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Abstract
We examine trends in the wavevectors and form-factors of charge density wave instabilities of three-

band models of the underdoped cuprates. For instabilities from a high temperature state with a large

Fermi surface, we extend a study by Bulut et al. (Phys. Rev. B 88, 155132 (2013)) to include a direct

antiferromagnetic exchange coupling between the Cu sites. As in previous work, we invariably find that

the primary instability has a diagonal wavevector (±Q0,±Q0) and a d-form factor. The experimentally

observed wavevectors along the principal axes (±Q0, 0), (0,±Q0) have higher energy, but they also have

a predominantly d-form factor. Next, we gap out the Fermi surface in the anti-nodal regions of the

Brillouin zone by including static, long-range antiferromagnetic order at the wavevector (π, π): this is

a simple model of the pseudogap in which we assume the antiferromagnetic order averages to zero by

‘renormalized classical’ thermal fluctuations in its orientation, valid when the antiferromagnetic correlation

length is large. The charge density wave instabilities of this pseudogap state are found to have the

optimal wavevector (±Q0, 0), (0,±Q0), with the magnitude of the d-form factor decreasing with increasing

magnetic order.
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I. INTRODUCTION

A number of recent scanning tunneling microscopy (STM) and X-ray scattering experiments

have provided interesting new information on the microstructure of the charge order at wavevectors

(±Q0, 0), (0,±Q0) in the hole-doped cuprates (here Q0 ranges between 2π/3 and 2π/4). The STM

observations by Fujita et al.1 on Bi2Sr2CaCu2O8+x and Ca2−xNaxCuO2Cl2 yield direct phase-

sensitive evidence of a dominant d-form factor density wave. Comin et al.2 performed X-ray

scattering off the Cu sites in YBa2Cu3O6+y; interpretation of their results require a model of the

density wave distribution around the Cu sites, and this model yields the best fit with a significant

d-form factor. In contrast, in the La-based superconductor La1.875Ba0.125CuO4, Achkar et al.3

performed X-ray scattering off the O sites, and their results are directly interpreted in terms of

a dominant s′ form factor. In this context, it will be important for our purposes to note that

the La-based superconductors, with the s′ form factor, have long-range incommensurate magnetic

order at low temperatures, while the other superconductors do not.

On the theoretical side, a number of recent studies have investigated density wave instabilities

with form factors carrying non-zero angular momentum.4–24 It is important to note that in our

discussion form factors are defined using the expression

〈
c†iα cjα

〉
=
∑
Q

[∑
k

PQ(k)eik·(ri−rj)

]
eiQ·(ri+rj)/2, (1)

or 〈
c†k+Q/2 ck−Q/2

〉
= PQ(k), (2)

for the case of a single-band model (with generalizations to multi-band models to be discussed

below); here ciα annihilates an electron with spin α on the Cu site i, Q is the ordering wavevec-

tor, and PQ(k) is the form factor. The form factor is required to obey P−Q(k) = P ∗Q(k), while

time-reversal symmetry imposes PQ(−k) = PQ(k). In computations starting from a Fermi liquid

with a large Fermi surface in a single band model, it was found that the dominant density wave

instability was at wavevectors Q = (±Q0,±Q0) with a d-form factor PQ(k) ∼ cos(kx) − cos(ky).

The ordering wavevector of these instabilities is therefore along the diagonal of the square lattice

Brillouin zone, rather than the along the principal axes as observed in the experiments. An exten-

sion of these computations to the 3-band model by Bulut et al.22 and by Maier and Scalapino25

also found the diagonal wavevector. However, these 3-band computations did not include a direct

antiferromagnetic exchange interactions between the Cu orbitals; such an exchange was crucial in

the arguments for the d-form factor using the pseudospin rotation symmetry to the d-wave super-

conductor. The present paper will extend the 3-band computations to include Cu-Cu exchange

interactions: this significantly increases the computational complexity because the particle-hole

diagrams have off-site interactions. The results for such computations appear in Section II: we

find that the ordering wavevectors remain along the diagonals, as in the previous 3-band computa-
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tions. However, we do obtain new information on the off-site correlators characterizing the density

wave, and all are found to be in excellent accord with a d-form factor interpretation.

A number of proposals have been made to resolve the disagreement between theory and experi-

ment in the orientation of the wavevector.13,16,18,23 In particular, Atkinson et al.23 have argued that

it is important to examine the charge ordering instabilities of a Fermi surface with pre-existing

‘pseudogap’, and not of the large Fermi surface. They proposed to induce an analog of the pseu-

dogap by imposing commensurate antiferromagnetic order at the wavevector (π, π) on the parent

state; from this parent state they found that the optimal charge-ordering wavevector was indeed

similar to the experimentally observed values of (±Q0, 0), (0,±Q0) along the principal axes. In

reality, there is no antiferromagnetic order in the parent state of the hole-doped superconductors,

but such a ‘renormalized classical’ approach may be justified if the antiferromagnetic correlation

length is large enough.26 We will also take such a model of the pseudogap in the present paper,

extended to our 3-band model with a bare Cu-Cu exchange interaction. Our analysis, presented

in Section III, will also allow for the mixing present between the charge order at Q and spin den-

sity wave order at Q + (π, π), and diagonalize the eigenmodes in the full charge-spin space. Our

computations also find that the optimal charge ordering wavevector is close to the experimentally

observed values of (±Q0, 0), (0,±Q0) along the principal axes. Another finding is that the presence

of antiferromagnetic order decreases the magnitude of the d-form factor; this trend is consistent

with recent observation of a dominant s′ form factor in the hole-doped cuprate with magnetic

order, La1.875Ba0.125CuO4.
3

A weakness of the above antiferromagnetic model of the pseudogap is, of course, that the anti-

ferromagnetic correlation length is actually quite short in the hole-doped cuprates. This suggests

that one should include quantum spin fluctuations more fully, and account better for ‘spin liquid’

physics. The computation described above can be regarded as one limiting case where the spin

fluctuations are presumed to be fully thermal and classical. The opposite limiting case is one where

the spin fluctuations are fully quantum, and the pseudogap is due to a spin liquid background:

such a perspective was taken in a separate paper,18 which finds a predominant d-form factor and

an optimal wavevector of (±Q0, 0), (0,±Q0) along the principal axes, both in agreement with

experiments.

II. LARGE FERMI SURFACE

This section will examine the density wave instabilities of the 3-band model of the CuO2 layers

of the cuprates. Here we will start from a Fermi liquid ground state without any magnetic order.

Following Ref. 23, the hopping Hamiltonian Ĥt we we use to describe this ground state is given
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Parameters
Hopping Interactions

tpd tdpp tipp εd − εp Ud Up Vpd Vpp J

Large Fermi Surface 1.6 0.0 -1.0 0.9 9.0 3.0 1.0 variable variable
Small Fermi Surface 1.6 0.0 -1.0 0.9 variable 0.0 1.0 1.5 variable

TABLE I. Parameters used in the calculations presented in Sections II and III in units where |tipp| = 1.

With the exception of J , the parameters are the same as those given in Ref. 23 for the large Fermi surface

calculation. For the small Fermi surface, Ud and J were determined by a Hartree-Fock analysis.

by an extension of the Emery model27 due to Andersen et al.:28

Ĥt =
∑
k

Ψ†k,αH(k)Ψk,α, Ψ†k,α =
(
c†dα(k), c†xα(k), c†yα(k)

)

H(k) =

 εd 2tpd sin(kx/2) −2tpd sin(ky/2)

2tpd sin(kx/2) εp + 4tipp sin2(kx/2) 4(tdpp + tipp) sin(kx/2) sin(ky/2)

−2tpd sin(ky/2) 4(tdpp + tipp) sin(kx/2) sin(ky/2) εp + 4tipp sin2(ky/2)

 . (3)

For tipp = 0, this Hamiltonian reduces to the Emery model and corresponds to the tight-binding

model of the unit cell shown in Fig. 1(a). The signs of the Cu-O hopping amplitudes are determined

by the phases of neighboring lobes of the orbital wavefunctions. In order to obtain a realistic Fermi

surface for the cuprates, however, we must impose that the direct hopping amplitude between

oxygen orbitals tdpp be negative by hand. This is unsatisfactory since we would normally expect

that tdpp be positive. By integrating out the Cu 4s orbital from a 4-band Hamiltonian, Andersen et

al. found a negative indirect hopping amplitude tipp. Further, the direct hopping amplitude they

calculated was comparatively small. Consequently, in what follows, we have set tipp = −1.0 and

tdpp = 0. The remaining values of the hopping amplitudes are given in Table I. We note that for

computational ease we have chosen our gauge, given in Eq. (A1) in Appendix A, so that Ĥt is a

real symmetric matrix.

