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Abstract 
Understanding electronic properties of sub-stoichiometric phases of titanium oxide such as 
Magnéli phase Ti4O7 is crucial in designing and modeling resistive switching devices.  Here 
we present our study on Magnéli phase Ti4O7 together with rutile TiO2 and Ti2O3 using 
density functional theory methods with atomic-orbital-based self-interaction correction 
(ASIC). We predict a new antiferromagnetic ground state in the low temperature phase (or LT 
phase), and we explain energy difference with a competing antiferromagnetic state using a 
Heisenberg model. The predicted energy ordering of these states in the LT phase is calculated 
to be robust in a wide range of modeled isotropic strain. We have also investigated the 
dependence of the electronic structures of the Ti-O phases on stoichiometry. The splitting of 
titanium t2g orbitals is enhanced with increasing oxygen deficiency as Ti-O is reduced. The 
electronic properties of all these phases can be reasonably well described by applying ASIC 
with a ‘standard’ value for transition metal oxides of the empirical parameter α of 0.5 
representing the magnitude of the applied self-interaction correction.  
  



1. Introduction 
 
Titanium dioxide (TiO2) is a binary oxide that has been extensively investigated for its 
applications in photovoltaics1, photocatalysis2 and, recently, resistive switching3-5. A typical 
structure exhibiting resistive switching consists of a TiO2 layer sandwiched between two 
metal electrodes. The resistance can be switched between two distinctive resistive states by 
the application of voltage pulses. It is now firmly established that oxygen vacancies play a 
crucial role4, 6-8 in the switching mechanism. Stoichiometric TiO2 can be easily reduced9, 10,11  
by external fields or by thermal means, leading to oxygen-deficient phases. When the 
concentration of the resulting oxygen vacancies is high enough, these phases may rearrange 
spontaneously to form ordered reduced structures, the so-called Magnéli phases (TinO2n-1). In 
fact, Magnéli phases such as Ti4O7 (n=4) have been identified experimentally6, 9 in resistive 
switching devices, with evidence suggesting that filaments or regions of Magnéli phase Ti4O7 
form conducting pathways. The formation of conductive filaments leads to a low-resistance 
state of the device, while the rupture of filaments leads to a high-resistance state. 
  
Titanium oxide structures for use in applications such as photocatalysis and resistive 
switching are likely to be off-stoichiometric and contain a mixture of Ti-oxides. Therefore, 
understanding the behavior of Ti-O based structures that depends on the Ti oxidation states 
requires detailed knowledge of electronic properties of the different sub-stoichiometric phases 
of titanium oxide. From a theoretical and modeling point of view, it is known7, 12, 13 that 
density functional theory (DFT) using the conventional local density approximation (LDA) or 
generalized gradient approximation (GGA) does not yield an accurate description of the 
electronic structure (e.g., band gap, or location of defect states within the band gap) of pristine 
and oxygen-deficient TiO2. Recently, DFT methods beyond conventional DFT, specifically 
the LDA+U method14 as well as hybrid functionals15, have been used to study TiO2, yielding 
in general satisfactory results. 7, 16, 17 For example, the experimental band gap of pristine TiO2 
is reproduced, and the relative stability of various vacancy charge states and the location of 
defect states in the band gap also agree well with experiments. 
 
The crystalline Magnéli phase Ti4O7 has been shown experimentally to have a small energy 
gap (~0.1-0.2 eV) below 142 K (low temperature, or LT), while it is metallic at room 
temperature (high temperature, or HT)18, 19. In contrast, theoretical approaches using 
LDA+U20, 21 or hybrid functionals22 predict a much larger energy gap for the LT phase (1.5 
eV and 0.75 eV, respectively) than the experimentally measured one. Furthermore, they 
predict contradictory electronic structures for the HT phase. Liborio et al. used the B3LYP 
hybrid functional22 and obtained an insulating antiferromagnetic (AF) HT phase with a band 
gap of 0.4 eV. On the other hand, Weissmann et al. used LDA+U, with value of U (0.4 Ry) 
determined by comparing the relative energies of different Ti4O7 phases21, and obtained a 
ferromagnetic (FM) metallic phase. Weissman et al.21 obtained an energy difference between 
the predicted ferromagnetic phase and a semiconducting AF state that is only 0.01 eV per 
formula unit. This energy difference is very low and would result in a mixture of different 
states at room temperature. It is desirable to have a single approach that can properly describe 



