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We present an implementation of a continuous matrix product state for two-component fermions in
one dimension. We propose a construction of variational matrices with an efficient parameterization
that respects the translational symmetry of the problem (without being overly constraining) and
readily meets the regularity conditions that arise from removing the ultraviolet divergences in the
kinetic energy. We test the validity of our approach on an interacting spin-1/2 system and observe
that the ansatz correctly predicts the ground state magnetic properties for the attractive spin-1/2
Fermi gas, including the phase-oscillating pair correlation function in the partially polarized regime.

An exact description of an arbitrary many-body quan-
tum state can be a formidable task, as the number of
distinct states grows exponentially on the number of par-
ticles or system volume. Nevertheless, accurate approx-
imations of low-energy states are often feasible, as the
vast majority of the quantum states in the entire Hilbert
space need not be considered1. Among numerical treat-
ments of one-dimensional (1D) strongly correlated prob-
lems, the density matrix renormalization group (DMRG)
algorithm2 for lattice systems has been particularly no-
table for its optimal efficiency. Moreover, the DMRG
procedure is essentially equivalent to an optimization of
a matrix product state (MPS)3 — a natural and effec-
tive form of parameterization of variational states for sys-
tems with limited entanglement due to short-range inter-
actions.

Recently, a coherent-state extension of the MPS to
quantum fields in a 1D continuum (called cMPS)4–14 has
been pioneered, and it was successful in correctly predict-
ing the ground state energies4 and dispersion relations10

of interacting bosons. For fermionic systems, on the
other hand, the cMPS has been tested on a 1D relativis-
tic model related to quantum chromodynamics7, but its
success for non-relativistic fermions — which have a wide
range of applications in condensed matter, quantum in-
formation, as well as cold atom systems — has not been
demonstrated thus far. In particular, as recent experi-
mental techniques15 have enabled physical realization of
ultracold 1D Fermi gas systems16–19 with tunable inter-
action, particle density, and spin polarization, a cMPS
ansatz that can reliably investigate those systems would
be of significant interest.

This Rapid Communication extends the previous de-
velopments and proposes an implementation of a cMPS
ansatz for two-component fermions. Although some im-
portant insights on the structure of a fermionic ansatz
have been noted previously7–9, a subsequent work that
fully develops a more efficient and explicit scheme that
i) readily satisfies the regularity conditions for a finite
kinetic energy, as well as ii) being able to capture spon-
taneous translational symmetry breaking properties, is
much needed to advance the subject further. We shall
show that our cMPS ansatz is able to faithfully por-

tray the ground state magnetic properties of a spin-1/2
Fermi gas described by the Gaudin-Yang Hamiltonian20,
in agreement with the exact solutions obtained from
the thermodynamic Bethe ansatz21,22, including the dis-
tinct phases for the attractive system and spontaneous
translational-symmetry breaking properties such as inho-
mogeneous (oscillatory-phase) superconductivity in the
partially polarized regime.

A cMPS for spin-1/2 fermions (see Fig. 1), for a system
length of L and periodic boundary conditions, has the
general form7

|χ〉 = Traux[Pe
∫ L
0
dx[Q(x)⊗Î+

∑
σRσ(x)⊗ψ̂†σ(x)]] |Ω〉 , (1)

where Q(x), Rσ(x) ∈ CD×D and act on a D-dimensional
auxiliary space, D is called the bond dimension, σ is the
index for spins ↑ and ↓, Î is the identity operator on
the Fock-space, Traux is a trace over the auxiliary space,
Pexp is a path-ordered exponential, and |Ω〉 is the Fock-

FIG. 1. (color online) Artistic rendition of the cMPS in
Eq. (1), that when explicitly expanded, can alternatively
be understood as a superposition of position eigenstates,
each state having some fixed number of particles that ranges
from 1 to ∞. The probability amplitude for the particular
position eigenstate illustrated above for xi−1 = xi is given
by φ...↑↑↓↓...(..., xi−2, xi−1, xi, xi+1, ...) = Tr[...R↑(xi−2)
u(xi−2, xi−1)R↑(xi−1)R↓(xi)u(xi, xi+1)R↓(xi+1)...], where
u(x, y) = Pexp

[∫ y
x
dxQ(x)

]
can be viewed as a free propaga-

tor and Rσ(x) as a vertex that creates a particle of type σ at
position x9.
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space vacuum state. The Fock-space creation and annihi-
lation field operators obey the anticommutation relation

{ψ̂σ(x), ψ̂†σ′(x
′)} = δσσ′δ(x− x′).