The Green’s functions are given by diagonalizing the kernel H(k):

S†(k)H(k)S(k) = Λ(k) (4)

where Λµν(k) = δµνE
µ
k gives the band energies and S(k) is a 3× 3 matrix of eigenvectors. In the

diagonal basis, the bare Green’s function is

G0γ(k;ωn) =
−1

iωn − (Eγ
k − µ)

(5)

and so the Green’s function in the orbital basis is

G0
µν(k;ωn) = −

∑
γ

S∗µγ(k)Sνγ(k)
1

iωn − (Eγ
k − µ)

. (6)
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FIG. 1. (a) Diagram of the unit cell of the lattice showing the hopping amplitudes corresponding to

the tight-binding Hamiltonian in Eq. 3. The on-site energies εd and εp and the inter-orbital hopping

parameters tpd and tpp are displayed next to the corresponding orbitals and bonds respectively. Note

how the sign of tpd changes depending on the relative phases of the wavefunction lobes closest to one

another. (b) Diagram showing the interactions of the Hamiltonian within the unit cell and between two

nearest-neighbor copper atoms. The corresponding expressions are given in Eqs. 7 and 8.

We consider the effect of two types of interactions. The first is the Coulomb interaction ĤC ,

which we further separate into a Hubbard term, Ĥh
C , and an inter-orbital term, Ĥv

C :

ĤC =Ĥh
C + Ĥv

C (7)

Ĥh
C =

∑
i

[
Ud c

†
d↑(ri)cd↑(ri)c

†
d↓(ri)cd↓(ri) + Up

(
c†x↑(ri)cx↑(ri)c

†
x↓(ri)cx↓(ri) + c†y↑(ri)cy↑(ri)c

†
y↓(ri)cy↓(ri)

)]
Ĥv
C =

∑
〈ij〉

Vpdc
†
dα(ri)cdα(ri)

[
c†xβ(rj)cxβ(rj) + c†yβ(rj)cyβ(rj)

]
+
∑
〈ij〉

Vppc
†
xα(ri)cxα(ri)c

†
yβ(rj)cyβ(rj)

where the sums in the last two lines are over nearest-neighbors. We go beyond the previous

work22,23 by also including a direct exchange term between the Cu atoms

ĤJ =
∑
〈ij〉

∑
a

J

4
σaαβσ

a
γδc
†
dα(ri)cdβ(ri)c

†
dγ(rj)cdδ(rj) , (8)

where the sum is over nearest-neighbor interactions between Cu atoms in different unit cells. The

interactions between the various orbitals are shown in Fig. 1(b). The full Hamiltonian is given by
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the sum

Ĥ = Ĥt + ĤC + ĤJ . (9)

We transform the interaction terms to momentum space, and express them using a suitable set

of basis functions in Appendix A. For the particle-hole singlet channel which we wish to study, 23

basis functions are required. This can easily be seen by counting the number on-site and inter-

orbital interactions present in the Hamiltonian. The Hubbard term has on-site copper, O px, and

O py orbital interactions and, since they are local, they require one basis function each. Conversely,

the inter-orbital interactions have two separate degrees of freedom. For instance, each copper atom

per unit cell interacts through the Coulomb term with 4 distinct oxygen orbitals, and so requires

8 basis functions. Similarly, the interactions among the O px and O py orbitals and between the

copper orbitals in different unit cells introduce another 12 basis functions. These are given in Table

III in Appendix A.

As mentioned above, we are primarily interested in the density wave instability of this model

in the particle-hole channel. In order to do study this, we generalize the order parameter defined

in Eq. (1) to the 3-band model by the addition of orbital indices. Accounting for the gauge choice

given in Eq. (A1), we write

P µν
ij =

〈
c†µα(ri)cνα(rj)

〉
= zµν

∑
Q

[∫
d2k

4π2
P µν
Q (k)eik·(ri−rj)eik·(Rµ−Rν)

]
eiQ·(ri+rj)/2eiQ·(Rµ+Rν)/2

(10)

zµν =


1, µν = dd, xx, yy, xy, yx

−i, µν = dx, dy

i, µν = xd, yd

.

where there is no implied summation of µ and ν. In momentum space, the order parameter P µν
Q (k)

can also be decomposed into the basis functions given in Table III:

P µν
Q (k) = zµν

23∑
l=1

Pl(Q)φ lµν(k) . (11)

Hermiticity requires that P µν
ij =

(
P νµ
ji

)∗
and it follows that in momentum space

P µν
Q (k) =

(
P νµ
−Q(k)

)∗
. (12)

Because of the Fourier definition in Eq. (A1), time reversal T acts on the electron annihilation
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operator cµα(k) as

T cµ↑(k)T −1 = ηµνcµ↓(−k), η = diag(1,−1,−1). (13)

It follows that the order parameter transforms as

T : P µν
Q (k) 7→ ηµγηνδP

γδ
Q (−k) . (14)

The action of T on the functions Pl(Q) is summarized in Table IV of Appendix A.

A. Particle-hole interactions

This subsection will compute the particle-hole ladder diagrams associated with density wave

instabilities, and find their eigenmodes (the components {Pl(Q)} defined in Eq. 11) as a function

of the total momentum of the particle-hole pair.

Similar to Ref.,22 we accomplish this by reducing the Bethe-Salpeter equation to a matrix

equation and numerically solving. We start by defining an effective interaction as a sum between

the exchange and direct interactions for the charge channel:

Vµµ′,νν′(k,k
′,q) = Xµµ′,νν′(k− k′)− 2Wµµ′,νν′(q) . (15)

The exchange Xµµ′,νν′ and direct Wµµ′,νν′ parts of the interaction are represented in (a) and (b)

of Fig. 2 respectively and the bare interaction Vµµ′,νν′ corresponds to Fig. 2(c). In terms of the 23

basis functions, we write the exchange vertex as

Xµµ′,νν′(k− k′) =
23∑

l,m=1

φ lµν′(k)Xlmφ
m
µ′ν(k

′) (16)

where Xlm = Vlδlm and Vl are interaction parameters whose relation to the values presented in

Table I are given in Eq. (A6). Similarly, the direct vertex is expressed as

Wµµ′,νν′(q) =
23∑

l,m=1

φlµν′ Wlm(q)φmµ′ν (17)

where for l,m > 3, Wlm(q) = 0 and for l,m = 1, 2, 3, it is given by

Wlm(q) =


Ud 2Vpd cos(qx/2) 2Vpd cos(qy/2)

2Vpd cos(qx/2) Up 4Vpp cos(qx/2) cos(qy/2)

2Vpd cos(qy/2) 4Vpp cos(qx/2) cos(qy/2) Up


lm

(18)
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(e) Bethe-Salpeter equation

FIG. 1. Feynman diagrams

22

FIG. 2. Feynman diagrams used in the T -matrix calculation discussed in Section II A. (a) and (b) give

the exchange and direct interactions respectively. Together, they compose the bare vertex shown in (c)

as per Eq. 15. (d) shows the full interaction vertex, which is determined by the Bethe-Salpeter equation

given diagrammatically in (e). Further details are presented in the main text.

Note that for l,m = 1, 2, 3, the basis functions φ lµν are indeed independent of k.