at least some of the behavior that depends on the electronic structures of the Magnéli phase as 
well as those of TiO2 and Ti2O3, considering that the Magnéli phase is positioned chemically 
between TiO2 and Ti2O3. In fact, this is of great importance, especially in the context of 
modeling TiO2-based resistive switching devices, since not only TiO2 but also Ti2O3 may 
coexist with the Magnéli phase10 when oxygen atoms are removed from TiO2 as the material 
switches from a high to a low resistance state. 
 
We have systematically modeled the electronic structures of the Magnéli phase Ti4O7 together 
with the end members of the Magnéli phase, i.e., TiO2 and Ti2O3, with the aim of describing 
these structures and determining their ground states, especially the band gap and densities of 
states, within the same approach. These titanium oxide phases cover a broad range of 
electronic properties, from metal (HT-Ti4O7) to narrow-gap semiconductor23, 24 (band 
gap~0.1-0.2 eV, LT-Ti4O7 and Ti2O3) and to insulator11,24 (band gap~3 eV, rutile TiO2). In our 
work, we used the atomic-orbital-based self-interaction correction (ASIC) scheme25, 26. The 
amount of self-interaction correction is controlled by a single parameter, α, which lies 
between 0 and 1 (for α=1 the full self-interaction correction is added, while for α=0 no 
correction is added).  The α-parameter empirically describes the charge screening in the 
given chemical environment. In metals with very good screening α vanishes, while for highly 
ionic compounds with poor screening such as NaCl, a value of α close to unity reproduces the 
experimental band gap25. For III-V and II-VI semiconductors as well as transition-metal 
oxides, the appropriate value of α is shown to be typically around one half25. A central 
question regarding the ASIC methodology itself is how it compares to the other beyond 
semi-local DFT methods, and then whether a single value of α can be used to reasonably 
accurately describe a number of key properties of all the different titanium oxides.  
 
In order to search for the low-energy phases of Ti4O7, we have investigated the total energies 
of all possible collinear spin configurations for both the LT and HT phases. The results for a 
fixed α value of 0.5, which is typically a reasonable value for transition metal oxides, are 
discussed in Sec. 3.1. A central result presented here is a new LT AF ground state, which is 
slightly lower in energy than the previously proposed21 LT AF ground state, and we analyze 
the LT magnetic states and the energy difference between them using an effective Heisenberg 
model. In devices for resistive switching or photocatalysis, the presence of external electric 
fields or interfaces between different phases naturally induces structural deformations, i.e., 
strain, which may have a profound impact on the electronic properties of the materials 
involved. We have therefore looked into the effect of isotropic strain in Sec. 3.2 on the 
relative stability of different spin configurations for Ti4O7 to predict its ground state under 
strain. In Sec. 3.3 we discuss the variation of electronic structrue of Ti-O phases when 
stoichiometry changes.  
 

2. Computational method 

 
The DFT calculations are performed within the framework of the ASIC-LDA25-27, as 
implemented in the SIESTA28 electronic structure code. In a benchmark study26 it was shown 



that the ASIC method is comparable to other advanced DFT methods (i.e., hybrid functionals 
and DFT+U) in delivering electronic structures, when applied to transition metal oxides such 
as MnO and NiO at equilibrium and under pressure. We use Troullier-Martins 
pseudopotentials29 and double-ζ basis sets with polarization functions for Ti and O atoms. 
Ti4O7 has a triclinic structure with two pseudo-orthorhombic sublattices30. Each unit cell 
consists of two formula units with a total of 22 atoms (Fig. 1). The equilibrium lattice 
parameters (Table I) and atomic coordinates of Ti4O7 as well as TiO2 and Ti2O3 are taken from 
experiments31-33. The SIESTA parameter ‘kgrid_cutoff’, which sets the density of sampling 
k-points in the Brillouin zone34, is set to 30 Å to perform k-space integrations. This results in 
486 points in the Brillouin zone for Ti4O7. The unit cell volumes in real space are 232.7 Å3 
and 232.3 Å3 for LT-Ti4O7 and HT-Ti4O7, respectively. 
 

