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Motivated by experiments in Ba1−xKxFe2As2 [A. E. Böhmer et al, arXiv:1412.7038], we analyze
the type of spin-density wave (SDW) order in doped iron-pnictides and the discontinuities of the
superconducting transition temperature Tc in the coexistence phase with SDW magnetism. We
find a sequence of transitions, upon lowering the temperature, from the stripe-orthorhombic (C2)
SDW order to the tetragonal (C4) order and then back to the C2 order. We argue that Tc has
two discontinuities – it jumps to a smaller value upon entering the coexistence region with the C4

magnetic phase, and then jumps to a larger value inside the SDW state when it crosses the boundary
between the C4 and C2 SDW orders. We argue that the agreement with the experimental phase
diagram provides a strong indication that the itinerant approach is adequate for weakly/moderately
doped iron-pnictides.

Introduction. One of the key features of the Fe-based
superconductors is the coexistence of superconductivity
with a spin-density wave (SDW) magnetic order [1]. The
stripe-type magnetic order (spins aligned ferromagneti-
cally in one direction and antiferromagnetically in the
other) has been observed experimentally in numerous un-
doped and weakly doped materials below TN ∼ 150K
[2, 6]. Such an order breaks the O(3) spin-rotational
symmetry and also breaks the tetragonal (C4) lattice ro-
tational symmetry down to orthorhombic (C2). Theo-
retically, the stripe order has been found in both itiner-
ant [3–5, 7–9, 13] and localized spin [10–12] approaches to
Fe-pnictides. In the itinerant scenario, stripe order orig-
inates from the interaction between fermions near hole
and electron pockets, which are separated by Q1 = (0, π)
and Q2 = (π, 0) in the Fe-only Brillouin zone.

A recent experiment on the hole-doped 122 Fe-pnictide
Ba1−xKxFe2As2 (Ref. [19]), however, found that the
stripe magnetic configuration does not persist at all dop-
ings where magnetic order has been observed. Instead,
in some doping range, the stripe magnetic phase is re-
placed by another SDW state in which the tetragonal
C4 symmetry is unbroken. Neutron scattering experi-
ments in the related compound Ba1−xNaxFe2As2 (Ref.
[18]) reported a similar C4 SDW phase, with the spin
response still peaked at Q1 and Q2. The most natural
explanation for such a C4 SDW phase is a magnetic con-
figuration with equal magnetic spectral weight at the Q1

and Q2 ordering vectors, resulting either in a orthogo-
nal checkerboard or in a non-uniform spin pattern (see
Refs. [3, 8, 11, 22, 23, 26, 27] ). Hereafter we label this
phase as C4 SDW order and the stripe phase as C2 SDW
order. Both C4 and C2 SDW orders were found exper-
imentally [18, 19] to coexist with superconducting (SC)
order. The detailed analysis of the boundaries of the
C4 SDW phase in the phase diagram of Ba1−xKxFe2As2
(Ref. [19]) shows several prominent features that require
theoretical explanation (see Fig. 1): (i) The C4 SDW
phase immediately below TN exists only above a certain
doping x = xcr. (ii) This phase does not extend deep

into the magnetically ordered region and at x ≤ xcr is
bounded at higher and lower T by C2 SDW order. (iii)
The superconducting Tc is discontinuous at the onset of
the coexistence with C4 SDW, where it jumps down by
a finite amount. (iv) Tc is again discontinuous when it
crosses the boundary between C4 and C2 SDW orders
inside the SC coexistence region, jumping up by a finite
amount.

In this communication we argue that all four features
can be naturally explained within the itinerant scenario
for magnetism in iron-pnictides. We depart from a model
of interacting electrons located near hole and electron
pockets and derive and analyze the Ginzburg-Landau
(GL) free-energy for the coupled SDW and SC order pa-
rameters. We first analyze the structure of the SDW
order alone. We argue, based on the analysis of GL ex-
pansion to fourth order, that the parameter that deter-
mines whether the SDW order is C2 or C4 immediately
below TN changes sign along the TN(x) line. For large
values of TN the stripe order wins, whereas for smaller
TN the C4 SDW order wins. This explains the obser-
vation (i) above. We also found that at even lower TN

values the order goes back to C2, but at such tempera-
tures the energy difference between C2 and C4 phase is
very small.

