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Topologically ordered phases of matter, in particular so-called symmetry enriched topological
(SET) phases, can exhibit quantum number fractionalization in the presence of global symmetry.
In Z2 topologically ordered states in two dimensions, fundamental translations Tx and Ty acting on
anyons can either commute or anticommute. This property, crystal momentum fractionalization, can
be seen in a periodicity of the excited-state spectrum in the Brillouin zone. We present a numerical
method to detect the presence of this form of symmetry enrichment given a projected entangled
pair state (PEPS); we study the minima of spectrum of correlation lengths of the transfer matrix
for a cylinder. As a benchmark, we demonstrate our method using a modified toric code model with
perturbation. An enhanced periodicity in momentum clearly reveals the nontrivial anticommutation
relation {Tx, Ty} = 0 for the corresponding quasiparticles in the system.

PACS numbers: 05.30.Pr,71.15.Qe,75.10.Jm,75.10.Kt

Topological order is the name given to a variety of
long range entangled but gapped phases of matter, in
particular to phases that support anyonic excitations
with unusual braiding statistics. Unlike phases that fall
within the Landau symmetry-breaking paradigm, topo-
logical order is defined without any reference to symme-
try. However, it is still very interesting to ask what fur-
ther phenomena emerge in systems with symmetry, either
spontaneously broken or unbroken. The term “symme-
try enriched topological” (SET) phases was proposed to
describe phases that have the same topological order but
are distinct in the presence of a symmetry1–3.

In two dimensions the excitations in a topological
phase are point-like anyons. When a symmetry is
present, what are their quantum numbers? It turns out
that these can be fractional; most prominently, anyons
in quantum Hall states typically have fractional electric
charge (the quantum number corresponding to a U(1)
symmetry of the system)4,5. The values of these quantum
numbers are highly constrained, notably by the “fusion
rules” of the topological theory; in the Laughlin quantum
Hall state with filling fraction 1/3, since three anyons give
back an electron, the anyons must have charge e/3. An-
other example is the spin fractionalization in spin liquid
phases of quantum magnets with a global SU(2) symme-
try: a spinon quasiparticle carries a fractional number
spin-1/2 whereas in conventional paramagnets or mag-
netically ordered states all quasiparticles carry integer
spin6.

Can one distinguish SET phases given a wavefunction?
The quantum numbers of the degenerate ground states
and the projective quantum numbers of quasiparticles are
the characteristic properties of the SET phases2,7–9. In
the case of detecting the projective quantum number of
an internal symmetry, the operation of the global inter-
nal symmetry generator can be factorized into a product

of local operators, which can be transformed into opera-
tors acting only on the entanglement cut of the system,
therefore one can detect the projective quantum num-
ber via measuring the commutator/anti-commutator of
the boundary quasiparticles10,11. However for the space
group symmetry, such as the translation symmetries, the
translation operator is written in a matrix product oper-
ator that can not be factorized, and in addition, there is
no way to make an entanglement cut that preserves both
Tx and Ty translations, therefore conventional techniques
do not work. In this Letter, we address this question for
space group symmetries in the context of projected en-
tangled pair states (PEPSs)12.
Z2 topological phases with translation symmetry – We

are interested in the topological order familiar from Z2

gauge theory, Z2 spin liquids, and the toric code. There
are two bosonic anyon species, often called e and m. Each
sees the other with an Aharonov-Bohm phase of −1 (they
are mutual semions). When two-dimensional translation
symmetry is present, the symmetry generators Tx and
Ty may act nontrivially (projectively) on the anyons2,13.
A basis-independent characterization of these actions is
given by the relations

T exT
e
yT

e−1
x T e−1y = ηe = ±1,

Tmx T
m
y T

m−1
x Tm−1y = ηm = ±1, (1)

where T ex is the action of Tx on a single e, etc. When one
of these relations evaluates to −1 we say that translations
act projectively, or that the anyon has fractional crys-
tal momentum or has nontrivial fractionalization class,
a notion closely related to Wen’s projective symmetry
group14.

