aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Generating stable tractor beams with dielectric
metasurfaces
Carl Pfeiffer and Anthony Grbic
Phys. Rev. B 91, 115408 — Published 6 March 2015
DOI: 10.1103/PhysRevB.91.115408


http://dx.doi.org/10.1103/PhysRevB.91.115408

Generating Stable Tractor Beams with Dielectric Metasurfaces

Carl Pfeiffer and Anthony Grbic*
Department of Electrical Engineering and Computer Science,
University of Michigan,

Ann Arbor, MI, 48109-2122, USA
(Dated: February 13, 2015)

Propagation invariant beams that pull objects towards a light source are commonly known as trac-
tor beams. Here, an efficient linearly polarized tractor beam with improved stability is introduced.
The beam consists of a superposition of TE and TM polarized Bessel beams of orders m = +1
and m = —1. It is shown that this beam can stably pull a wide range of dielectric microparticles
arbitrarily long distances, independent of ambient conditions. Next, a straightforward method of
generating these high performance beams is proposed. A Si metasurface transforms an incident
linearly polarized Gaussian beam into the desired tractor beam. Full-wave simulations demonstrate
that it is possible for this simple geometry to pull a polystyrene sphere a distance equal to the
non-diffracting range of the Bessel beam. The simplicity of the setup and the robust performance
of the proposed tractor beam significantly enhance the ability to manipulate matter with light.

I. INTRODUCTION

Light can exert a force on matter, which has proven
useful for a variety of applications such as manipulating
and assembling nanostructures [1, 2] or sorting bacte-
ria and viruses [3-5]. Propagation invariant beams are
particularly well-suited for simultaneously trapping and
aligning many particles [6]. These beams usually exert
a positive radiation pressure on an object, which pushes
particles away from the source. However, it was recently
shown that a net pulling force can be generated if the
beam is sufficiently nonparaxial [7-9]. To date, many
different methods of generating these so-called ‘tractor
beams’ have been proposed [10]. For example, optical
solenoid beams have pulled silica microparticles distances
of 8 um [11]. Alternatively, simply interfering two Gaus-
sian beams with each other can pull polystyrene micro-
spheres distances exceeding 30 pm [12]. However, this
particular method is inherently inefficient since Gaussian
beams do not have a high intensity focus. Therefore, the
vast majority of light never actually interacts with the
particle of interest. Many other methods of pulling par-
ticles towards a source using light [13], sound [14], or cur-
rents in fluids [15] have recently been proposed, but they
require a strong interaction between the particle and the
surrounding media. Optical conveyor belts can also move
objects towards a light source over significant distances
[16, 17]. However, these beams actively move particles
using tunable optical components, which is conceptually
different than a passive tractor beam.

The goal here is to efficiently pull a wide range of parti-
cles towards a source, independent of ambient conditions.
Propagation invariant Bessel beams focus their energy to-
ward the beam axis, which make them ideal for interact-
ing with particles over large distances [6, 8, 9, 18, 19]. For
a given incident power, Bessel beams can achieve pulling
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forces that are orders of magnitude larger than inter-
fering Gaussian beams. In particular, first-order Bessel
beams with both TM and TE polarizations provide the
maximal pulling force. However, the pulling force im-
parted by these beams is sensitive to the particles per-
mittivity and size [20]. In addition, these beams require
significant damping from the surrounding fluid (i.e. vis-
cous drag) for stable on-axis transverse trapping [19, 21].
These limitations have made experimental demonstration
of a Bessel-mode tractor beam elusive.

Here, it is analytically shown that a superposition
of non-diffracting Bessel beams of orders m = +1 and
m = —1 can stably pull dielectric particles over signif-
icant distances, in both damped and undamped condi-
tions. This beam exerts an identical pulling force as
previously reported first-order Bessel beams [9], but con-
fines the particle near the beam axis. Next, it is shown
that a tractor beam can be straightforwardly generated
by illuminating a low-loss dielectric metasurface with a
normally incident Gaussian beam, as shown in Fig. 1.
Full wave simulations verify the metasurface design, and
demonstrate that the tractor beam can pull a polystyrene
particle over the beam’s non-diffracting range. The sim-
plicity of the setup should make experimental validation
of the proposed tractor beam straightforward.