The leading instability of the total vertex Γµµ′,νν′(k,k
′,q), shown in the diagram in Fig. 2(d),

defines the order parameter and ordering wavevector we are interested in. We approximate it by
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a generalized RPA (Bethe-Salpeter equation) scheme as

Γµµ′,νν′(k,k
′,q) =

23∑
l,m=1

φ lµν′(k)Γlm(q)φmµ′ν(k
′) (19)

=
23∑

l,m=1

φlµν′(k)Vlm(q)φmµ′ν(k
′)

+
23∑

l,m=1

23∑
n,s=1

∑
γγ′

δδ′

∑
p,ωn

φlµν′(k)Vln(q)φnγγ′(p)G0
δ′γ′(p− q/2;ωn)G0

γδ(p + q/2;ωn)φsδδ′(p)Γsm(q)φmµ′ν(k
′).

The corresponding diagrammatic expression is shown in Fig. 2(e). To simplify, we define the

polarizability to be

Πns(q) = 2
∑
γγ′

δδ′

∑
p,ωn

φnγγ′(p)G0
δ′γ′(p− q/2)G0

γδ(p + q/2)φsδδ′(p) (20)

= −2
∑
p

∑
γγ′

δδ′

∑
αα′

φnγγ′(p)φ sδδ′(p)Mδ′γ′γδ
α′α,pq

f(Eα′(p− q/2))− f(Eα(p + q/2))

Eα′(p− q/2)− Eα(p + q/2)

where f is the Fermi function and

Mδ′γ′γδ
α′α,pq = S∗δ′α′(p− q/2)Sγ′α′(p− q/2)S∗γα(p + q/2)Sδα(p + q/2) . (21)

As indicated, it follows that Eq. (19) can be reduced to a matrix equation:

Γlm(q) = Vlm(q) +
1

2

23∑
n,s=1

Vln(q)Πns(q)Γsm(q) (22)

= Vlδlm − 2Wlm(q) +
1

2

23∑
s=1

VlΠls(q)Γsm(q)−
23∑

n,s=1

Wln(q)Πns(q)Γsm(q) .

The instabilities of the total vertex are determined by finding the minimum eigenvalues λq of the

matrix

Alm(q) = δlm −
1

2

23∑
n=1

Vln(q)Πnm(q) . (23)

for all q. The ordering wavevector corresponds to the Qm for which λQm is the global minimum

over the entire Brillouin zone and the order parameter is defined by the associated eigenvector

{Pl(Qm)} through Eq. 11.
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B. Results

The lowest eigenvalues of the matrix in Eq. (23) as a function of the total momentum Q

are plotted in Fig. 3 for a range of parameters. The diagonal wavevector Q = Qm(1, 1) for

Qm = 1.19381 point is very consistently the global minimum for a wide range of interaction

parameters. Increasing either J or Vpp both have the effect of decreasing the minimum eigenvalue.

However, larger J tends to localize the minimum at Qm(1, 1) whereas larger Vpp has the opposite

effect. A ridge of local minima extending down to the axial wavevector Q = Qm(1, 0), Qm(0, 1)

is also consistently present. Motivated by experiment, we discuss the order parameters associated

with these wavevectors as well.

Some of the eigenvectors corresponding to both the diagonal and axial momenta are given in

Table II. The d-wave character of the order parameter is somewhat harder to read off than in a

one band model. As expected, for Q = Qm(1, 1), both the on-site Copper amplitude (l = 1) and

the extended s-wave symmetry (l = 21) vanish. For all three vectors presented, the weight is split

primarily between the l = 2, 3 (on-site O px and O py amplitudes) and the l = 20 (Cu-Cu d-form

factor) basis vectors. Further, the l = 2 and l = 3 components are of the same order of magnitude

and have opposite sign, indicating that these vectors are in fact primarily d-wave.

At Q = Qm(1, 0), the order parameter is similarly primarily d-wave in character, though the s

and s′ components no longer vanish. As Vpp is increased, the d-wave character also increases.

Figs. 4 and 5 are visualizations of the amplitudes given by the order parameter P µν
Q (k) at

Q = Qm(1, 1) and Q = Qm(1, 0) respectively. They are generated by taking the functions listed

in Table V of Appendix A and plotting a corresponding color. Both with and without the spatial

modulation ∼ cos Q · r envelope are shown for clarity. The primary difference between the two

figures is the direction of the amplitude modulation shown in (a) and (b) of either figure. Further,

technically, the difference in the colors representing the amplitudes of the O px and O py orbitals

for the eigenvector at axial momentum in Fig. 5(c) is not as strong as for the diagonal momentum

in Fig. 4(c). This follows since, as mentioned, the s and s′ components of the order parameter in

the axial case are nonzero. However, since these components are small, there is little indication of

any s character.

The general structure of the pictures in Figs. 4 and 5 are similar to those obtained in Ref. 8 for

the one-band model. In the one-band case, the only quantities available were the on-site densities

on the Cu sites, and the bond order parameters involving nearest-neighbor pairs of Cu sites. We

find very similar modulations in the same quantities here. However, we now also have additional

information using the O sites: the on-site densities on the O sites, the bond orders between the

nearest-neighbor Cu and O sites, and the diagonal bond orders between pairs of O sites. All of

these quantities are also shown in the figures, and their spatial pattern mirrors those of Cu site

and bond orders. In particular the modulation on an O site reflects that on the Cu-Cu bond it

resides on.
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l φlµν(k)
Qm(1, 1) Qm(1, 0)

Vpp = 1.0 Vpp = 1.5 Vpp = 2.0 Vpp = 1.0 Vpp = 1.5 Vpp = 2.0

1 δµd δνd 0.0 0.0 0.0 −0.3417 −0.2348 −0.1848

2 δµx δνx −0.4636 −0.6185 −0.6592 −0.5252 −0.6361 −0.6659

3 δµy δνy 0.4636 0.6185 0.6592 0.5426 0.6500 0.6756

4 δµd δνx
√

2 cos
(
kx
2

)
−0.2017 −0.1184 −0.0789 −0.2065 −0.1135 −0.0751

5 δµx δνd
√

2 cos
(
kx
2

)
0.2017 0.1184 0.0789 0.2065 0.1135 0.0751

6 δµd δνx
√

2 sin
(
kx
2

)
−0.2301 −0.1374 −0.0927 −0.1618 −0.0917 −0.0612

7 δµx δνd
√

2 sin
(
kx
2

)
−0.2301 −0.1374 −0.0927 −0.1618 −0.0917 −0.0612

8 δµd δνy
√

2 cos
(
ky
2

)
−0.2017 −0.1184 −0.0789 0.0 0.0 0.0

9 δµy δνd
√

2 cos
(
ky
2

)
0.2017 0.1184 0.0789 0.0 0.0 0.0

10 δµd δνy
√

2 sin
(
ky
2

)
−0.2301 −0.1374 −0.0927 −0.1985 −0.1154 −0.0789

11 δµy δνd
√

2 sin
(
ky
2

)
−0.2301 −0.1374 −0.0927 −0.1985 −0.1154 −0.0789

12 δµx δνy 2 cos
(
kx
2

)
cos
(
ky
2

)
0.0 0.0 0.0 0.0 0.0 0.0

13 δµy δνx 2 cos
(
kx
2

)
cos
(
ky
2

)
0.0 0.0 0.0 0.0 0.0 0.0

14 δµx δνy 2 cos
(
kx
2

)
sin
(
ky
2

)
−0.1461 −0.1334 −0.1213 −0.1595 −0.1377 −0.1242

15 δµy δνx 2 cos
(
kx
2

)
sin
(
ky
2

)
0.1461 0.1334 0.1213 0.1595 0.1377 0.1242

16 δµx δνy 2 sin
(
kx
2

)
cos
(
ky
2

)
−0.1461 −0.1334 −0.1213 0.0 0.0 0.0

17 δµy δνx 2 sin
(
kx
2

)
cos
(
ky
2

)
0.1461 0.1334 0.1213 0.0 0.0 0.0

18 δµx δνy 2 sin
(
kx
2

)
sin
(
ky
2

)
0.0 0.0 0.0 −0.0005 −0.0004 −0.0001

19 δµy δνx 2 sin
(
kx
2

)
sin
(
ky
2

)
0.0 0.0 0.0 −0.0005 −0.0004 −0.0001

20 δµd δνd (cos kx − cos ky) 0.3320 0.1793 0.1130 0.2129 0.1025 0.0624

21 δµd δνd (cos kx + cos ky) 0.0 0.0 0.0 0.0209 0.0112 0.0072

22 δµd δνd (sin kx − sin ky) 0.0 0.0 0.0 0.0 0.0 0.0

23 δµd δνd (sin kx + sin ky) 0.0 0.0 0.0 0.0 0.0 0.0

TABLE II. Eigenvectors corresponding to Q = Qm(1, 1) and Q = Qm(1, 0) for J = 0.5, Vpd = 1.0 and

Vpp = 1.0, 1.5 and 2.0. The temperature is T = 0.015 and the filling p = 0.1643. All others parameters

are as given in Table I.
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Vpp = 1.0 Vpp = 1.5 Vpp = 2.0

J = 0.0

J = 0.5

J = 1.5

FIG. 2. (Color online) Plot of the minimum eigenvalue of the matrix Alm(Q) in Eq. (24) for Q in the first

quadrant at di↵erent values of J and Vpp. The temperature is T = 0.015 and the filling p = 5�n = 0.1643.