We then extend the GL analysis into the ordered phase
by expanding it to higher (sixth) order, showing that
larger values of the magnetic order parameter favor the
stripe C2 phase, even if the initial instability is towards
the C4 SDW order. This restricts the C4 phase to the
vicinity of the TN instability line, in agreement with the
experimental feature (ii).

We also analyze the GL model for interacting SDW and
s+− SC order parameters. We first argue that the jump
of Tc to a smaller value at the onset of coexistence with
SDW is a natural consequence of the experimental fact
that the SC transition line Tc crosses TN at doping levels
where the magnetic transition is first-order. Specifically,
the sign of the biquadratic coupling between the s+− SC
and SDW order parameters [14, 15] is such that the jump
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in the SDW order parameter at the point where the TN

and Tc lines meet causes a jump of Tc to a smaller value,
consistent with observation (iii).
We then study the behavior of Tc inside the SDW+SC

coexistence state, as it crosses the boundary between the
C4 and C2 SDW phases. We argue that Tc again jumps,
this time to a larger value. The discontinuity is due to
the fact that the energy of the C2 + SC phase is lower
than that of the C4 + SC phase by a finite amount be-
cause in the C2 + SC phase the system necessarily de-
velops a d-wave component of the SC order parameter
due to the breaking of the C4 symmetry [17]. We show
that this gives rise to an additional gain of condensation
energy, resulting in a higher Tc in the C2 + SC phase
compared to Tc in the C4 +SC phase. This is consistent
with the experimental observation (iv). This last effect
is additionally enhanced in Ba1−xKxFe2As2 because the
sub-leading d-wave instability is nearly degenerate with
the leading s+− instability [28, 31, 35–37], as seen by
Raman experiments [29, 30].
We interpret the good agreement between our itinerant

theory and the experimental data, including fine details,
as a strong indication that the itinerant approach to mag-
netism in Fe-pnictides is capable to explain the physics
of these materials. The situation may be different in 11
Fe-chalcogenides, whose magnetic order involves different
momenta [5, 6, 20, 38].
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FIG. 1: Schematic phase diagram resulting from our itinerant
model (left) and experimental phase diagram of Ref. [19] for
Ba1−xKxFe2As2 (right). Blue lines refer to the (second-order)
SC phase transition whereas the green and red lines refer to
the (first-order) C4 − C2 and normal state-SDW phase tran-
sitions, respectively. Black lines refer to the first order SDW
phase transitions inside SC phase. The four experimental fea-
tures discussed in the main text (i)-(iv) are naturally captured
by the itinerant model. The precise shapes of the transition
lines is non-universal and depends on details of the model.

The model. We consider the three-band 2D model
with one circular hole pocket centered at (0, 0) and two
elliptical electron pockets centered at (π, 0) and (0, π) in
the Fe-only Brillouin zone. This is the minimal model
to account for itinerant Q1/Q2 magnetism [3, 4, 14, 15].
The inclusion of other two hole pockets complicates cal-
culations but does not lead to new physics. We follow

previous works [3, 4] and approximate the band disper-

sions as parabolic ones, H0 =
∑

kaα ǫkac
†
kaαckaα, with:

ǫkh = −ǫk = −
k2

2m
+ ǫ0

ǫe1/2,k+Q
1/2

= ǫk + (δµ ± δm cos 2θ)
(1)

where k, a, and α refer to the momentum, band, and
spin indices, respectively. δµ measures the chemical
doping, δm accounts for the ellipticity of the electron
pockets, and θ is the angle around an elliptical elec-
tron pocket. The two interactions relevant to SDW or-
der are density-density (U1) and pair-hopping (U3) in-
teractions between hole and electron pockets (see Refs.
[3, 4]). They act identically in the SDW channel and
drive the system towards the SDW state with order-
ing vectors Q1/Q2, which are the momentum displace-
ments between the centers of electron and hole pockets.
To obtain the GL free-energy we introduce two SDW

fields M i(q) = (U1 + U3)
∑

k c
†
k+q,h

σ
2 ck+Qi,ei

, apply a
Hubbard-Stratonovich transformation to decouple the 4-
fermion interaction, integrate out the fermions, and ex-
pand the free-energy in powers of the SDW fields. To
sixth order in M i, the free energy is expressed as

F (M i) =
a

2
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1 +M2

2
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6

(
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)3
+ F̃ (M i)