One can interpret the nontrivial e relation as the pres-
ence of an m in each unit cell of the lattice, which
the e sees as a background π magnetic flux. It is



2

Lx

Ly

(a) (b) (c)

FIG. 1: (a) Schematic representation of a PEPS on a cylinder
of size Lx × Ly. (b) When multiplying bra and ket of PEPS,
we sum over the physical degrees of freedom, group the virtual
indices of a bond, and arrive at the double tensor of a single
site. (c) Placing Ly double tensors on a ring and tracing out
the virtual degrees on the shared bonds, we form the transfer
matrix of the cylinder.

straightforward to show, based on this observation or
directly from the relations above, that if e has frac-
tional crystal momentum, the spectrum (and density
of states) of two-e scattering states is periodic under
q→ q + (π, 0), (0, π), (π, π)13,15. Assuming that e is the
excitation of lowest energy, the low-energy edge of the
continuum of excited states will reveal the fractionaliza-
tion class of e in the dynamical structure factor of any
operator that excites anyons. This is the main idea for
detecting such SET states that we pursue in this paper.
However, we access the low-energy edge of the excited
states via the information contained in the ground state
instead of the excitation spectrum due to a nice property
given by the PEPS, which we will introduce below.

PEPS and transfer matrix – PEPS is an ansatz that
represents the wavefunction by locally entangled virtual
pairs and a projector that map the virtual system to the
physical one16. It captures a wide range of phases includ-
ing many with topological order17–24. A one-dimensional
version, the MPS25, has been used to classify phases of
symmetric, gapped spin systems based on the projective
representation of the symmetry group26–28. Here, we pro-
pose a method based on PEPS for the spectra of corre-
lation lengths (SCL) of the system, which allows us to
distinguish SET phases described by simple PEPSs.

In one-dimensional gapped systems, properties of the
ground state wave function (the MPS) are completely de-
termined by the transfer matrix if translation symmetry
is present. The spectrum of correlation lengths, which
is given by the negative of the logarithm of (normalized)
eigenvalues (λ) of the transfer matrix25, is intuitively re-
lated to the spectrum of excitations made by all possi-
ble local operators with momentum quantum number kx,
λ = |λ|eikx , at the minima of the spectrum29.

The SCL can be generalized in two dimensions, how-
ever the momentum quantum number in the y direction
ky is rigorously well defined as compared to the kx esti-
mated from the complex phases of the transfer matrix
eigenvalues, as in the one-dimensional case mentioned
above. Consider a cylindrical geometry (as in Fig. 1),
we can define the SCL of the transfer matrix of a cylin-
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FIG. 2: A demonstration of the PEPS wavefunction of the
toric code model in the σz basis. Green lines denote the star
operator As and the plaquette operator Bp, and dark red lines
denote the position of the 4-index T tensor and the 3-index g
tensor, which are placed at the vertices and bonds of the dual
lattice (denoted in dashed lines).

der. If translation symmetry in the y direction is present,
eigenvectors of the transfer matrix have well defined mo-
mentum quantum numbers ky, and the minimum of the
SCL is given by

ε(kx,ky) = −ln(|λmax
(kx,ky)

|/λ0), (2)

where λmax
(kx,ky)

= eikx |λmax
(kx,ky)

| is the leading eigenvalue of

the transfer matrix with momentum ky excluding ground
states λ0s (the largest eigenvalue among all sectors); in
general it is a complex number with a phase eikx where
kx is its momentum in the x direction29. We conjec-
ture that ε(kx,ky) at a given (kx, ky) are analogous to the
low-energy edge of the two-anyon scattering continuum
described earlier. Thus, we propose that the minima of
the SCL can be used to distinguish SET phases, by anal-
ogy with the dynamic structure factor. Next we will test
this conjecture by examining the minima of the SCL of
the transfer matrix.

Modified toric code model – To construct the simplest
Z2 spin liquid which realizes all possible projective quan-
tum numbers of the translation symmetry, we consider
the toric code Hamiltonian on a square lattice

H = −Ke

∑
s

As −Km

∑
p

Bp, (3)

where As =
∏
l∈s σ

x
l is defined on the vertex s and Bp =∏

l∈p σ
z
l is defined on the plaquette p, and the sum runs

over all vertices and all plaquettes. This Hamiltonian
has four degenerate ground states30. Depending on the
signs of Km and Ke, the quasi-particles e, m, if created,
will move in a background of 0- or π-flux. That is, ηe =
signKm, ηm = signKe in Eq. (1). The ground states
on a torus can be simply represented by PEPSs of bond
dimension D = 2. We now describe the PEPSs for all
choices of Ke = ±1 and Km = ±1.