TABLE I. Titanium oxides unit cell lattice parameters31-33. 
 a b c α β γ 

LT- Ti4O7 5.591 Å 6.915 Å 7.455 Å 120.64。 94.41。 104.52。 
HT- Ti4O7 5.593 Å 6.899 Å 7.441 Å 120.56。 94.46。 104.35。 

TiO2 4.594 Å 4.594 Å 2.958 Å 90。 90。 90。 
Ti2O3 5.433 Å 5.433 Å 5.433 Å 56.75。 56.75。 56.75。 

 

 
Figure 1. Atomic structure of Ti4O7 crystal unit cell. Grey spheres represent titanium and red 

spheres represent oxygen atoms. The numbering of Ti atoms is also shown. 
 

3. Results and discussion 

 
3.1 Ti4O7 spin configuration 
 
We study Ti4O7 using a fixed value of the standard ASIC parameter 5.0=α  at the two22 
experimentally determined atomic structures given in Table I. It is well established21, 22, 31, 35 
that Ti4O7 exhibits charge localization at the metal-insulator transition. In the HT phase all Ti 
ions have uniform charges22, 31 (+3.5), as evidenced by the similar average Ti-O distances 
(2.01 - 2.02 Å) for all Ti ions. By comparing measured Ti-O distances and tabulated ionic 



radii these Ti ions were found22 to have a charge of +3.5. Delocalization of the Ti 3d electrons 
leads to metallic properties of the HT phase. In contrast, in the LT phase the Ti ions can be 
classified into two groups: Ti3+ (Ti1, Ti1′, Ti3 and Ti3′ in Fig. 1) and Ti4+ (Ti2, Ti2′, Ti4 and 
Ti4′) ions. The corresponding average Ti-O distances are 2.04 Å for Ti3+ ions, and 1.97/2.00 Å 
for Ti4+ ions, respectively. Furthermore, long-range ordering of Ti3+-Ti3+ pairs leads to charge 
localization for the LT phase, which in turn causes semiconducting properties36. Regarding the 
details of chemical bonding in Ti4O7, previous spin-resolved electronic structure calculations 
have yielded contradictory conclusions21, 22, as discussed in the Introduction. 
 
As shown in Fig. 1, eight Ti atoms within one unit cell correspond to two sublattices, with 
four Ti atoms in each sublattice. We use the same numbering (e.g., Ti1 and Ti1′) to denote the 
Ti atoms related by point group symmetry in the two sublattices, with the atoms in the second 
sublattice denoted by a prime sign. References 21 and 22 both considered only ferromagnetic 
coupling between the two sublattices, such that Ti1 and Ti1′ had the same magnetic moment, 
as did Ti2 and Ti2′ and so on. However, we note that the structural symmetry between the two 
sublattices is conserved by both ferromagnetic and antiferromagnetic coupling. 
 

TABLE II. Total energies (per unit cell), magnetic moments (per unit cell), band gaps, 
averaged Ti-atom electric charge and Ti atomic spins estimated by Mulliken population 

analysis of different spin configurations as well the non-magnetic (NM) solutions of Ti4O7 at 

5.0=α . The energies shown are relative to the corresponding NM for both HT- and LT 
phases. Note that each unit cell consists of two formula units.  