(2)

where F̃ (M i) stands for the terms with spatial and time
derivatives. Note that the free-energy itself is invariant
under C4 rotations. All coefficients in Eq. (2) are the
convolutions of fermionic Green’s functions which are
presented explicitly in the Supplementary Information
(SI). Here we focus on the fourth- and sixth-order co-
efficients u, g, and v, which determine the nature of the
ordered state that appears when a < 0, and depend only

on the two band dispersion parameters δµ and δm from
Eq. 1. Although w = 0 in our model [4], we note that
additional contributions arising from residual electronic
interactions [3, 22] and from the coupling to soft magnetic
modes [23] favor w > 0 (non-collinear C4 configuration)
and w < 0 (non-uniform C4 configuration, compatible
with [24]), respectively.
C2 vs C4 magnetism. In the mean-field approxi-

mation, one neglects F̃ (M i) and obtains the equilibrium
values of M1 and M2 by minimizing the free-energy. Let
us first assume that M1,2 are small and restrict the anal-
ysis up to the quartic terms – i.e. we approach the transi-
tion from the paramagnetic side and check what happens
immediately below TN . One then finds in a straightfor-
ward way that the system develops C2 order when g > 0
and C4 order when g < 0. For C2 order, either M1 or
M2 vanishes, whereas for C4 order, M2

1 = M2
2. For
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g > 0, fluctuations contained in F̃ (M i) give rise to an
intermediate nematic phase in which the C4 symmetry is
broken to C2, but 〈M i〉 = 0.
In Fig. 2 we show the behavior of g as a function of

δµ/TN , where the chemical potential δµ is proportional
to doping. For simplicity we show a plot for fixed δm/TN ,
but the behavior described here is generic (see SI). In the
limit of high transition temperatures TN (small doping)
and at TN = 0 we find g > 0. However, at intermediate
TN we find that g necessarily changes sign and becomes
negative over some range of dopings Once g < 0, the sys-
tem develops C4 order. This explains the experimental
observation (i) in Ba1−xKxFe2As2. Note that g remains
very small after it changes sign for the second time, hence
the energies of both the C4 and the C2 SDW states are
very close when TN → 0 [18]. The data of Ref. [19] does
not allow one to make a definite conclusion whether or
not a second C2 phase reemerges along the TN line.
Note that our results depend only on |δµ| and hence do

not distinguish between electron and hole doping. Realis-
tic features such as the particle-hole asymmetry of ǫk and
disorder introduced by the dopants remove this equiva-
lence, but their effects are beyond the scope of this work.
Note also that g does not depend on the sign of δm, but
only on its magnitude. Consequently, the orientation of
the elliptical electron pockets does not affect our conclu-
sions. The orbital content of the Fermi surface may also
affect the Ginzburg-Landau coefficients [25] but the im-
pact of this effect in the parameter-space regime studied
here remains to be seen.
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FIG. 2: (a) The schematic phase diagram when SC is not
included. The dashed (solid) lines give the phase bound-
ary of C4 SDW order in the absence (presence) of higher-
order terms in the free energy. (b) The coefficients g and
v in Eq. (2) (normalized to their absolute δµ = 0 values,
|g(0)| ≈ 1.8Nf/(2πT )

2 and |v(0)| ≈ 12.6Nf /(2πT )
4) as func-

tions of δµ/(2πT ) for δm/(2πT ) = 1. Note that g and v
change sign twice as δµ/(2πT ) becomes larger. This behavior
is generic for other values of δm/(2πT ) (see SI).

We next analyze how the boundaries of the C4 or-
der evolve as the system moves into the SDW phase. If
we would restrict our analysis to the fourth-order terms
in the free energy, the C4 phase would extend all the
way down to T = 0 (dashed lines in Fig. 2a). How-
ever, once the SDW order develops, higher-order terms
in the GL free energy become relevant. In particular, the
sixth-order term relevant for the C4-C2 transition in Eq.