II. HIGHER ORDER BESSEL BEAMS FOR
REALIZING TRACTOR BEAMS

The electric and magnetic fields of an mth-order Bessel
beam propagating in the z-direction can be written as
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FIG. 1. A Silicon metasurface converts a normally incident
Gaussian beam into a tractor beam. The tractor beam pulls
a dielectric particle up towards the source against the force
of gravity.
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JIm(qkop) is the mth order Bessel function of the first
kind and J},(gkop) = d(q‘,]cm 5- The coefficients 3 and
q are the longitudinal and transverse wavenumbers nor-
malized to the free space wavenumber kg, which satisfy
the separation relation (gko)? + (8ko)? = k3. The beam
can be decomposed into plane waves that exist on the
surface of a cone with vertex angle 2ac = 2sin™*(g). The
non-paraxiality of the beam is given by a. The beam
contains both TE and TM polarizations, with complex
amplitudes given by c¢; and cs, respectively.

A. Circularly polarized tractor beam

To date, the Bessel beam with the strongest pulling
force for a given incident power is a first-order Bessel
beam with electric field E; characterized by m = 1,
cp = 1, and ¢3 = i [9, 19-21]. This beam will be re-
ferred to as a circularly polarized tractor beam, since the
electric field is right-handed circularly polarized near the
axis. In addition to the spin angular momentum pro-
vided by the circular polarization, this beam contains
a net orbital angular momentum, which imparts a qAb—
directed force on a particle near the beam axis [23]. This
force is nonconservative since the work performed when
moving a particle in a closed circle around the beam axis

is nonzero. The circularly polarized beam continuously
accelerates the angular speed of the particle, which drives
it from the beam axis. Thus, the beam is unstable since
it cannot trap particles in the transverse plane unless a
significant frictional force (typically due to viscous drag)
is also present [19].

B. Linearly polarized tractor beam

Let us consider adding another Bessel beam with op-
posite value of angular momentum (order m = —1) to the
circularly polarized beam. This additional beam has an
electric field denoted as E_1, and is characterized by coef-
ficients ¢c; = 1, and co = —1, so it is left-handed circularly
polarized near the beam axis. Intuitively, a superposition
of E; and E_; can provide a stable pulling force since
it contains no net orbital angular momentum. The addi-
tion of two circular polarizations of opposite handedness
makes the beam linearly polarized near its axis,

Jim (By+ B y)/v2= q\/_

Therefore this beam will be referred to as a linearly po-
larized tractor beam.

=(B+ 1% (3)

III. OPTICAL FORCES EXERTED BY BESSEL
BEAMS

In general, the force that light exerts on an object is
characterized by a Maxwell stress tensor. When the ob-
ject is subwavelength, it can be modeled as a combination
of an electric and magnetic dipole, which simplifies anal-
ysis [24]. The time averaged force on a small particle can
be written as,
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where p = ¢pa.E is the electric dipole moment, m =
amH is the magnetic dipole moment, a, = i6ra;/ kS’
is the electric polarizability of a spherical particle, and
Q= i67h1 /K3 is its magnetic polarizability. The coeffi-
cients a1 and by are the first order Mie scattering coeffi-
cients [25],
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where x = ko R, n = \/€u is the particles refractive index,

J» and h,(jl) are the spherical Bessel and Hankel functions
of order v, and prime means derivative with respect to

the argument, (e.g., (nzj, (nz))" = d(nzj, (nx))/d(nx)).



The force that a tractor beam exerts on a particle is
found by inserting the electric and magnetic fields given
by (1) and (2) into (4). Near the beam axis (kop < 1),
the expressions simplify and can be written as, Fygnt =

F.z+ F,p+ F¢q?>, where
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The superscripts lin and circ denote the force exerted
by the linear and circular polarized tractor beams, re-
spectively. It can be seen that the z-directed pulling
force is identical for the two beams. In addition, both
beams exert an inward directed gradient force. However,
the circularly polarized tractor beam contains an addi-
tional, nonconservative é&—directed force which makes this
beam unstable without sufficient damping. In contrast,
the ¢-directed force for the linearly polarized beam is
multiplied by sin(2¢), which reverses its sign depending
upon the quadrant of the particle. The transverse force
exerted by the linearly polarized tractor beam is conser-
vative. This fact is most clearly identified by noting that
near the beam axis, the transverse potential given by,
—VU = F,ﬁi"ﬁ + Fqlf"gb can be written as,
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A necessary condition for realizing an optical tractor
beam is that «. and o, should be similar [8, 9, 20, 21]. In
this case, the potential is identical to a two-dimensional
harmonic oscillator. In general, a. is not exactly equal
to aun, which leads to an asymmetry in the potential
proportional to the cos(2¢) term.