 HT LT 
Spin state FM AF1 AF2 NM FM AF1 AF2 AF3 NM 

Energy (eV) -0.764 -0.668 -0.708 0 -0.906 -1.133 -0.894 -1.141 0 
Moment (μB) 2 0 0 0 2 0 0 0 0 

Band gap (eV) 0 0.30 0.28 0 0.61 0.84 0.74 0.94 0.13 

Atomic 
spin 
(μB) 

Ti1 +0.540 +0.442 -0.444 0 +1.002 +0.864 +1.008 +0.862 0 
Ti2 +0.717 +0.761 +0.746 0 +0.136 +0.028 -0.036 -0.004 0 
Ti3 +0.554 +0.370 -0.456 0 +0.890 -0.861 +0.872 -0.861 0 
Ti4 +0.435 +0.036 +0.033 0 +0.132 -0.043 -0.002 +0.028 0 
Ti1′ +0.540 -0.442 +0.444 0 +1.002 +0.864 -1.008 -0.862 0 
Ti2′ +0.717 -0.761 -0.746 0 +0.136 +0.028 +0.036 +0.004 0 
Ti3′ +0.554 -0.370 +0.456 0 +0.890 -0.861 -0.872 +0.861 0 
Ti4′ +0.435 -0.036 -0.033 0 +0.132 -0.043 +0.002 -0.028 0 

 

In order to determine the ground state spin configuration, we explore all possible spin 
configurations that respect the structural symmetry. Explicitly, we consider all 8=24/2 
(flipping all atomic moments simultaneously returns the same state) possible spin 
configurations across 4 Ti atoms within each sublattice (++++, +++-, ++--, …, +---), as well 
as both FM and AF coupling between the two sublattices. Thus, we consider all 16 possible 
collinear spin states within a unit cell. After the total energies converge self-consistently, we 
find that some initial spin configurations are transformed to other states, indicating that they 
do not correspond to a metastable local minimum in energy. In all, we find three stable 



spin-polarized solutions for the HT-phase (one FM state and two AF states), and four stable 
solutions for the LT-phase (one FM state and three AF states) (Table II). For the LT phase, we 
predict two competing ground states: the AF1 and AF3 states. Both states are 
antiferromagnetic with similar band gaps, while AF3 is 8 meV/unit cell lower in energy than 
AF1. It is to be noted that each unit cell consists of two formula units of Ti4O7, see Fig. 1. The 
AF1 state is very similar to the ground state obtained by either the B3LYP hybrid functional22 
or the LDA+U approach21. Both the AF1 and the AF3 states exhibit AF coupling between Ti3+ 
ions within each sublattice. The difference lies in how the two sublattices are coupled to each 
other: in the AF1 state two sublattices are ferromagnetically coupled, while in the AF3 state 
they are antiferromagnetically coupled. In the higher-energy AF2 state on the other hand two 
Ti3+ ions are coupled ferromagnetically, while the two sublattices are antiferromagnetically 
coupled. The magnetic moments for the Ti4+ ions and all oxygen ions are very small, since 
they do not have localized partially filled orbitals.   
 
The energy difference between the LT magnetic states can be attributed to (magnetic) 
exchange interactions, as we will now show. First, the four magnetic states can be classified 
into two groups by energy, the FM-AF2 group (Group I), and the AF1-AF3 group (Group II). 
Within each group, the Mulliken populations on each Ti3+ ion are equal to within less than 
0.002 e- (not shown), and spins on each Ti3+ ion are also approximately equal (Table II). 
  

 
 

Figure 2. The spin topology of the AF1 state (left panel) and the AF3 state (right panel) in 
LT-Ti4O7. The blue and red dots represent spin up and spin down, respectively. Atomics spins 
of the atoms in the center unit cell and those connected to the cell are highlighted by brighter 
colors.  
 
This indicates that each Ti3+ ion has very similar local chemical environment in both states in 
each group, and that, if we neglect the spin polarization, both states in each group should 
yield degenerate energies (same direct Coulomb energy). In Fig. 2 we depict the spin 
structures of AF1 state and AF3 state of the LT phase in real space to better understand the 
difference between these two states. In both spin states the atomic spins of Ti4+ ions are less 
than 0.05 μB (Table II), and in the FM and AF2 states the spin on these ions is less than 0.14 