(2) is − v
6

(

M2
1 −M2

2

)2 (
M 2

1 +M 2
2

)

. This term has the

same
(

M2
1 −M2

2

)2
structure as the fourth order term

− g
4

(

M2
1 −M2

2

)2
but scales additionally with the mag-

nitude of M2. Combining the sixth-order and the fourth-
order terms we find that the location of the boundaries
between the C4 and C2 phases inside the SDW-ordered
region is determined by the zeros of

g̃ = g +
2

3
v
(

M 2
1 +M 2

2

)

, (3)

The analytic expression for the coefficient v is presented
in the SI. v can by itself be positive or negative, depend-
ing on doping. We show how the sign of v changes as
function of δµ in Fig. 2. We note that in most of the re-
gion where g < 0, the coefficient v is positive, hence the
sixth-order term prefers the C2 phase and progressively
shrinks the temperature range with C4 order as the SDW
order grows, resulting in the boundaries of the C4 phase
shown by the solid lines in Fig. 2a. We see this behav-
ior as a strong indication that the C4 phase progressively
yields to the C2 phase as SDW order grows, in agree-
ment with the experimental determination of the C4 line
in Ba1−xKxFe2As2 in Ref. [19] (feature (ii) discussed in
the Introduction). The transformation from C4 to C2

phase with decreasing doping at a given T has also been
observed in Ba1−xNaxFe2As2 in Ref. [18] by analyzing
neutron diffraction data on powder samples. These data
do show a C2-C4 transition upon lowering T , and the co-
existence of C2 and C4 phases at low temperatures, but
do not provide evidence for a pure C2 phase reemerging
at low temperatures, as seen in Ref. [19].
The interplay between SDW and superconductiv-

ity. We now consider how the existence of both C2

and C4 phases affects the behavior of Tc in the state
where SC and SDW coexist microscopically [33, 34]. We
assume that superconductivity outside the coexistence
region with SDW is of s+− type [16] and that the SC
transition in the absence of SDW is second order. Two
inputs are needed to proceed our analysis: the character
of the SDW transition and the location of the crossing
point between the Tc(x) and TN(x) transition lines.
The C2 −C4 transition is obviously first-order since in

the C2 phase one of the magnetic order parameters M1,2

is zero while in the C4 phase both have equal magnitude.
The character of the transition from the paramagnetic
to the C4 (or C2) phase is determined by the interplay
between the u and the γ terms in the GL free energy of
Eq. (2) (Refs. [4, 14]). We found (see SI) that at least
in the portion of the phase diagram where g is negative,
u is also negative and γ is positive, implying that the
transition into the C4 SDW phase is first-order [21]. This
is consistent with the experimental results [19].
As for the location of the crossing point between the

Tc(x) and TN(x) lines, it can in principle be in the range
where SDW order is either C2 or C4, depending on sev-
eral input parameters of the model. In the experiments
of Ref. [19], the crossing point happens in the range of C4
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order. We use this experimental result as an input and
show that, in this situation, there must be two disconti-
nuities in Tc(x) in the region of coexistence with SDW
order, consistent with the experimental findings (iii) and
(iv) discussed in the Introduction.
Discontinuity of Tc at the onset of coexistence with

SDW. We first consider how Tc evolves once the SC
transition line crosses the line of the first-order SDW
transition into the C4 phase. To achieve this, we write
the GL model for coupled SDW and s+− SC order pa-
rameters as [14, 15, 32]

F =
a

2
M2 +

u

4
M4 +

γ

6
M6 +

αs

2
|∆s±|

2

+ c |∆s±|
2
M 2 +

βs

4
|∆s±|

4 .
(4)

where αs = as(T − Tc) (as > 0) and M2 = M2
1 +M2

2 =
2M2

1. As explained above, we have u < 0 and γ > 0,
in which case the SDW transition into the C4 phase is

first-order. It occurs at a = 3u2

16γ , and M2 jumps from

zero to M2
0 = − 3u

4γ . An elementary analysis shows that a

jump of M2 at the SDW transition gives rise to a discon-
tinuity in Tc as αs is renormalized to α̃s = αs + 2cM2

0 .
Hence δTc = 3cu/(2γas). Because u < 0 and γ > 0,
sign (δTc) = −sign (c). We computed the coefficient c in
terms of parameters of the underlying fermionic model
and found that c is positive (see SI for details). There-
fore, δTc is negative, implying that the superconducting
transition temperature jumps down upon entering the co-
existence phase with SDW (see Fig. 1). A negative jump
δTc is consistent with the experimental observation (iii)
outlined in the Introduction.
Discontinuity of Tc at the boundary between the C2 and

the C4 phases. Finally, the experiment reveals that Tc

is again discontinuous inside the SDW phase [19], when
the SDW order switches from C4 back to C2 as doping de-
creases. Although the C2−C4 transition is first order, the
coupling between |∆s±|