The PEPSs are composed of 4-index tensors Tαβγδ at
the vertices and 3-index tensors gsαα′ at the bonds of the
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direct (or dual) lattice, where s represents physical de-
grees of freedom and Greek letters represent virtual ones.
Whether we take the direct or dual lattice depends on the
choice of using a local σx or σz basis. Figure 2 represents
a PEPS defined in the σz basis, where the tensor Tαβγδ
is placed at the vertices of the dual lattice; this is the
representation we choose throughout this paper unless
specified otherwise. The virtual index runs from 0 to 1,
where 0 means | ↑〉 and 1 means | ↓〉. The wave function
has the form |ψ〉 = Tr{T⊗V g⊗B}, where V means all
vertices and B means all bonds, and the trace is taken
over all common virtual degrees. The T -tensor is

Tαβγδ =

{
1, (0, ) (α+ β + γ + δ)%2 = 0

0, (1, ) (α+ β + γ + δ)%2 = 1
, (4)

which, together with the condition that the only non-zero
elements of the g-tensor are gsss (see below), enforces the
condition Bp|ψ〉 = +(−)|ψ〉, corresponding to Km > 0
(Km < 0). The elements of the g-tensor are

gsαα′ =


a, α = α′ = s = 0

1, α = α′ = s = 1

0, otherwise,

(5)

where a is some number which can also depend on the
position of the bond. We ask that the wave function
satisfies As|ψ〉 = +(−)|ψ〉 for Ke > 0 (Ke < 0); this is
nothing but asking that the amplitudes for configurations
related by flipping the four spins on the vertex s differ
by + (−). If Ke > 0 the solution is obvious: a = 1 on all
bonds. However, if Ke < 0, it requires one and only one
a on each plaquette of the dual lattice to be -1, in which
case one has to break the lattice translation symmetry in
one direction in order to keep the bond dimension D = 2
(Supplemental Material31).

The excitations of the Hamiltonian Eq. (3) have no
dynamics, which corresponds in the ground state |ψ〉 to
the fact that all spin configurations satisfying Eq. (4-5)
have equal weight in magnitude. To create some dynam-
ics without increasing the bond dimension of the tensor,
we put a local diagonal operator diag(w, 1) on each phys-
ical spin with 0 ≤ w ≤ 1, which corresponds to a ground
state of the Hamiltonian32,33

H ′ = H +Ke

∑
s

w−
∑

l∈s σ
z
l

≈ H + h
∑
l

σzl + const. (6)

Here, the Zeeman field h = −2Ke logw is a good de-
scription of the perturbed state for h � Ke, or w ≈ 1.
Throughout this paper, we use w = 0.9, which corre-
sponds to h� |Km|, |Ke| and is deep in the topologically
ordered phase. For the phase diagram of the modified
PEPS as a function of w in case of Km < 0 and Ke > 0
(Supplemental Material31) .

Numerical detection of the projective quantum num-
ber under translation symmetries – We take the PEPS
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FIG. 3: The minima of SCL at momentum ky for coupling
Km > 0 and Ke > 0 using PEPS at w = 0.9. Since all
eigenvalues of the transfer matrix are real and positive, only
ε(0,ky) is presented.
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FIG. 4: The minima of SCL at momentum ky for coupling
Km < 0 and Ke > 0 using PEPS at w = 0.9 for even Ly.
(a) ε(0,ky) corresponds to the largest real and positive λ in
sector ky except λ0s. (b) ε(π,ky) corresponds to the smallest
real and negative λ in sector ky. (c) The splitting ∆(Ly) =
ε(π,0) − ε(π,π) as illustrated in (b) vanish exponentially as a
function of length Ly.
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wave functions described above and calculate the SCL
of the transfer matrix [see Fig. 1(b)] for different signs
of Km and Ke. The transfer matrix of a cylinder with
translation symmetry Ty can be block-diagonalized in
momentum basis, which means each left and right eigen-
vector has a well defined momentum quantum number
ky. We start by explicitly writing the transfer matrix
in real space into a block diagonal form in momentum
space (Supplemental Material31). Once we have ob-
tained the transfer matrix in momentum basis, we diag-
onalize each block with momentum ky = 2πm/Ly,m =
0, 1, · · · , Ly − 1, find the minima of the normalized SCL
ε(kx,ky) = −ln(|λmax

(kx,ky)
|/λ0), and plot ε(kx,ky) as a func-

tion of ky for kx = 0 and π. Fig. 3 illustrates the minima
of the SCL for Km > 0 and Ke > 0, in which case, all
eigenvalues of the transfer matrix are real and positive.
The results for Km < 0, Ke > 0 and Ly even are pre-
sented in Fig. 4: ε(0,ky) corresponds to the largest real
and positive eigenvalue λ at each ky excluding the two
degenerate λ0s at ky = 0, while ε(π,ky) corresponds to
the smallest real and negative eigenvalue λ at each ky.
In the case of odd Ly for Km < 0 and Ke > 0, ma-
trices at each ky further form into two non-commuting
blocks, encoding the fact that applying the transfer ma-
trix flips the eigenvalue of

∏
l σ

z
l , where the product is

over a loop encircling the system in the y-direction. This
corresponds to a breaking of translation symmetry (Tx)
in a one-dimensional limit (Lx →∞ with Ly fixed). All
eigenvalues of the transfer matrix come in ± parirs, thus
ε(0/π,ky) are identical, as presented in Fig. 5. We find
that the minima of the SCL are indeed doubly periodic
when Km < 0, but not when Km > 0.