IV. TRAJECTORY OF A PARTICLE PLACED
IN VACUUM

Let’s consider some practical examples of linear and
circular polarized tractor beams pulling a polystyrene
sphere against the force of gravity, as shown in Fig.
1. For now, it is assumed that the particle is pulled
through vacuum (i.e. no ambient damping). The sphere
is assumed to have a diameter equal to 750 nm and
relative permittivity €, = 2.4 at the operating wave-
length 1.5 pm. The tractor beams have Ey = 2.5 x 10°
V/m and ¢ = 0.94, which corresponds to a cone angle
a = 70°. The total force acting on the particle is given
by, F = Fiignt + gmpz = mydv/dt, where g = 9.8 m/s?
is the gravitational constant and m, = 2.32 x 10716 kg
is the mass of the particle.
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FIG. 2. Trajectory of a 750 nm diameter polystyrene sphere
when illuminated with circular and linear polarized tractor
beams with Ey = 2.5 x 10° V/m and ¢ = 0.94. At ¢t = 0, the
particle (denoted as a green circle) has 0 initial velocity and
is located at (kozx, koy) = (0.3,0.3). The particle’s transverse
position after 2.3 ms is indicated by a red triangle. (a) Trans-
verse trajectory of the polystyrene sphere when illuminated
with a circularly polarized tractor beam. After 2.3 ms, the
particle is no longer confined near the beam axis. (b) Longi-
tudinal position (z) of the particle as a function of time for the
linear and circular polarized tractor beams. Only the linearly
polarized tractor beam provides a stable pulling force. (c)
Transverse trajectory of the polystyrene sphere when illumi-
nated with a linearly polarized tractor beam. The particle is
trapped near the beam axis where the pulling force is greatest.
(d) Harmonic potential in the transverse plane that confines
the polystyrene sphere to the axis of the linearly polarized
tractor beam.

The trajectory of the polystyrene particle is numer-



ically solved by integrating Newton’s equation using a
Runge-Kutta method provided by MATLAB. Figure 2(a)
shows the trajectory of the particle in the transverse
plane (zy-plane) when illuminated with a circularly po-
larized tractor beam. The particle is initially located at
(kox, koy) = (0.3,0.3) with 0 velocity. It can be seen that
the particle is initially pulled toward the center, but a qAb—
directed force is also present, which drives the particle
away from the center as time evolves. Eventually, this
force causes the particle to run away from the beam axis.
The particle’s longitudinal position (z) is shown in Fig.
2(b). When the particle is located away from the beam
axis, it is pushed rather than pulled by the source.

The trajectory of the particle when pulled by a lin-
early polarized tractor beam is shown in Fig. 2(c).
The particle oscillates around the beam axis where the
pulling force is maximal, but its distance from the center
never exceeds the starting value. Figure 2(b) shows that
the particle continuously accelerates towards the source
(—z). Since the linearly polarized tractor beam exerts
a conservative transverse force on the particle, a two-
dimensional potential well can be defined, and is plotted
in Fig. 2(d). The asymmetry of the well is due to the
fact that a. # a, for the polystyrene sphere under con-
sideration. This asymmetric potential causes the particle
to map out the square shape shown in Fig. 2(c) as time
progresses. No potential can be defined for the circularly
polarized tractor beam since it exerts a nonconservative
force on the particle.

V. TRAJECTORY OF A PARTICLE PLACED IN
AIR

Let us now consider pulling the same particle through
air, rather than vacuum, which introduces viscous damp-
ing. The total force acting on the particle is now given by,
F = Fiigne —yv+gmpz = mydv/dt. The ambient damp-
ing constant of air is given by v = 6muR = 1.3 x 10710
kg/s, where p = 1.84 x 107° kg/(ms) is the dynamic
viscosity of dry air at room temperature, and R = 375
nm is the radius of the polystyrene sphere.