In order to illustrate our implementation of the
cMPS ansatz, we shall consider the Gaudin-Yang
Hamiltonian20, where spin-1/2 fermions interact via a
contact potential and can be written as

HGY =

∫ L

0

dx
∑
σ=↑,↓

(
∂xψ̂

†
σ∂xψ̂σ − 2∆ψ̂†σψ̂

†
σ̄ψ̂σ̄ψ̂σ

)
,(2)

where σ̄ denotes the conjugate spin to σ, and the in-
teraction strength is ∆ < 0 and ∆ > 0 for repulsive
and attractive interactions, respectively. The exact wave
function for the two-particle spin-singlet sector of this
translationally invariant system with periodic boundary
conditions can be obtained using coordinate Bethe ansatz
as22

φs (x1, x2) = Ase
i
2 (k1+k2)(x1+x2)

×
(
e
i
2 (k2−k1)|x| + Sse

− i
2 (k2−k1)|x|

)
, (3)

where kj is the quasimomentum of the jth particle (obey-
ing the corresponding Bethe ansatz equation), x ≡ x2 −
x1, Ss = (k1 − k2 − 2i∆)

−1
(k1 − k2 + 2i∆), and As is

an overall amplitude. By constructing a cMPS with

Q(x) =
i

2
diag (q− − q+ k2 − k1 k1 − k2 q+ − q−) ,

R↑(x) =
eiq+x

2

(
σ+ 2I2
0 −σ+

)
, (4)

R↓(x) =
As(1 + S)eiq−x

4i sin[(k2 − k1)L/2]

(
σ− 0
−2I2 −σ−

)
,

where Id is a d × d identity matrix, σ± = σx ± iσy with
Pauli matrices σx,y,z, and q± = (k1 + k2) /2±nπ/L with
n ∈ Z (its parity a function of k2 − k1), we recover the
exact wave function in Eq. (3) after projecting the cMPS
onto the two-particle sector.

We remark the phase modulation present on the Rσ
matrices in Eq. (4), while the Hamiltonian is transla-
tionally invariant, is reminiscent of the general result for
Bloch (or Floquet) states. In fact, it can be shown that
eiqσx is the most general form of modulation on other-
wise (spatially) constant Rσ matrices that preserves the
continuous translational symmetry of the system. Based
on this insight, we depart from the extended practice
of taking both Q(x) and Rσ(x) to be independent of
coordinates, the so called uniform ansatz or uMPS23,
and propose a phase modulation on Rσ(x). Henceforth,
Q(x) = Q and Rσ(x) = Rσe

iqσx, where Q and Rσ are
D × D matrices that are independent of position, and
qσ are real variational parameters, unconstrained in the
thermodynamic limit. We note that despite this modu-
lation of Rσ, T (x) ≡ Q(x) ⊗ I + I ⊗ Q̄(x) + R↑(x) ⊗
R̄↑(x) +R↓(x) ⊗ R̄↓(x) ≡ T remains translationally in-
variant (the bars denote complex conjugation of matrix

entries). Some of the correlators and observables that we
will use below are〈
ψ̂†σ′(x+ δx)ψ̂σ(x)

〉
= Tr[eT (L−δx)(Rσ ⊗ I)eT̃ δx(I ⊗ R̄σ′)]

×ei(qσ−qσ′ )xe−iqσ′δx,〈
∂xψ̂

†
σ(x)∂xψ̂σ(x)

〉
= Tr{eTL[(iqσRσ + [Q,Rσ])⊗ c.c.]},

Cpair(δx) = Tr[eT (L−δx)(R↑R↓ ⊗ I)eTδx

×(I ⊗ R̄↑R̄↓)]e−i(q↑+q↓)δx, (5)

where T̃ = Q⊗I+I⊗Q̄−R↑⊗R̄↑−R↓⊗R̄↓, Cpair(δx) ≡
〈ψ†↑(x + δx)ψ†↓(x + δx)ψ↓(x)ψ↑(x)〉, and δx ≥ 0. These

expressions are independent of x (with σ′ = σ in the
first case) and, in general, translationally invariant ex-
pectation values are expected from our formalism when-
ever the operator conserves the total particle number and
spin. Likewise, similar expressions and conclusions can
be drawn for δx < 0.

The kinetic energy density, written in terms of qσ, Q
and Rσ, can be derived from a lattice-regularized expec-

tation value 〈{ε−1[ψ̂†σ(xn+1)− ψ̂†σ(xn)]} · {h.c.}〉 where ε
≡ xn+1−xn. It contains terms having powers of ε−1 and
ε−2 that diverge in the continuum limit of ε→ 0. These
divergent terms cancel out exactly in the bosonic cMPS,
whereas the kinetic energy density expression needs to
be regularized9 in the fermionic cMPS. The regular ex-
pression for the kinetic energy density and the simplified
form for Cpair(δx), both stated in Eqs. (5), follow after
imposing the conditions:

{R↑, R↓} = 0 and R2
σ = 0. (6)

The optimal method to meet these conditions is to con-
struct R↑ and R↓ to have special algebraic structures.
One systematic way to enforce the requirement R2

↑ = 0

is by having R↑ in a Jordan canonical form24 with only
non-trivial Jordan blocks. As the nilpotency degree of
R↑ must be 2, all of its Jordan blocks must be 2 × 2,
and we are lead to the unique choice R↑ = ID/2 ⊗ σ+/2.