All other parameters are as given in Table I. The diagonal point Q = Qm(1, 1) for Qm = 1.19381 is very

consistently the point of greatest instability.

24

FIG. 3. (Color online) Plot of the minimum eigenvalue of the matrix Alm(Q) in Eq. (23) for Q in the first

quadrant at different values of J and Vpp. The temperature is T = 0.015 and the filling p = 5−n = 0.1643.

All other parameters are as given in Table I. The diagonal point Q = Qm(1, 1) for Qm = 1.19381 is very

consistently the point of greatest instability.
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(a) Full bond amplitudes for orbital and dd

bonds.

(b) Full bond amplitudes for dx, dy, and xy

bonds.

(c) Magnitude of bond amplitude for orbital

and dd bonds.

(d) Magnitude of bond amplitude for dx, dy,

and xy bonds.

FIG. 3. (Color online) Real space representation of hopping amplitudes for diagonal Q = Qm(1, 1)

evaluated with J = 0.5, Vpp = 1.25, and Vpd at T = 0.015 and p = 0.1643. For clarity the lattice has

been divided into two separate pictures. (a) and (c) display the on-site Copper, the on-site oxygen and

the copper-copper hopping amplitudes whereas (b) and (d) give the dx, dy and xy bond amplitudes. (a)

and (b) plot the full functions given in Table V while (c) and (d) simply display the r = 0 part.

25

Opx
Opy

Cu-Cu

Cud

dx

xy

dy

FIG. 4. (Color online) Real space representation of hopping amplitudes for diagonal Q = Qm(1, 1)

evaluated with J = 0.5, Vpp = 1.25, and Vpd at T = 0.015 and p = 0.1643. For clarity the lattice has been

divided into two separate pictures. (a) and (c) display the on-site Copper, the on-site oxygen and the

copper-copper hopping amplitudes whereas (b) and (d) give the dx, dy and xy bond amplitudes. (a) and

(b) plot the full functions given in Table V while (c) and (d) simply display the r = 0 part. (c) and (d)

also indicate which orbitals and bonds the symbols represent. The modulations of the order parameter in

the diagonal direction can be seen in (a) and (b) by tracking the colors of the O px, O py orbitals and the

xy bonds respectively over several unit cells. The (c) and (d) pictures make the d-form factor evident.
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(a) Full bond amplitudes for orbital and dd

bonds.

(b) Full bond amplitudes for dx, dy, and xy

bonds.

(c) Magnitude of bond amplitude for orbital

and dd bonds.

(d) Magnitude of bond amplitude for dx, dy,

and xy bonds.

FIG. 4. (Color online) Real space representation of hopping amplitudes for axial Q = Qm(1, 0) evaluated

with J = 0.5, Vpp = 1.25, and Vpd at T = 0.015 and p = 0.1643. For clarity the lattice has been divided

into two separate pictures. (a) and (c) display the on-site Copper, the on-site oxygen and the copper-

copper hopping amplitudes whereas (b) and (d) give the dx, dy and xy bond amplitudes. (a) and (b)

plot the full functions given in Table V while (c) and (d) simply display the r = 0 part.

26

Opx
Opy

Cu-Cu

Cud

dx

xy

dy

FIG. 5. (Color online) Just as in Fig. 4. Real space representation of hopping amplitudes for axial

Q = Qm(1, 0) evaluated with J = 0.5, Vpp = 1.25, and Vpd at T = 0.015 and p = 0.1643.
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III. SMALL FERMI SURFACES WITH ANTIFERROMAGNETIC ORDER

We next consider the three band model in the presence of a staggered magnetic field pointing

in the x̂-direction:

Ĥ ′t = Ĥt + ĤAF (24)

We perform a self-consistent Hartree-Fock analysis in order to determine the static antiferromag-

netic (AF) order parameter Md on the copper atom sites. Further, the Coulomb interactions

between the copper and oxygen orbitals may induce an antiferromagnetic bond order so that ad-

ditional AF order parameters, Mpd and Mpp, are required. It follows that the general extension to

the hopping Hamiltonian in Eq. (3) is

ĤAF = −
∑
i

eiK·riσxαβ

[
Mdc

†
dα(ri)cdβ(ri) (25)

+Mpd

(
− c†dα(r)cxβ(r) + c†dα(r)cxβ(r− x̂) + c†dα(r)cyβ(r)− c†dα(r)cyβ(r− ŷ) + h.c.

)
+Mpp

(
c†xα(r)cyβ(r)− c†xα(r)cyβ(r− ŷ)

− c†xα(r− x̂)cyβ(r) + c†xα(r− x̂)cyβ(r− ŷ) + h.c.
)]

where K = (π, π). The sign of the inter-orbital correlations is the same as in the original hop-

ping Hamiltonian (see Figs. 1 and 9). We transform this Hamiltonian to momentum space basis

functions in Appendix B, and describe how the magnetic order parameters Md, Mpd, and Mpp are

computed in the Hartree-Fock theory. We find that Mpd and Mpp have near-vanishing magnitude

and they will not be discussed further.

The particle-hole T -matrix calculation in the presence of AF order is similar to the one presented

in Section II A, though considerably more complicated due to spin-flip processes. These calculations

are presented in Appendix C. While we are still primarily interested in the particle-hole spin singlet

channel, the presence of AF order breaks the SU(2) symmetry of the original Hamiltonian causing

the charge channel at wavevector Q to mix with the spin channel at wavevector Q + (π, π).

However, while the total spin is no longer conserved, the Sx component still is and mixing only

occurs between the particle-hole pair with total spin S = 0 and the particle-hole pair with total

spin S = 1 and spin component Sx = 0. Having to track the total spin doubles the number

of required basis functions so that the order parameter is a 46-component vector {Pl(Q)}. This

analysis, as well as the basis functions used for the actual calculations, are given in Appendix D.

An additional inversion symmetry is present, but instead of being used to decrease the number of

basis functions, it was used to verify our results.
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A. Results

Fig. 6 shows the spectral functions and minimum eigenvalues for Ud + 2J ranging from 3.25 to

8.0 with the chemical potential chosen so that the hole density p ∼ 0.10. The other parameters

are given in the bottom row of Table I.

As is apparent from Fig. 6, the minimal eigenvalues are consistently along the axes either at

(±Q1,2, 0) and (0,±Q1,2), with Q1 ≈ π/3 and Q2 ≈ 2π/3. The orientation of the eigenvalue is

therefore in accord with experiments. The global minimum is mostly at the wavevector Q2, which

corresponds approximately to the distance between the tips of the hole pockets shown in the top

row of Fig. 6. In a few cases, there is also a well-formed minimum at Q1; we do not have a

correspondingly simple interpretation of Q1, but suspect that it is related to the incipient electron

pocket near the antinodes which is present at smaller magnetic order.

Turning to the form factors, recall our observation above that the eigenmodes have components

both in the S = 0 charge density wave at Q and in the S = 1 spin density wave at Q + (π, π).