For the case of Ke < 0 and Km < 0 (Km > 0), the
resulting ε(0,ky) are exactly the same as above, because
the low-energy excitations are dictated by coupling Km

regardless of the sign of Ke. Note that when Ke < 0,
ε(π,ky) is not accessible, because the transfer matrix at
any Ly consists of adjacent two columns of the lattice,
thus all eigenvalues are positive.

If we want the projective quantum number of m-
particles, we can take a perturbed Hamiltonian as

H ′′ = −Ke

∑
s

As −Km

∑
p

Bp + h′
∑
l

σxl (7)

instead, and correspondingly choose a PEPS representa-
tion defined in the σx basis, where acting with a local
operator diag(w, 1) is equivalent to adding a perturba-
tion δH = h′

∑
l σ

x
l . The low-energy excitations are two

m-particles and the sign of Ke determines whether the
m-particle hops in a background of 0- or π-flux on the
dual lattice. Once the projective quantum numbers ηe
and ηm are known, one completely determines SET class
of the state if the symmetry group consists only of trans-
lation2.

Conclusion – We have presented a numerical method to
distinguish symmetry enriched topological (SET) phases
with fractionalized translation symmetry. This method
uses the spectrum of correlation lengths (SCL) of the
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FIG. 5: The minima of SCL at momentum ky for coupling
Km < 0 and Ke > 0 using PEPS at w = 0.9 for odd length
Ly. Since eigenvalues including the largest come in ± pairs,
ε(0,ky) and ε(π,ky) are identical.

transfer matrix on a cylinder to represent qualitatively
the excitation spectrum of the system as a function of
ky for special kx = 0, π, if the ground state wave func-
tion is available in terms of projected entangled pair
state (PEPS). From the fact that the nontrivial frac-
tional quantum numbers of quasi-particles under trans-
lation symmetries will be manifest as enhanced Brillouin
zone periodicity in the dispersion relation, one can read
out the projective quantum number of the low energy
quasiparticles from the behavior of the minima of SCL.
We bench-marked this method with the toric code model
under perturbation. Modifying the sign of the coupling
coefficients in front of operator As and Bp and the per-
turbation terms, we were able to generate topologically
ordered ground states with preferred e-particle or m-
particle low-energy excitations in a background of either
0 or π magnetic flux, which realizes all symmetry classes
with this topological order and symmetry2. We expressed
the ground states of the modified toric code Hamiltoni-
ans as bond-dimension D = 2 PEPSs and calculated the
minima of the SCL of the transfer matrix on a cylinder,
and the pattern of SCL revealed the fractional quantum
numbers of the low energy quasiparticles under transla-
tion symmetries.

This method can be generalized to detect projective
quantum numbers of SET phases under a broader sym-
metry group including translations and other space group
symmetries.
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27 N. Schuch, D. Pérez-Garćıa and I. Cirac, Classifying quan-
tum phases using matrix product states and projected en-
tangled pair states, Phys. Rev. B 84, 165139 (2011).

28 F. Pollmann, A. M. Turner, E. Berg and M. Oshikawa,
Entanglement spectrum of a topological phase in one di-
mension, Phys. Rev. B 81, 064439 (2010).

29 V. Zauner, D. Draxler, L. Vanderstraeten, M. Degroote,
J. Haegerman, M. M. Rams, V. Stojevic, N. Schuch and
F. Verstraete, Transfer Matrices and Excitations with
Matrix Product States, (2014), arXiv:1408.5140 (unpub-
lished).

30 A. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. 303, 2 (2003).

31 See Supplemental Material at URL. for PEPS construction
of the ground state of toric code model with Ke < 0; the
phase diagram of the PEPS by tuning parameter w for
Km < 0 and Ke > 0; and details of diagonalizing the
transfer matrix of a cylinder in momentum basis.

32 C. Castelnovo and C. Chamon, Quantum topological phase
transition at the microscopic level, Phys. Rev. B 77,
054433 (2008).

33 N. Schuch, D. Poilblanc, J. I. Cirac and D. Pérez-Garćıa,
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