A general form for R↓ that satisfies both R2
↓ = 0 and

{R↑, R↓} = 0 is

R↓ = [P−1
D/2(ID/4 ⊗ σ+/2)PD/2]⊗ σz (7)

+[P−1
D/2(AD/4 ⊗ σ+/2 +BD/4 ⊗ I2)PD/2]⊗ σ+/2,

where AD/4, BD/4 ∈ CD/4×D/4, and PD/2 ∈ CD/2×D/2
is an invertible matrix.

Furthermore, we enforce Q + Q† + R†↑R↑ + R†↓R↓ = 0

using the cMPS gauge freedom4,9, so that the general

form of Q becomes Q = A− 1
2R
†
↑R↑−

1
2R
†
↓R↓, where A is

an anti-Hermitian matrix that is independent of position.
Interestingly, in our construction of the Q and Rσ ma-
trices, the R↑ matrix contains no variational parameters,
and all parameters reside on the Q and R↓ matrices. All
the information needed to correctly capture the physics
of the spin-up particles is, nevertheless, correctly encoded
in Q and the transfer matrix T .25
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FIG. 2. (color online) Zero temperature ground-state phase
diagram for the homogeneous attractive spin-1/2 Fermi gas in
1D. The phase boundaries were obtained from Bethe ansatz26.
The points X, Y, Ψ, and Ω along the circular trajectory C
denote the intersections with the phase boundaries.

We note that our form of Rσ naturally constraints the
bond dimension D of the cMPS to be a multiple of 4,
and the total number of variational degrees of freedom
between the Q and Rσ matrices becomes approximately
1.75D2. For a given bond dimension D, it is desirable
to retain the maximum number of non-redundant vari-
ational parameters, as the computational time required
to compute the expectation values for an arbitrary state
scales as O(D6). Our implementation gives an improve-
ment of nearly a factor of two as compared to a previ-
ous construction that had D2 +D variational degrees of
freedom8.

In order to test our ansatz, we refer again to the
Gaudin-Yang system in a grand canonical ensemble un-
der the presence of a constant Zeeman field that is per-
pendicular to the system axis. Figure 2 shows the ground
state phase diagram for the attractive Fermi gas in 1D,
which has four distinct phases that are characterized
by the population of each of the fermions — (i) fully-
polarized when n↑ > n↓ = 0 (between X and Y along the
trajectory C), (ii) partially polarized when n↑ > n↓ > 0
(between Y and Ψ), (iii) fully-paired when n↑ = n↓ > 0
(between Ψ and Ω), and (iv) vacuum when n↑ = n↓ = 0
(between Ω and X).

To obtain variational ground states at the various
phases, we optimized the expectation value of the zero
temperature free energy density f ≡ F/L in the thermo-
dynamic limit. For the minimization, we implemented
the simulated annealing algorithm27, taken as a variant
of the simplex method that incorporates a Metropolis-

like scheme28. The free energy density operator is f̂ =
ĤGY/L−µ (n̂↑ + n̂↓)−h (n̂↑ − n̂↓), where µ = (µ↑+µ↓)/2
is the chemical potential, h = (µ↑ − µ↓)/2 the effective
magnetic field, and nσ the densities of the two species. In
terms of the variational matrices, we evaluated 〈f〉 using
the expressions in (5).

ΥΧ Ψ Ω
(h,μ)/∆2

ΥΧ Ψ Ω

Bethe ansatz
D = 20
D = 16
D = 8
D = 4

FIG. 3. (color online) Free energy densities along the trajec-
tory C in Fig. 2 obtained from variational states having D =
4, 8, 16, 20 and the exact Bethe ansatz result (solid curve).
The inset has free energies from variational states (D = 16)
withRσ(x) = Rσ (filled circles) andRσ(x) = Rσe

iqσx (empty
circles).

The free energy densities obtained from the optimiza-
tion of the cMPS variational ansatz along the trajectory
C are plotted in Fig. 3. The bond dimensions range from
D = 4 to 20. While a qualitative agreement starts to
emerge from D ≥ 8, the variational ansatz with D ≥ 16
yields quantitatively accurate approximations, and con-
vergence to the exact results is readily seen as D is fur-
ther increased. The inset in Fig. 3 presents the effect of
neglecting the spatial modulation on the Rσ(x) matri-
ces by enforcing q↑ = q↓ = 0. In the partially polarized
regime — i.e. between the points Y and Ψ — we see
notable gaps in free energy densities between the two
curves, an indication that the modulation of Rσ(x) is
crucial for the accurate approximation of ground states
in the partially polarized phase. Moreover, we find that
the relation q↑/q↓ = −n↓/n↑ holds true in the partially
polarized regime.

