or correlated methods,
such as SEET(QMC-in-GF2) or methods based on GW
are straightforward.

In real materials, the number of weakly correlated or-
bitals in the unit cell is significantly larger than the num-
ber of strongly correlated orbitals, thus providing an ideal
situation where many orbitals can be treated cheaply by
GF2 while the number of orbitals treated by ED remains
small. Moreover, the SEET(ED-in-GF2) hybrid is easy
to implement and, since it does not use frequency depen-
dent effective interactions, can be trivially extended to
employ different solvers for the strongly correlated part,
such as truncated CI variants with a suitably chosen ac-
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tive space or QMC hybridization expansions. Similarly,
the weakly correlated part can be treated by different lev-
els of perturbation theory or cheap truncated CI meth-
ods, instead of GF2. Our ED-in-GF2 method can be ad-
justed to yield more accurate results, either by increasing
the order of the perturbative treatment (e.g. by employ-
ing FLEX or GW), or by increasing the number of or-
bitals treated by ED. These limits therefore provide a rig-
orous assessment of the convergence of the self-energies.
Since a set of strongly correlated orbitals in SEET is cho-
sen based on a unique mathematical criterion,the method

has the potential for becoming a black box method for
realistic correlated materials calculations.
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