μB. Therefore, we omitted these atoms in Fig. 2 for better visualization, and we show only the 
Ti3+ ions (Ti1, Ti1′, Ti3 and Ti3′). There are three nearest neighbor distances between the Ti3+ 
ions: r1, r2 and r3, as indicated in Fig. 2. The lengths of these distances are r1 = 2.802 Å, r2 = 
3.133 Å and r3 = 3.159 Å, respectively. The next shortest interatomic distance is about 3.3 Å. 
Since exchange interactions in general decay quickly with interatomic distance, we include 
only interactions between atoms with the three smallest interatomic distances. We analyze the 
energy difference within the manifold of LT states using a Heisenberg model, as will be 
shown in the following. Based on the discussion above, we write a Hamiltonian for the 
LT-manifold that separates the interactions into exchange interactions and direct Coulomb and 
correlation interactions as 

H = −J1(
rs1 ⋅ rs3 + rs1' ⋅

rs3' )− J2
rs1 ⋅ rs1' − J3(rs1 ⋅ rs3' +

rs1' ⋅
rs3)+ Hc .              (1) 

Here, 
rs1,
rs2,  and rs3 (

rs1',
rs2',  and rs3') are (dimensionless) spin operators on Ti1, Ti2, and Ti3 

(Ti1’, Ti2’, and Ti3’) and we use a spin quantization axis in which the “up” and “down” 
components are diagonal, and Hc contains the direct Coulomb energy, correlation energy, etc.; 

the coupling constants ,  and  correspond to interactions between pairs of atoms 

separated by r1, r2 and r3, respectively (Fig. 2). We can evaluate the energies of the LT states 
using Eq. (1) assuming that the expectation value of Hc yields the same constant within the LT 
manifold of states. For the AF1 and AF3 states we obtain the energies 

EAF1 = 2s0
2J1 − s0

2J2 + 2s0
2J3 +C ,       (2) 

and 

EAF3 = 2s0
2J1 + s0

2J2 − 2s0
2J3 +C ,    (3) 

respectively. In Eq. (1) C is the expectation value of Hc, and s0 are the expectation values of 
the spin operators on Tii and Tii’, i=1,2,3 in AF1 and AF3, which we take to be equal (s0≈0.86, 
see Table II). The energy difference between AF1 and AF3 is then obtained as  

Δ2 = EAF3 − EAF1 = 2s0
2J2 − 4s0

2J3 . Because Δ2 is negative from our ASIC calculations (Fig. 

3), J2 − 2J3  is also negative. For the FM and AF2 states, we can similarly write 

Δ1 = EAF 2 − EFM = 4s1 J2s1 + J3s3( ),  where s1≈1.0 and s3≈0.89 (Table II), and we are 

assuming that the coupling constants J1, J2 and J3 are the same in the two groups. We can 
evaluate J2 and J3 from the energy differences Δ1 and Δ2 to obtain J2≈-0.6 meV and J3≈3 meV. 
Finally, we can use the energy difference between the AF3 and FM states, or between the AF3 
and AF2 states, to estimate J1, which yields J1=-72 meV or J1=-78 meV, respectively. The 
uncertainty in the estimate for J1 can be attributed to the fact we ignored the small spins on 
the Ti4+ ions in FM and AF2. This simple analysis demonstrates that the energy differences 
between the LT magnetic states can be explained by near-neighbor exchange coupling, and 
that the overall energy scale between the groups is set by J1, while the energy differences 
within the magnetic states in each group are controlled by J2 and J3. This is also consistent 

J1 J2 J3



with the r1 distance considerably shorter than r2 and r3. 

 

Figure 3. The evolution of energy difference Δ2 between the AF1 state and the AF3 state of 
LT-Ti4O7 as a function of positive isotropic strain.  
 
In applying the Heisenberg model we have made the assumption that the exchange coupling 
at large distances is negligible. To justify this assumption we model the effect of positive 
isotropic strain (applied tensile stress) on the energy difference between the AF1 and AF3 
states of the LT phase (Fig. 3) . The isotropic strain is modeled by expanding the lattice 
constants and all atomic coordinates proportionally. As a result, r1, r2, and r3 all expand 
proportionally. Fig. 3 shows that Δ2 remains negative under the expansion up to +15% strain, 
beyond which the energies of both states become identical. Under the assumption that the 
energies are dominated by exchange interactions, this indicates that the exchange interactions 
vanish at 15% strain and beyond. At +15% strain the maximum relevant distance is r3 = 3.633 
Å, so we can deduce that exchange interactions become negligible when interatomic distances 
between Ti atoms are greater than 3.63 Å. 
 