Figure 4 is a plot of the densities n↑, n↓ and their
difference along the trajectory C. As in the free energy
density plot in Fig. 3, D = 8 only gives results that qual-
itatively agree with the exact results, while D ≥ 16 show
much more quantitatively reliable approximations. The
predictions for the phase boundary points X, Y and Ω
are excellent, whereas the transition point Ψ between the
partially polarized and the fully paired phases converges
more slowly; gradual improvement of the prediction with
increasing D is evident, nonetheless.

One of the exciting recent investigations by the
ultracold-atom community is the effort to experimentally
confirm whether the ground state of a spin-imbalanced
spin-1/2 Fermi superfluid is, in fact, the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state29. This state, postu-
lated about fifty years ago, is characterized by a pair

correlation function 〈ψ̂†↑(x + δx)ψ̂†↓(x + δx)ψ̂↓(x)ψ̂↑(x)〉
that has a long-range oscillatory behavior. The renewed
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FIG. 4. (color online) Densities of the majority spins n↑
(blue), minority spins n↓ (red), and their difference n↑ − n↓
(green) along the trajectory C in Fig. 2, as obtained from
variational states having bond dimensions D = 8, 16, 20 and
the exact Bethe ansatz result (solid curve).
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FIG. 5. (color online) Real part of the pair correlation
function in the partially polarized phase (black) and the fully
paired phase (red), evaluated from variational cMPS (D = 16)
at points A and B respectively (see Fig. 2). The black dashed
curve is the imaginary part of the pair correlation at A. The
blue curve is obtained from a D = 16 cMPS in a repulsive
system, with ∆ = −1, µ/|∆|2 = 0.5, and h/|∆|2 = 0.01. All
correlators have been normalized by n2, where n = n↑ + n↓.

Inset: Fourier transform nσ(k) of 〈ψ̂†σ(x)ψ̂σ(0)〉 evaluated at
points A and B, normalized by n. At large k, nσ(k) decays
as k−4 (cf. Refs. 7 and 34).

excitement was stirred by a theoretical prediction that a
large portion of the ground-state phase diagram for an

attractive 1D spin-1/2 Fermi gas is the FFLO phase (as
seen in Fig. 2)26,30–33, paving an avenue for a feasible
experimental verification16,19.

One of the beauties of an MPS formalism is its abil-
ity to express expectation values of essential correlations
and observables in concise, closed forms. Using the cMPS
approximation of the ground state at point A in Fig. 2,
we have evaluated the pair correlation function in the
partially polarized regime via Eq. (5). In Fig. 5, an oscil-
lation that is present over long distance is clearly visible,
agreeing with the prediction that the ground state real-
izes the FFLO physics. We note that this behavior was
predicted beforehand, as eTδx converges to a fixed value
for large δx and the only remaining spatial dependence
becomes e−i(q↑+q↓)δx. On the other hand, the fully paired
phase does not show an oscillatory pair correlation, and
we verified there is no long range correlation for the same
system with a repulsive interaction.

We have shown the validity of our implementation of
a fermionic cMPS that incorporates a spatial modula-
tion on the Rσ matrices with an efficient, explicit alge-
braic construction to meet the regularity conditions for
the kinetic energy. We have verified that our fermionic
cMPS yields accurate results for interacting spin-1/2
Fermi gases in 1D (that converge to the exact results ob-
tained from the thermodynamic Bethe ansatz), and have
found that the variational states correctly predict es-
sential observables and correlations, including a sponta-
neous translational symmetry breaking phenomenon such
as the FFLO superconductivity. As the cMPS ansatz
is generic and not restricted to integrable Hamiltonians,
we envisage that our work would serve as a critical step-
ping stone towards solving outstanding 1D problems and
shed new light on our understanding of interacting Fermi
fields. Future study includes the extension of the cMPS
to various interesting condensed-matter and cold-atom
systems, such as spin-orbit coupled nanowires35, FFLO
superfluids in traps33,34,36 or tubular lattices30,37, and
Bose-Fermi mixtures38.
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Pietro Lombardi, Florian Schäfer, Hui Hu, Xia-Ji Liu, Ja-
copo Catani, Carlo Sias, Massimo Inguscio, and Leonardo
Fallani, “A one-dimensional liquid of fermions with tunable
spin,” Nature Physics 10, 198–201 (2014).

19 Xi-Wen Guan, Murray T. Batchelor, and Chaohong Lee,
“Fermi gases in one dimension: From Bethe ansatz to ex-
periments,” Rev. Mod. Phys. 85, 1633–1691 (2013).
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