We show in Fig. 7 the relative weights of the S = 0 and S = 1 components at the wavevectors

(Q1, 0) and (Q2, 0). For most of the cases, the weight in the spin density wave component is actually

dominant. This appears to be due to the proximity of the critical point where the antiferromagnetic

order at (π, π) vanishes, and amplitude fluctuations in the Néel order are enhanced.

Nonetheless, when we take into account the orientational fluctuations of the Néel order induced

by a non-zero temperature, we expect that the S = 1 components will average to zero . For this

reason, we focus on the spatial structure of the S = 0 component of the order parameter alone.

The normalized components of the eigenvector projected into the S = 0 components are shown

in Fig. 8. The consistent trend in these plots, and one of our key results, is that increasing the

magnetic order, Md, leads to a decrease in the d components and a corresponding increase in the

s′ components.

IV. CONCLUSIONS

This paper has analyzed charge ordering instabilities of 3-band models of the cuprates. Con-

sistent with earlier results on related models, we find that starting from a metal with a large

Fermi surface invariably leads, in the simplest RPA approximation, to charge-ordering along a

‘diagonal’ wavevector, which disagrees with experimental observations. However, as suggested in

Ref. 23, starting from a Fermi surface reconstructed by antiferromagnetic order leads to the ob-

served charge ordering along the principal axes. We examined the form-factors of this ordering,

and found that its d-wave character was suppressed as the strength of the magnetic order was

increased. This trend is consistent with recent X-ray experimental observations of charge order in

LBCO in Ref. 3, which measured the ratio of s′ to d components on the O sites. Our results for

these parameters are in Fig. 8. The magnetically ordered LBCO compound has a much larger s′/d

ratio than that observed by STM in the non-magnetic compounds.1
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Md = 0.73 Md = 1.60 Md = 3.24

Spectral
function

J = 0.0

J = 1.0

J = 1.5

FIG. 5. (Color online) Spectral functions and minimum eigenvalues for Md =0.73, 1.60 and 3.24 (which

corresponds to Ud + 2J = 3.25, 5.0 and 8.0). The chemical potential is adjusted so that p ⇠ 0.11, while

Vpp = 1.5 and Vpd = 1.0. The second through fourth columns are for J = 0.0, 1.0, and 1.5 respectively.

Note that the minimum eigenvalues are mostly at (Q2, 0) with Q2 ⇡ 2⇡/3; in some cases there are also

well-formed minima at (Q1, 0) with Q1 ⇡ ⇡/3.

27

FIG. 6. (Color online) Spectral functions and minimum eigenvalues for Md =0.73, 1.60 and 3.24 (which

corresponds to Ud + 2J = 3.25, 5.0 and 8.0 respectively). The chemical potential is adjusted so that

p ∼ 0.10, while Vpp = 1.5 and Vpd = 1.0. The second through fourth columns are for J = 0.0, 1.0, and

1.5 respectively. Note that the minimum eigenvalues are mostly at (Q2, 0) with Q2 ≈ 2π/3; in some cases

there are also well-formed minima at (Q1, 0) with Q1 ≈ π/3.
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1.0 1.5 2.0 2.5 3.0
Md

0.2

0.4

0.6

0.8

Weight

(Q1,0), J=0.0

(Q1,0), J=1.0

(Q1,0), J=1.5

(Q2,0), J=0.0

(Q2,0), J=1.0

(Q2,0), J=1.5

FIG. 6. (Color online) Fraction of the weight in the S = 0 part of the eigenvectors at (Q1, 0) and (Q2, 0).

28

FIG. 7. (Color online) The sum of the squares of the S = 0 components of the original eigenvectors

corresponding to the minimum eigenvalues at (Q1, 0) and (Q2, 0). That is, we plot
∑23

l=1 |Pl(Q)|2 at

Q = (Q1,2, 0) where {Pl(Q)} are the components corresponding to the 46 basis functions given in Tables VI

and VII. We subsequently project out the S = 1 components (l = 24− 46) and normalize.

The model of magnetic order used in the present paper is rather crude, and it would be inter-

esting to extend the computations to more realistic models. We have assumed magnetic order at

(π, π), whereas the magnetic order in LBCO is incommensurate. The magnetic order has been as-

sumed to be static, but it would be interesting to examine the influence of a frequency-dependent

electronic self energy in a Eliashberg framework. This would then complement the spin-liquid

perspective taken recently in Ref. 18.

Finally, we note that our renormalized classical treatment of magnetic order here is more appro-

priate for the electron-doped cuprates.26 Interestingly, charge order has recently been observed in

an electron-doped compound29 with a wavevector which is close to the (±Q1, 0) wavevector found

in our computations above. It would be interesting to measure the form factor of this ordering:

the implication of our results here is that the s-form factor will be larger than in the hole-doped

cuprates.
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FIG. 7. (Color online) Normalized form factor dependence at the first minimum, (Q1, 0) and the second

minimum, (Q2, 0), as a function of magnetization Md. On the first row, the legend is shown. In descending

order the remaining rows show the results for J = 0.0, 1.0 and 1.5.

29

FIG. 8. (Color online) S = 0 form factor dependence at (Q1, 0) and (Q2, 0), as a function of magnetization

Md (from which Ud + 2J is determined). These values are determined by projecting out the S = 1

components of the eigenvectors and subsequently normalizing. Only the most important contributions

are displayed. On the first row, the legend is shown. In descending order the remaining rows show the

results for J = 0.0, 1.0 and 1.5. The other interaction parameters are given in Table I and the chemical

potential is chosen so that p ∼ 0.10.
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Appendix A: Basis functions

This appendix expresses the Hamiltonian in Eq. (9) in Fourier space, and then writes it in terms

of basis functions which aid in the determination of the eigenmodes in the particle-hole sector. We

begin by introducing the Fourier transforms

cdα(ri) =
∑
k

e−ik·ricdα(k), c†dα(ri) =
∑
k

eik·ric†dα(k) (A1)

cµα(ri) = −i
∑
k

e−ik·(ri+Rµ)cµα(k), c†µα(ri) = i
∑
k

eik·(ri+Rµ)c†µα(k) µ = x, y

where Rµ is the position within the unit cell of the µth orbital: Rd = 0, Rx = +x̂/2, and

Ry = +ŷ/2. The Coulomb terms become

Ĥh
C =

∑
k,k′,q

[
Ud c

†
d↑(k

′ − q/2)cd↑(k− q/2)c†d↓(k + q/2)cd↓(k
′ + q/2) (A2)

+ Up

(
c†x↑(k

′ − q/2)cx↑(k− q/2)c†x↓(k + q/2)cx↓(k
′ + q/2)

+ c†y↑(k
′ − q/2)cy↑(k− q/2)c†y↓(k + q/2)cy↓(k

′ + q/2)

)]
Ĥv
C =

∑
k,k′,q

[
2Vpd

(
cos

(
kx − k′x

2

)
c†dα(k′ − q/2)cdα(k− q/2)c†xβ(k + q/2)cxβ(k′ + q/2) (A3)

+ cos

(
ky − k′y

2

)
c†dα(k′ − q/2)cdα(k− q/2)c†yβ(k + q/2)cyβ(k′ + q/2)

)
+ 4Vpp cos

(
kx − k′x

2

)
cos

(
ky − k′y

2

)
c†xα(k′ − q/2)cxα(k− q/2)c†yβ(k + q/2)cyβ(k′ + q/2)

]
and the copper-copper exchange interaction is given by

ĤJ =
∑
k,k′,q

∑
a

J

4

(
cos(kx − k′x) + cos(ky − k′y)

)
c†dα(k′ − q/2)σaαβcdβ(k− q/2)c†dγ(k + q/2)σaγδcdδ(k

′ + q/2) .