Because the predicted relative energy of the AF3 state is only 8 meV per unit cell lower with 
respect to the AF1 state using the DFT-ASIC method, we have also applied a hybrid 
functional, HSE0637, 38, as implemented in the all-electron DFT code, FHI-aims39, in order to 
verify that our results for AF1 and AF3 are robust with respect to the calculation method. In 
the HSE06 functional, 25% of the exact Hartree-Fock (HF) exchange energy is split into a 
short-range part with a screening parameter of 0.11 bohr−1, and a PBE40 GGA-like functional 
for the long-range exchange. In spite of the fact that the applied ASIC method makes use of 
pseudopotentials, while the adopted hybrid functional is implemented in an all-electron code, 
both methods yield quite similar energy difference between AF1 and AF3. The latter method 
predicts an energy difference of 10 meV per unit cell, with AF3 also being the state with the 
lower energy. 
 
The density of states (DOS) for the AF1 and AF3 states are shown in Figure 4. The ASIC and 
hybrid functional methods give results with very similar DOS features for both states, except 



for the fundamental gap: the energy gaps predicted by HSE06 are about 0.5 eV larger than 
those by ASIC. Although the total magnetization is zero, spin up DOS and spin down DOS 
are not degenerate for AF1. We note that AF1 exhibits an FM coupling between two sublattices. 
Thus, whether spin-up and spin-down DOS (Fig. 4) are degenerate is in turn determined by either 
sublattice. As TABLE II shows, in the AF1 state, spin-up and spin-down are not distributed 
symmetrically in space within each sublattice; all eleven atoms (four Ti atoms and seven O atoms) 
within one sublattice are structurally different with no apparent symmetry31. This results in the fact 
that spin-up and spin-down states are not degenerate in the energy spectrum. On the other hand, 
the two spin components are degenerate in our LT-AF3 ground state, as a result of AF 
coupling between two sublattices.  

 
Figure 4. Density of states of the competing AF1 and AF3 states, calculated by both the ASIC 
method (left panel) in SIESTA and the HSE06 hybrid functional in FHI-aims (right panel). 
The black and red lines represent spin up and spin down, respectively. The Fermi level 
(energy zero) is aligned with the conduction band minimum (CBM). 
 
For the HT phase, 5.0=α  results in a metallic ferromagnetic ground state. We use 
Mulliken population analysis to estimate atomic spins presented in Table II; some oxygen 
atoms have small but non-zero opposite spins. All Ti atoms have similar atomic spins (0.4 - 
0.7μB), reflecting similar chemical environments for them. The total magnetic moment is 2 μB 
per formula unit, which corresponds to a full spin polarization of localized 3d electrons of all 
Ti ions, with an average formal charge of 3.5. Our result is similar to the FM state predicted 
by Weissmann21 (LDA+U), which, however, was not the lowest-energy state in that work. We 
note that we also obtain two AF states, AF1 and AF2 (Table II), relatively close in energy to 
the FM state with energy differences of only 0.1 and 0.05 eV per unit cell, respectively, 
relative to the FM state. Magnetic susceptibility measurements suggest that Ti4O7 is 
Pauli-paramagnetic18 at room temperature, but with a large susceptibility. Our results, as well 
as those of Weissmann and Weht21, show a complex energy landscape with several competing 
FM and AF states. This suggests that Ti4O7 at room temperature may contain a mixture of FM 



and AF (as well as non-magnetic) states, the combined effect of which is to yield a large, but 
paramagnetic, susceptibility. For the purpose of electronic conduction, or other properties that 
depend primarily on the bandgap, the ASIC method with α=0.5 correctly yields a metallic 
state for Ti4O7. Therefore the ASIC method is applicable for studying resistive switching in 
Ti-oxide based devices as it correctly describes the bandgap evolution across the Ti-oxide 
series from TiO2 to Ti4O7. 
 