It was noted several times that ‘sufficient damping’ is
required for the circularly polarized tractor beam to sta-
bly pull dielectric particles. This statement can be quan-
tified, and a detailed analysis is provided in Ref. [19]. In
short, the transverse force on the particle can be written
as f = f; + f;, where f; is the transverse optical force and
fy is the frictional force due to ambient damping. The
transverse force can be written as f = KAp — vdAp/dt,
where Ap is the displacement of the particle from the
beam axis, v is the ambient damping constant, and K is
a 2 X 2 matrix of the form,
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FIG. 3. Trajectory of a 750 nm diameter polystyrene sphere
when illuminated with circular and linear polarized tractor
beams with Ey = 2.5 x 10° V/m and ¢ = 0.94. At ¢t = 0, the
particle (denoted as a green circle) has 0 initial velocity and
is located at (koz, koy) = (0.3,0.3). The particle’s transverse
position after 2.3 ms is indicated by a red triangle. (a) Trans-
verse trajectory of the polystyrene sphere. (b) Longitudinal
position (z) of the particle as a function of time.

they correspond to p-directed restoring forces. The off-
diagonal elements k15 and ka1 correspond to qAb-directed
forces that rotate the particle around the beam axis.
Only when the ambient damping sufficiently dissipates
the rotational energy of the particle will the situation be
stable. Due to the cylindrical symmetry of the circularly
polarized tractor beam, k11 = koo and k1o = —ko1. By
analyzing the eigenvalues of (13), it can be shown that
there is a critical damping constant that is required to
confine the particle to the beam axis [19],
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Combining this result with the optical forces acting on a
small particle in (9) and (10), the critical damping con-
stant can be written in closed form,
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Only when v > 7eritical Will the particle be trapped along
the circularly polarized tractor beam axis.

When Ey = 2.5 x 10° V/m and ¢ = 0.94, the damping
constant is v = 94.07¢ritical- LThe large damping constant
means that the circularly polarized beam is stable, in this
example. Figure 3 shows the trajectory of the particle
when illuminated with circular and linear polarized trac-
tor beams of a fixed frequency. It can be seen that when
the particle is initially located at (kox, koy) = (0.3,0.3),
the gradient force moves the particle toward the beam
axis, and the scattering force pulls the particle toward
the source. By comparing the final position of the par-
ticle in Fig. 2(b) and in Fig. 3(b), it is clear that the
particle is pulled much slower when it is surround by air
rather than vacuum.



It is also interesting to consider the case of pulling
the particle through air by a tractor beam with much
higher field intensity. If Ey is increased from 2.5 x 10°
V/m to 4.65 x 107 V/m, the air resistance is insufficient
to stabilize the circularly polarized tractor beam (y =
0.517eritical), as shown in Figure 4(a). It can be seen that

the particle is initially pulled toward the center, but a qAb—
directed force is also present, which pushes the particle
away from the center as time evolves. Eventually, the
particle reaches equilibrium when the (iﬁ—directed force,
inward directed force, and the viscous damping balance
each other. However, this steady state location is away
from the beam axis, where the longitudinal force pushes
the particle away from the source rather than pulling it
in. This is verified in Fig. 4(b), which plots the particle’s
longitudinal position (z).

The trajectory of the particle when pulled through air
by a linearly polarized beam is shown in Fig. 4(c). The
particle initially oscillates around the beam axis, but then
reaches a stable position at p = 0, where the pulling
force is maximal. Figure 4(b) shows that the particle
accelerates towards the source (—2z) until it reaches a
terminal velocity v = 3.5 m/s.

VI. GENERATING TRACTOR BEAMS WITH
METASURFACES

Next, a simple method of generating these beams is
introduced. Away from the beam axis (kop > 1), the
linearly polarized tractor beam given by (1) can be writ-
ten as a sum of TM and TE polarizations,

lim E = M ((f{ -P)Ern + (X CAb)ETE) , (16)
kop>1 qv/Tkogp
where
Eqar =(qz — p)e™ 7 + (g2 + fp)e ™7 (17)
Erp =¢ (eiqkop, - efiqk"p,) (18)

and p’ = p+m/(4qgkp). It can be seen from (17) and (18)
that the tractor beam is composed of equal amplitude,
inward and outward propagating plane waves. It should
be noted that the circularly polarized Gaussian beam is
of the same form as (16)-(18), but with % replaced by
(X +1iy)/V2.