(A4)

These expressions may be simplified by writing them as a sum over the basis functions φ lµν(k)

given in Table III. In this basis, the interaction Hamiltonian becomes
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l µ ν φ lµν(k)

1 d d δµd δνd

2 x x δµx δνx

3 y y δµy δνy

4 d x δµd δνx
√

2 cos
(
kx
2

)
5 x d δµx δνd

√
2 cos

(
kx
2

)
6 d x δµd δνx

√
2 sin

(
kx
2

)
7 x d δµx δνd

√
2 sin

(
kx
2

)
8 d y δµd δνy

√
2 cos

(
ky
2

)
9 y d δµy δνd

√
2 cos

(
ky
2

)
10 d y δµd δνy

√
2 sin

(
ky
2

)
11 y d δµy δνd

√
2 sin

(
ky
2

)

l µ ν φ lµν(k)

12 x y δµx δνy 2 cos
(
kx
2

)
cos
(
ky
2

)
13 y x δµy δνx 2 cos

(
kx
2

)
cos
(
ky
2

)
14 x y δµx δνy 2 cos

(
kx
2

)
sin
(
ky
2

)
15 y x δµy δνx 2 cos

(
kx
2

)
sin
(
ky
2

)
16 x y δµx δνy 2 sin

(
kx
2

)
cos
(
ky
2

)
17 y x δµy δνx 2 sin

(
kx
2

)
cos
(
ky
2

)
18 x y δµx δνy 2 sin

(
kx
2

)
sin
(
ky
2

)
19 y x δµy δνx 2 sin

(
kx
2

)
sin
(
ky
2

)
20 d d δµd δνd (cos kx − cos ky)

21 d d δµd δνd (cos kx + cos ky)

22 d d δµd δνd (sin kx − sin ky)

23 d d δµd δνd (sin kx + sin ky)

TABLE III. For each l-index, φlµν(k) is nonzero only for the µν−pair given in the second and third

columns of each table. The full function is shown in the fourth column.

ĤC + ĤJ =
∑
k,k′,q

[ 19∑
l=1

∑
µν

Vl
2
φ lµν(k)φ lµν(k

′)c†µα(k′ − q/2)cµα(k− q/2)c†νβ(k + q/2)cνβ(k′ + q/2)

(A5)

+
23∑
l=20

∑
µν

Vl
6
φ lµν(k)φ lµν(k

′)c†dα(k′ − q/2)σaαβcdβ(k− q/2)c†dγ(k + q/2)σaγδcdδ(k
′ + q/2)

]
.

where the interaction parameters Vl are given by

Vl =



Ud, l = 1

Up, l = 2, 3

Vpd, l = 4− 11

Vpp, l = 12− 19

3J/4, l = 20− 23

. (A6)

The action of time-reversal on the basis functions is summarized in Table IV.

Since the eigenvectors corresponding to the lowest eigenvalues are in general time-reversal pre-

serving, we focus on this case. Table V summarizes the relationship between the real-space order
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l µ ν T Pl(Q)

1 d d T : P1(Q) 7→ P1(Q)

2 x x T : P2(Q) 7→ P2(Q)

3 y y T : P3(Q) 7→ P3(Q)

4 d x T : P4(Q) 7→ −P5(Q)

5 x d T : P5(Q) 7→ −P4(Q)

6 d x T : P6(Q) 7→ P7(Q)

7 x d T : P7(Q) 7→ P6(Q)

8 d y T : P8(Q) 7→ −P9(Q)

9 y d T : P9(Q) 7→ −P8(Q)

10 d y T : P10(Q) 7→ P11(Q)

11 y d T : P11(Q) 7→ P10(Q)

l µ ν T Pl(Q)

12 x y T : P12(Q) 7→ P13(Q)

13 y x T : P13(Q) 7→ P12(Q)

14 x y T : P14(Q) 7→ −P15(Q)

15 y x T : P15(Q) 7→ −P14(Q)

16 x y T : P16(Q) 7→ −P17(Q)

17 y x T : P17(Q) 7→ −P16(Q)

18 x y T : P18(Q) 7→ P19(Q)

19 y x T : P19(Q) 7→ P18(Q)

20 d d T : P20(Q) 7→ P20(Q)

21 d d T : P21(Q) 7→ P21(Q)

22 d d T : P22(Q) 7→ −P22(Q)

23 d d T : P23(Q) 7→ −P23(Q)

TABLE IV. The actions of time-reversal on the basis function coefficients {Pl(k)}.

parameter P µν
ij and an eigenvector {Pl(Q)}. Note that the amplitude is multiplied by the sign of

the hopping term in the Hamiltonian corresponding to that bond has. Fig. 9 gives these signs and

shows how these look on the lattice.

Appendix B: Basis functions with antiferromagnetic order

To determine the momentum space representation of the Hamiltonian in the presence of anti-

ferromagnetic order in Eq. (25), we begin by introducing a new electron operator ψµσ :

ψµ↑(k) = cµ↑(k) ψµ↓(k) = cµ↓(k + K) . (B1)
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Bond Definitions P µν
ij

P1 cos (Q · ri) δi,j
dd

Rx
dd = (−P20 + P21) /2 +Rx

dd

[
cos
(
Q · ri + Qx

2

)
δi,j−x̂

Ry
dd = (P20 + P21) /2 + cos

(
Q · ri − Qx

2

)
δi,j+x̂

]
+Ry

dd

[
cos
(
Q · ri + Qy

2

)
δi,j−ŷ

+ cos
(
Q · ri − Qy

2

)
δi,j+ŷ

]
xx P2 cos

(
Q · ri + Qx

2

)
δi,j

yy P3 cos
(
Q · ri + Qy

2

)
δi,j

dx
Rdx =

√
(P2

4 + P2
6 ) /2 Rdx

[
cos
(
Q · ri + Qx

4
+ θdx

)
δi,j

θdx = arctan (P4/P6) + cos
(
Q · ri − Qx

4
− θdx

)
δi,j+x̂

]
dy

Rdy =
√

(P2
8 + P2

10) /2 Rdy

[
− cos

(
Q · ri + Qy

4
+ θdy

)
δi,j

θdy = arctan (P8/P10) − cos
(
Q · ri − Qy

4
− θdy

)
δi,j+ŷ

]

xy

R−xy = 1
2

√
(P12 − P18)

2 + (P14 + P16)
2 +R−xy

[
cos
(
Q · ri + Qx

4
− Qy

4
+ θ−xy

)
δi,j+ŷ

θ−xy = arctan
[

(P14 + P16) / (P12 − P18)
]

+ cos
(
Q · ri + 3Qx

4
+ Qy

4
− θ−xy

)
δi,j−x̂

]
R+
xy = 1

2

√
(P12 + P18)

2 + (−P14 + P16)
2 −R+

xy

[
cos
(
Q · ri + Qx

4
+ Qy

4
+ θ+xy

)
δi,j

θ+xy = arctan
[

(−P14 + P16) / (P12 + P18)
]

+ cos
(
Q · ri + 3Qx

4
− Qy

4
− θ+xy

)
δi,j−x̂+ŷ

]
TABLE V. Transition amplitudes in the time-reversal invariant sector at wave vector Q.

With these operators we re-express Eq. 25 as

ĤAF = −
∑
k

[
Md

(
ψ†d↑(k)ψd↓(k) + h.c.

)
(B2)

+ 2Mpd

(
− cos

(
kx
2

)
ψ†d↑(k)ψx↓(k + K) + sin

(
kx
2

)
ψ†x↑(k)ψd↓(k) + h.c.

+ cos

(
ky
2

)
ψ†d↑(k)ψy↓(k + K)− sin

(
ky
2

)
ψ†y↑(k)ψd↓(k) + h.c.

)
+ 4Mpp

(
sin

(
kx
2

)
cos

(
ky
2

)
ψ†x↑(k)ψy↓(k)

+ cos

(
kx
2

)
sin

(
ky
2

)
ψ†y↑(k)ψx↓(k) + h.c.