2
andM 2 cannot explain this dis-

continuity because M2 = M2
1+M2

2 is continuous across
the C2−C4 SDW phase transition. A more careful analy-
sis, however, reveals that the c term in the free energy (4)
arises from the combination of three distinct microscopic
couplings between the magnetic order parameters and
the gap functions at the hole pocket h and the electron
pockets e1 and e2: chh |∆h|

2 ∑

i M
2
i , cee

∑

iM
2
i |∆ei |

2
,

and che
∑

iM
2
i

(

∆h∆
∗
ei
+∆ei∆

∗
h

)

. By symmetry, these
three superconducting gaps can be equivalently recast in
terms of an s++, an s+−, and a d-wave gap (see SI). Ne-
glecting the s++ component, which does not distinguish
between the C4 and C2 phases, we write the free-energy
as

F =
a

2
M2 +

u

4
M 4 +

γ

6
M6 +

αs

2
|∆s±|

2 +
αd

2
|∆d|

2

+ cs |∆s±|
2
M2 + cd |∆d|

2
M 2

+ csd
(

∆∗
s±∆d + h.c.

) (

M2
1 −M2

2

)

+ ... ,
(5)

The last term shows that the simultaneous presence of
s+− superconductivity and C2 SDW order generates a
d-wave component of the SC order parameter [17], even
though the leading instability is not towards a d-wave SC
phase – i.e. αd = ad(T − Td) ≈ ad(Tc − Td) > 0 in Eq.
(5).
We can now analyze the behavior of Tc in the coex-

istence phase with SDW. If the SDW is the C4 phase,
where M2

1 = M2
2, the last term in Eq. (5) is irrele-

vant, and the SC transition temperature is determined

by α̃s = αs +2csM
2 = 0, i.e. T

(C4)
c = Tc − (2cs/as)M

2.
If the SDW is the C2 phase, the quadratic part of the SC
GL free energy is given by:

FSC =
1

2

(

∆s±

∆d

)T (

α̃s 2csdϕ
2csdϕ α̃d

)(

∆s±

∆d

)

, (6)

where α̃s = αs + 2csM
2, α̃d = αd + 2cdM

2, and ϕ =
M2

1 − M2
2. Diagonalizing the matrix, we find that the

superconducting Tc in the C2 phase is given by α̃sα̃d =
(2ccdϕ)

2, hence

T (C2)
c = T (C4)

c +
4c2csϕ

2

asad (Tc − Td)
(7)

The key point here is that even though M2 changes con-
tinuously across the C4 → C2 transition, the quantity
ϕ = M 2

1 − M 2
2 jumps from ϕ = 0 in the C4 phase to

ϕ = ±M2 in the C2 phase. As a result, Tc jumps up

once the system moves from C4 to C2 SDW order inside
the SDW-SC coexistence state. This is consistent with
the experimental result (iv) discussed in the Introduc-
tion [19]. Note that the near degeneracy between the s+−

and the d-wave states, as attested by Raman scattering
experiments [29, 30] in optimally doped Ba1−xKxFe2As2
implies that the Tc and Td values are close, causing a
visible jump in Tc.
Conclusions. In this communication we analyzed

the structure of the SDW order arising from an itiner-
ant fermionic model in doped iron-pnictides and its im-
pact on the superconducting Tc in the coexistence phase
with magnetism. We found that stripe magnetic order
does not occur at all doping/temperatures where a mag-
netic instability is present – in particular, there is a nar-
row doping/temperature range located near the magnetic
transition line TN (x) where the SDW order preserves the
C4 lattice rotational symmetry. We argued that, as the
SC transition line crosses the SDW transition line, the
superconducting Tc has two discontinuities – it jumps to
a smaller value upon entering the coexistence region with
C4 SDW, and it jumps to a larger value inside the SDW
state, when it crosses the boundary between C4 and C2

SDW orders. The resulting phase diagram, schemati-
cally shown in Fig. 1, is very similar to the experimental
phase diagram of the K-doped 122 material [19]. We view
the agreement between theory and experiment, even in
their fine details, as a strong indication that the itin-
erant approach is adequate to describe the physics of
weakly/moderately doped Fe-pnictides.
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Hackl, H.-H. Wen, V. Tsurkan, J. Deisenhofer, and A.
Loidl, Phys. Rev. Lett. 110, 187002 (2013).
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