There are several methods by which this interference
pattern can be generated. One method of exactly gener-
ating the desired interference pattern is by illuminating
a radially symmetric beam splitter with a normally inci-
dent, X-polarized plane wave. The incident X-polarized
field can be broken up into p and q?) polarizations pro-
portional to X - p and X - @, as in (16). The p-component
is representative of a TM-polarized wave and the qAb—
component of a TE-polarized wave. The radially sym-
metric beam splitter then produces equal amplitude in-
ward and outward propagating TM and TE polarized
plane waves that are given by (17) and (18).
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FIG. 4. Trajectory of a 750 nm diameter polystyrene sphere
when illuminated with circular and linear polarized tractor
beams with Fo = 4.65 x 107 V/m and ¢ = 0.94. At t = 0,
the particle (denoted as a green circle) has 0 initial velocity
and is located at (koz, koy) = (0.5,0.5). The particle’s trans-
verse position after 20 us is indicated by a red triangle. (a)
Transverse trajectory of the polystyrene sphere in air when
illuminated with a circularly polarized tractor beam. Within
20 ws, the particle reaches equilibrium in a circular orbit at
kop = 1.18. (b) Longitudinal position (z) of the particle as a
function of time when the particle is in air and vacuum, for
linear and circular polarized tractor beams. Only the linearly
polarized tractor beam provides a stable pulling force. (c)
Transverse trajectory of the polystyrene sphere in air when
illuminated with a linearly polarized tractor beam. Within
20 us, the particle is trapped along the beam axis where the
pulling force is greatest.

This situation is well approximated by illuminating the
dielectric metasurface shown in Fig. 5 with a linearly
polarized Gaussian beam [26]. Metasurfaces are ideal
candidates for generating arbitrary beams since they are
compact and have demonstrated extreme control of a
wavefront’s amplitude, phase, and polarization [27-34].
Dielectric metasurfaces are particularly attractive since
they are low loss and can handle high power [35-38]. The
designed metasurface consists of a Si bullseye pattern on
a bulk SiOs substrate. Inspiration for this geometry is de-
rived from the extensive literature on binary phase grat-
ings, which are commonly employed for interfering plane
waves due to their simple design and fabrication processes
[39-41]. The period of the grating determines the angles
at which light will be transmitted, and the thickness of
the Si determines the efficiency. When the duty cycle of
Si is 50% and its thickness is roughly A\o/[2(ngi — 1)], the
metasurface acts as an efficient beam splitter.

Binary phase gratings are commonly analyzed using
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FIG. 5. (a) Top view of the designed metasurface that con-
verts a normally incident Gaussian beam into a linearly po-
larized tractor beam. The metasurface acts as a radially sym-
metric beam splitter. (b) Side view of the cross section of the
metasurface.

scalar diffraction theory. However, this metasurface op-
erates in a region where scalar diffraction theory is no
longer valid due to the extreme (nonparaxial) cone angle
and the high index of refraction of Si [42]. Therefore, the
thickness of the Si is optimized using full wave simula-
tions of a one-dimensional grating. The SiO, substrate is
modeled as a lossless, infinite half space with an index of
refraction of ngio, = 1.54 at the wavelength of 1.5 pm.
The index of refraction of the Si is ng; = 3.46. When
the Si is 230 nm thick, 60% of the incident power is split
to the angles +70° from normal, for both TM and TE
polarizations. The primary sources of loss are reflection
and transmission into the normal direction.

There are many alternative designs that could also be
utilized. For example, the v-antenna array reported in
[27, 28] could be used to generate the desired transmit-
ted phase profile given by (16)-(18). In this case only
the cross polarized radiation would refocus into the trac-
tor beam, which does limit the efficiency. The limited
efficiency of single layer v-antenna designs can be signif-
icantly improved by cascading multiple patterned plas-
monic sheets [31]. Refractory materials such as TiN may
prove particularly useful for these devices since they can
withstand high power levels [34].