)]
.
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Ox

Oy

Cu
ri

Pi,iddHQL=P1HQLcosHQ◊rL
Pi,ixxHQL=P2HQLcosHQ◊r+Qxê2L

Pi,i
yyHQL=P3HQLcosHQ◊r+Qyê2L

-+

+

-

ri

Pi,idxHQL=RdxcosHQ◊ri+qdx+Qxê4LPi,i-xdx HQL=RdxcosHQ◊ri-qdx-Qxê4L
Pi,i
dyHQL=-RdycosHQ◊ri+qdy+Qyê4L

Pi-y,i
dy HQL=-RdycosHQ◊ri-qdy-Qyê4L

(a) Hopping amplitudes on atom sites. (b) Hopping amplitudes between oxygen and copper atoms.

ri

-

+-

+

Pi,i
xyHQL=-Rxy+ cos Q ◊ ri + qxy+ + Qx

4
+
Qy

4
Pi-x,i
xy HQL=Rxy- cos Q ◊ ri - qxy- - Qx

4
+
Qy

4

Pi-x,i-y
xy HQL=-Rxy+ cos Q ◊ ri - qxy+ - Qx

4
-
Qy

4
Pi,i-y
xy HQL=Rxy- cos Q ◊ ri + qxy- + Qx

4
-
Qy

4

ri

Pi,iddHQL=Rddx cosHQ◊ri+Qxê2LPi,i-xdd HQL=Rddx cosHQ◊ri-Qxê2L

Pi,iddHQL=Rddy cosHQ◊ri+Qyê2L

Pi,i-ydd HQL=Rddy cosHQ◊ri-Qyê2L

(c) Hopping amplitudes between oxygen atoms. (d) Hopping amplitudes between di↵erent copper atoms.

FIG. 8. Real space representation of hopping amplitudes. The signs written in the dx, dy, and xy bonds

in (b) and (c) indicate which sign the hopping term in the Hamiltonian corresponding to that bond has.

The amplitudes given in Table V have been multiplied by that factor.
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FIG. 9. Real space representation of hopping amplitudes. The signs written in the dx, dy, and xy bonds

in (b) and (c) indicate which sign the hopping term in the Hamiltonian corresponding to that bond has.

The amplitudes given in Table V have been multiplied by this phase.

The full hopping hamiltonian is now

Ĥ ′t =
∑
k

Ψ†kH(k)Ψk, Ψ†k =
(
ψ†d↑(k), ψ†x↑(k), ψ†y↑(k), ψ†d↓(k), ψ†x↓(k), ψ†y↓(k)

)
(B3)

H(k) =

(
H(k) −M↑↓(k)

−M↓↑(k) H(k + K)

)
(B4)
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where

M↑↓(k) =


Md −2Mpd cos

(
kx
2

)
2Mpd cos

(
ky
2

)
2Mpd sin

(
kx
2

)
0 4Mpp sin

(
kx
2

)
cos
(
ky
2

)
−2Mpd sin

(
ky
2

)
4Mpp cos

(
kx
2

)
sin
(
ky
2

)
0

 (B5)

M↓↑(k) =


Md −2Mpd sin

(
kx
2

)
2Mpd sin

(
ky
2

)
2Mpd cos

(
kx
2

)
0 4Mpp cos

(
kx
2

)
sin
(
ky
2

)
−2Mpd cos

(
ky
2

)
4Mpp sin

(
kx
2

)
cos
(
ky
2

)
0

 . (B6)

In order to determine the parameters Md, Mpd, and Mpp, we must solve the following mean-field

equations:

Md = (Ud + 2J)
∑
k

〈
c†d↑(k)cd↓(k + K)

〉
(B7)

Mpd = Vpd
∑
k

sin

(
kx
2

)〈
c†d↑(k)cx↓(k + K)

〉
Mpp = Vpp

∑
k

sin

(
kx
2

)
cos

(
ky
2

)〈
c†x↑(k)cy↓(k + K)

〉
.

As discussed in Section II A, the presence of AF order, will mix the charge and spin channels.

Naively, it follows that the number of basis functions needed will increase by a factor of four since

they must now carry spin indices as well. Using the original basis functions in Table III, we define

ϕlµν,σσ′(k) =


δσ↑δσ′↑ φ

l
µν(k), l = 1− 23

δσ↓δσ′↓ φ
l−23
µν (k), l = 24− 46

δσ↑δσ′↓ φ
l−46
µν (k), l = 47− 69

δσ↓δσ′↑ φ
l−69
µν (k), l = 70− 92

. (B8)

Alternatively, we can simply write ϕlµν,σσ′(k) = ϕlab(k) where a = (µ, σ) and b = (ν, σ′). In this
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basis, the interaction Hamiltonian is

Ĥint =
∑
q,k,k′

[ ∑
l,m∈I1

∑
µν

∑
αβ

Vl
2
ϕ l
µν,αβ(k)ϕm

µν,αβ(k′)ψ†µα(k′ − q/2)ψµα(k− q/2)ψ†νβ(k + q/2)ψνβ(k′ + q/2)

(B9)

+
∑

l,m∈IJ

Jl
2

(∑
αβ

ϕ l
dd,αβ(k)ϕm

dd,αβ(k′)
(
ψ†dα(k′ − q/2)σzααψdα(k− q/2)ψ†dβ(k + q/2)σzββψdβ(k′ + q/2)

− 2ϕ l
dd,↓↓(k)ϕm

dd,↑↑(k
′)ψ†d↑(k

′ − q/2)ψd↓(k− q/2)ψ†d↓(k + q/2)ψd↑(k
′ + q/2)

− 2ϕ l
dd,↑↑(k)ϕm

dd,↓↓(k
′)ψ†d↓(k

′ − q/2)ψd↑(k− q/2)ψ†d↑(k + q/2)ψd↓(k
′ + q/2)

)]
.

where I1 = {1− 19, 24− 42, 47− 65, 70− 88} and IJ = {20− 23, 43− 46, 66− 69, 89− 92}. The

parameters Vl are given by

Vl =


V ′l , l = 1− 23

V ′l−23, l = 24− 46

V ′l−46, l = 47− 69

V ′l−69, l = 70− 92

V ′l =



Ud, l = 1

Up, l = 2, 3

Vpd, l = 4− 11

Vpp, l = 12− 19

0, otherwise

. (B10)

and the Cu-Cu exchange interaction strength is simply

Jl =


J ′l , l = 1− 23

J ′l−23, l = 24− 46

J ′l−46, l = 47− 69

J ′l−69, l = 70− 92

J ′l =

{
J/4, l = 1

0, otherwise
. (B11)

Appendix C: T -Matrix Solutions in the presence of AF order

Here we reproduce the calculation of Section II A in the presence of AF order. As above, the

interaction vertex may be separated into an exchange and a direct part. It is given by

Vαα′,ββ′

µµ′,νν′ (k,k′; q) = Xαα′,ββ′

µµ′,νν′ (k− k′)−Wαα′,ββ′

µµ′,νν′ (q) (C1)

=
∑
lm

ϕlµν′,αβ′(k) (Xlm −Wlm(q))ϕmµ′ν,α′β(k′) .

To take the different nontrivial spin behaviour into account, we will further separate both the

exchange and direct vertices into a J = 0 and a J 6= 0 part.
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Starting with the exchange vertex, we write X = X1 + XJ . The J = 0 part is given by

X1 = X 1


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (C2)

where X is a 23× 23 diagonal matrix with elements X 1
lm = δlmV ′l with V ′l given in Eq. (B10). The

Cu-Cu exchange term is more complicated, since it depends on the incoming and outgoing spin:

XJ = X J


1 −21 0 0

−21 1 0 0

0 0 −1 0

0 0 0 −1

 (C3)

where X J is a 23 × 23 diagonal matrix with elements X J
lm = δlmJ ′l with J ′l given in Eq. (B11).