3.2 Evolution of spin states with applied strain.  
 
All calculations presented in section 3.1 are based on experimental structures. For the 
transition metal oxides MnO and NiO, it was found that LDA+ASIC underestimates the 
experimental lattice constant26 by ~2%. It was also shown in the same work that the electronic 
spin polarization depends critically on the lattice constant, i.e., strain. Table II shows that the 
total energy differences between some spin states of Ti4O7 are small (< 0.01 eV), which may 
lead to strain-induced magnetic phase transition26. This is an issue that needs to be considered, 
because strain fields are expected to be present in resistive switching devices due to the 
presence of, e.g., external electric fields or interfaces.  
 

 

 

Figure 5.  Differences between the ASIC ( 5.0=α ) total energy, ET, of the various  spin 
configurations of Ti4O7 and the total energy of the nonmagnetic state, ENM, as a function of 
isotropic strain. Positive strain values correspond to tensile stress while negative strain values 
correspond to compressive stress. Total energies of the non-magnetic states, ENM, vs. applied 
strain are shown in the inserts.  
  
The evolution of total energies of different spin configurations (relative to the respective 
non-magnetic LT and HT states) as a function of isotropic strain is shown in Fig. 5. We model 
isotropic strain by varying lattice constants and all atomic coordinates proportionally. For 
both the HT phase and LT phase the equilibrium structures modeled by ASIC underestimate 
experimental lattice constants by about 2%, which is consistent with previous ASIC 
benchmark work for other oxides25. It is clear from the figure that spin polarization always 
lowers the total energy compared to non-polarized states. While the HT phase appears to 
show an FM-AF2 magnetic transition at around -4% strain, there is no transition for the LT 



phase in the full modeled strain range. We note that the ASIC method applied here is not 
variational with respect to atomic coordinates41 and therefore the total energy vs. strain may 
not be completely accurate. A variational pseudo-self-interaction-corrected density functional 
approach41 (VPSIC), which is beyond the scope of this work, can potentially give more 
accurate total energies. VPSIC predicts essentially the same results as ASIC does for 
electronic structure calculations with fixed atomic positions41 We expect the ASIC predicted 
FM to AF2 transition for the HT phase to be robust, although the exact value of the strain at 
which it occurs may be slightly different in magnitude. We note also that the energy 
difference between the LT-AF1 and LT-AF3 states at the experimental structure is very similar 
for the ASIC and hybrid functional calculations, which lends confidence that calculated 
relative energy for the different spin states by ASIC is robust.  
 
3.3 Electronic structure vs. stoichiometry 

 

Figure 6. The evolution of non-magnetic density of states as a function of Ti-O stoichiometry. 
Upper panels: the LDA results. Lower panels: the ASIC results ( 5.0=α ). The black and 
red curves represent the projected density of states on Ti and O, respectively. For the metallic 
systems the Fermi level (energy zero) position is uniquely defined, and for the 
semiconducting systems we align it to the CBM. 
 
As we have mentioned earlier, it is of considerable interest to ascertain if the ASIC approach 
can be applied to describe electronic properties of an oxide with a mixture of different Ti 
oxidation states, for example, such that are found during resistive switching. To check this, we 
apply the same method as we used for Ti4O7 to rutile TiO2 and Ti2O3, in which titanium and 
oxygen are subject to different chemical environment as a result of different stoichiometry. 
Figure 6 shows comparison of the densities of states for three different stoichiometries. The 
conduction band is dominated by Ti-3d orbitals, while the valence band is dominated by O-2p 
orbitals for all phases. All these Ti-O crystals have distorted octahedral crystal fields for the Ti 
sites. As a result, there is always an eg-t2g splitting of the conduction band across all these 



crystals. For Ti4O7 and Ti2O3, the deficiency of oxygen results in an additional splitting of the 
t2g orbitals near the Fermi level.  
 