Axicon lenses could also be utilized for generating trac-
tor beams. These lenses are attractive because they are
commercially available, and are commonly employed for
generating Bessel beams. However, previously reported
axicon lenses generated relatively small cone angles that
are far too paraxial to produce a pulling force. It can be
shown using geometrical optics that the axicon should be
constructed from a material with large index of refraction
to generate a tractor beam. For example, the index of the
axicon lens must be at least n = 2.924 in order to realize
a tractor beam with cone angle o = 70°. Otherwise the
incident beam will be totally internally reflected. Alter-
natively, systems containing multiple, lower index axicon
lenses could be used [43]. However, these systems suffer
from increased complexity and size.

VII. SIMULATIONS
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FIG. 6. Simulated performance of the metasurface shown in
Fig. 5. The metasurface is illuminated with an X-polarized,
normally incident Gaussian beam with peak amplitude of £ =
3.4 x 10* V/m and wavelength Ao = 1.5 pm. The incident
beam waist radius is wo = 20 pum. (a) Magnitude of the
electric field along the yz plane. (b) Longitudinally directed
force (F.) exerted on a 750 nm diameter polystyrene sphere
near the beam axis. Negative values correspond to a pulling
force. (c) Profile of F., along the beam axis. (d) Force field
in the transverse plane z = 3.15\g. Color corresponds to z-
directed force, while the arrows correspond to the transverse
force field. It can be seen that the beam provides a stabilizing
force towards its axis.

The metasurface shown in Fig. 5 is simulated using
the full-wave solver ANSYS HFSS. The metasurface is
illuminated with a normally incident Gaussian beam at
a wavelength A\g = 1.5 pym. The beam waist radius is 20
pm and peak amplitude is E = 3.4 x 10* V/m, which cor-
responds to an incident power of 1 mW. The transmitted
beam contains the minimum power level that can pull a
750 nm polystyrene sphere against the force of gravity
(2.3 fN) over its non-diffracting range (z < Swg). Figure
6(a) plots the magnitude of the electric field in the yz
plane. The high intensity line focus of the Bessel beam
can be seen in the center. Using (4), the optical forces
exerted on the polystrene sphere as a function of its posi-
tion are numerically calculated from the simulated fields.
Figures 6 (b) and (c) plot the z-directed force in the yz
plane and along the beam axis, respectively. It can be
seen that the force is below -2.3 fN over a distance of
5Xo, which corresponds to the non-diffracting range of
the beam. The beam stability is also verified by noting
the transverse force field shown in Fig. 6(d).

From a practical perspective, the distance that a par-



ticle can be pulled scales linearly with the diameter of
the metasurface and the incident Gaussian beam waist.
Here, the diameter is limited to 30.9)\¢ due to the com-
putational resources available for simulating the entire
structure using a full-wave solver. The transmitted beam
more closely approximates an ideal tractor beam when
the diameters of the metasurface and Gaussian beam
are increased. Thus, these results should be viewed as
a worst case scenario for larger metasurfaces. It is also
important to note that the pulling distance scales as the
square root of the incident power. For example, the same
polystyrene particle could be pulled a distance exceeding
160\ if the metasurface diameter is increased to 980\
and the incident power is increased to 1 W.

VIII. SUMMARY

A straightforward method of stably pulling dielectric
microparticles towards a source, independent of ambient
conditions, is reported. In the future, the metasurface
could be designed to compensate for truncation effects
of tractor beams with finite size [44, 45]. This would

allow for a uniform pulling force along the beam axis.
Alternatively, similar metasurface designs could be used
to generate other highly structured optical modes, such
as soleniod beams that pull microparticles along helical
paths [11]. In addition, the metasurface could exhibit
an anisotropic or bianisotropic response to provide mi-
cromanipulation control through polarization adjustment
[33, 46]. For example, it should be possible to control the
degree at which microparticles are pushed or pulled by
simply changing the polarization of the incident Gaus-
sian beam [12, 13]. This would allow for the arbitrary
manipulation and sorting of small particles with a single
beam. Furthermore, these beams may prove particularly
useful for exploring new physical phenomena since they
can stably pull particles through vacuum [47, 48].
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