The conventional LDA functional yields a semiconducting state for TiO2 only, while all other 
Ti-O phases are calculated to be metallic (finite DOS at Fermi level), which is in contrast to 
experiments. ASIC on the other hand corrects spurious electronic self-interactions and 
facilitates charge localization. This results in an increase of band gap for TiO2 (from 1.56 eV 
at LDA to 2.62 eV at 5.0=α ). We note that these values are slightly smaller than those 
predicted using plane-wave basis set implementation (1.88 eV at LDA41 and 2.9 eV at the 
VPSIC41  at 5.0=α ). Within the ASIC approach, a finite gap is opened for Ti2O3 and 
LT-Ti4O7, but HT-Ti4O7 remains metallic. It is interesting to note that by applying the ASIC 
method even the non-polarized picture qualitatively agrees with experiments, i.e., while 
HT-Ti4O7 is calculated to be a metal, all other oxides are calculated to have a finite gap (Fig. 
6). When spin-polarization is taken into account there is no qualitative change to this picture, 
as will be shown in the following. 
 
TABLE III. The band gaps (eV) of different Ti-O phases calculated by ASIC and HSE06. 

 TiO2 LT-Ti4O7 (AF3) Ti2O3 

ASIC ( 5.0=α ) 2.62 0.94 0.23 

HSE06 3.24 1.47 0.57 

 
When spin polarization is considered, for LT-Ti4O7 the  Ti+3 ions significantly localize 
electrons and induce local magnetic moment, which increases band gap from 0.1 eV to 0.94 
eV (in LT-AF3 ground state, see Table II). For HT-Ti4O7 there are no such  Ti+3 ions and it 
remains metallic (in HT-FM ground state). Next, we compare ASIC functional results to 
HSE06 hybrid functional in describing electronic properties of these Ti-O phases (Table III). 
Both methods yield the same ordering and similar energy differences for band gap change vs. 
stoichiometry, while HSE06 predicts a few tenths of eV wider gap for all phases. The 
predicted band gaps for LT-Ti4O7 by both methods are larger than the experimentally reported 
values. Note however that in this case the experimentally measured band gaps might not 
correspond to the fundamental gap; rather, they may reflect the energy required to flip two 
spins22. 
 
Finally, to ascertain that the chosen value of ASIC correction strength α is appropriate for 
different Ti-O stoichiometries, we show the predicted band gaps of all gapped Ti-O phases 
considered in this work, as a function of α. All these materials exhibit a nearly linear 
relationship between band gap and α in the regions of α with non-zero band gaps as shown in 
Figure 7. This is consistent with the previous ASIC benchmark work.25 The appropriate value 
of α is in principle expected to vary from one material to another, considering the fact that α is 
related to the screening properties of a given material. On the other hand, we find that a single 
value of 5.0=α  can properly describe all the Ti-O phases shown here, at least as far as 
the electronic conduction properties are concerned, with band gaps reasonably well 
reproduced. Depending on the specific Ti-O phases, the HSE06 functional behaves (in terms 
of calculated band gap) like ASIC from 6.0=α  to 7.0=α . Note however that the 



computational cost of an ASIC calculation is much lower than a corresponding HSE06 
calculation. For example, for calculating the rutile TiO2 electronic structure at a similar 
accuracy ASIC costs less than one tenth of HSE06 does. 
 

 
Figure 7. Predicted band gap vs. empirical parameter α for LT-Ti4O7, TiO2 and Ti2O3. 

 

4. Conclusions 
 
In summary, we have systematically used the LDA-ASIC approach to study the Ti4O7 
Magnéli phase, as well as Ti2O3 and rutile TiO2. By searching throughout the possible spin 
configurations we predicted a new antiferromagnetic semiconducting ground state (AF3) and 
show that there are two competing semiconducting states (AF1 and AF3) with similar 
energies. We propose a Heisenberg model to explain the lower energy of the AF3 state 
compared with the AF1 state. This result is also confirmed using a hybrid functional (HSE06) 
approach. The HT phase on the other hand is found to be metallic. For LT- Ti4O7 the 
competition of AF1 and AF3 states is tested to be robust in a wide range of isotropic strain, 
while for HT phase there appears to be a magnetic phase transition at compressive strain. Our 
results show that both ASIC and HSE06 functional are capable of describing electronic 
properties of Ti4O7, Ti2O3 and rutile TiO2, with ASIC requiring only a fraction of the 
computational cost of an HSE06 calculation. This paves the way to modeling of resistive 
switching of Ti-O based heterostructures within the framework of density functional theory. 
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