Adding these terms, the total exchange interaction is

X =


X 1 + X J −2X J 0 0

−2X J X 1 + X J 0 0

0 0 X 1 −X J 0

0 0 0 X 1 −X J

 (C4)

We similarly separate the direct part into a J = 0 and a J 6= 0 part:

W(q) = W1(q) + WJ(q) . (C5)

The J = 0 part is given by

W1(q) = W1(q)


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 (C6)

where W1(q) is the same 23 × 23 matrix that was used in the case without AFM: W1
lm = 0 for

l,m > 3 and for l,m ≤ 3 is given by

W1
lm(q) =


Ud 2Vpd cos(qx/2) 2Vpd cos(qy/2)

2Vpd cos(qx/2) Up 4Vpp cos(qx/2) cos(qy/2)

2Vpd cos(qy/2) 4Vpp cos(qx/2) cos(qy/2) Up


lm

. (C7)
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The Cu-Cu exchange part, WJ(q), is given by

WJ(q) = WJ(q)


1 −1 0 0

−1 1 0 0

0 0 −21 0

0 0 0 −21

 (C8)

where WJ(q) is a 23× 23 matrix with elements

WJ
lm(q) =

{
1
2
J (cos qx + cos qy) , (l,m) = (1, 1)

0, otherwise
. (C9)

The total direct interaction may thus be written as

W(q) =


W1 + WJ W1 −WJ 0 0

W1 −WJ W1 + WJ 0 0

0 0 −2WJ 0

0 0 0 −2WJ

 (C10)

The Green’s functions are given by diagonalizing the hopping Hamiltonian:

S†(k)H(k)S(k) = Λ(k) (C11)

where Λab(k) = δabE
a
k gives the band energies and S(k) is a 6×6 matrix of eigenvectors. The roman

character indices “a” indicate the pair (µ, σ). In the diagonal basis, the bare Green’s function is

Ga(k;ωn) =
−1

iωn − (Ea(k)− µ)
(C12)

and so the Green’s function in the orbital basis is

Gab(k;ωn) = −
∑
c

S∗ac(k)Sbc(k)
1

iωn − (Ec(k)− µ)
. (C13)

The full interaction is given by

Γlm(q) = Vlm(q) +
92∑

n,s=1

∑
aa′
bb′

∑
p,ωn

Vln(q)ϕnab′(p)Gbb′(q− q/2)ϕsa′b(p)Gaa′(p + q/2)Γsm(q) (C14)

= Vlm(q) +
92∑

n,s=1

Vln(q)Πns(q)Γsm(q)

28



where polarizability is defined as

Πns(q) =
∑
aa′
bb′

∑
p,ωn

ϕnab′(p)Gbb′(q− q/2)ϕsa′b(p)Gaa′(p + q/2) (C15)

= −
∑
p

∑
aa′
bb′

∑
cc′

ϕnab′(p)ϕsa′b(p)Mbb′aa′

c′c,pq

f(Ec′(p− q/2))− f(Ec(p + q/2))

Ec′(p− q/2)− Ec(p + q/2)

with

Mbb′aa′

c′c,pq = S∗bc′(p− q/2)Sb′c′(p− q/2)S∗ac(p + q/2)Sa′c(p + q/2) . (C16)

It follows that we seek the minimum eigenvalues and corresponding eigenvectors of

Alm(q) = δlm −
92∑

n,s=1

Vlm(q)Πns(q) . (C17)

Appendix D: Symmetries

This appendix discusses the symmetries of our basis functions in the presence of antiferromag-

netic order. In particular we have to pay careful attention to the mixing of the charge density

wave mode at wavevector Q with spin density wave at wavevector Q + (π, π).

The Hamiltonian commutes with the total x spin

Sx =
∑
k

∑
µ

(
c†µ↑(k)cµ↓(k) + c†µ↓(k)cµ↑(k)

)
(D1)

and a translation and spin inversion about the z-axis:

A : cµ↑(k)→ eikx,ycµ↑(k), cµ↓(k)→ −eikx,ycµ↓(k) . (D2)

It follows that the Hamiltonian has the following invariant operators carrying momentum q:∑
k

φlµν(k)
(
c†µ↑(k + q/2)cν↑(k− q/2) + c†µ↓(k + q/2)cν↓(k− q/2)

)
(D3)∑

k

φlµν(k)
(
c†µ↑(k + q/2 + K)cν↓(k− q/2) + c†µ↓(k + q/2 + K)cν↑(k− q/2)

)
.
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In terms of the ψµα(k) operators defined above, these are written as∑
k

(
φlµν(k)ψ†µ↑(k + q/2)ψν↑(k− q/2) + φlµν(k + K)ψ†µ↓(k + q/2)ψν↓(k− q/2)

)
(D4)∑

k

(
φlµν(k + K)e2iK·Rµψ†µ↑(k + q/2)ψν↓(k− q/2) + φlµν(k)ψ†µ↓(k + q/2)ψν↑(k− q/2)

)
.

Since we are only interested in the Sx = 0 channel, we can use these symmetries to define a smaller

set of basis functions than given in Eq. B8. We denote these functions χlµν,αβ(k) and list them in

Tables VI and VII. The invariant operator corresponding to each basis function is denoted χ̂l(q).

We can get to the new basis from the ϕlµν,αβ(k) by an appropriate projection matrix B. Given

the following definitions

Ds
pd =

(
0 −12×2

12×2 0

)
Dt
pd =

(
0 σz

−σz 0

)
(D5)

Dpp =


0 0 0 12×2

12×2 0 0 0

0 0 −12×2 0

0 −12×2 0 0



Ds =


13×3 0 0 0 0

0 Ds
pd 0 0 0

0 0 Ds
pd 0 0

0 0 0 Dpp 0

0 0 0 0 −14×4

 Dt =



1 0 0 0 0 0

0 −12×2 0 0 0 0

0 0 Dt
pd 0 0 0

0 0 0 Dt
pd 0 0

0 0 0 0 −Dpp 0

0 0 0 0 0 −14×4


.

we can define B in terms of a rotation matrix U and projector matrix P :

U =


123×23 0 0 0

0 Ds 0 0

0 0 123×23 0

0 0 0 Dt

 P =
1√
2

(
123×23 123×23 0 0

0 0 123×23 123×23

)
(D6)

B = PU . (D7)

That is, (dropping the orbital and spin indices), we have

χl(k) =
92∑
m=1

Blmϕ
m(k) . (D8)
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l µ ν χ lµν,αβ(k)

1 d d δµd δνd (δα↑δβ↑ + δα↓δβ↓) /
√

2

2 x x δµx δνx (δα↑δβ↑ + δα↓δβ↓) /
√

2

3 y y δµy δνy (δα↑δβ↑ + δα↓δβ↓) /
√

2

4 d x δµd δνx

(
δα↑δβ↑ cos

(
kx
2

)
− δα↓δβ↓ sin

(
kx
2

) )
5 x d δµx δνd

(
δα↑δβ↑ cos

(
kx
2

)
− δα↓δβ↓ sin

(
kx
2

) )
6 d x δµd δνx

(
δα↑δβ↑ sin

(
kx
2

)
+ δα↓δβ↓ cos

(
kx
2

) )
7 x d δµx δνd

(
δα↑δβ↑ sin

(
kx
2

)
+ δα↓δβ↓ cos

(
kx
2

) )
8 d y δµd δνy

(
δα↑δβ↑ cos

(
ky
2

)
− δα↓δβ↓ sin

(
ky
2

))
9 y d δµy δνd

(
δα↑δβ↑ cos

(
ky
2

)
− δα↓δβ↓ sin

(
ky
2

))
10 d y δµd δνy

(
δα↑δβ↑ sin

(
ky
2

)
+ δα↓δβ↓ cos

(
ky
2

))
11 y d δµy δνd

(
δα↑δβ↑ sin

(
ky
2

)
+ δα↓δβ↓ cos

(
ky
2

))
12 x y δµx δνy

√
2
(
δα↑δβ↑ cos

(
kx
2

)
cos
(
ky
2

)
+ δα↓δβ↓ sin

(
kx
2

)
sin
(
ky
2

))
13 y x δµy δνx

√
2
(
δα↑δβ↑ cos

(
kx
2

)
cos
(
ky
2

)
+ δα↓δβ↓ sin

(
kx
2

)
sin
(
ky
2

))
14 x y δµx δνy

√
2
(
δα↑δβ↑ sin

(
kx
2

)
sin
(
ky
2

)
+ δα↓δβ↓ cos

(
kx
2

)
cos
(
ky
2

))
15 y x δµy δνx

√
2
(
δα↑δβ↑ sin

(
kx
2

)
sin
(
ky
2

)
+ δα↓δβ↓ cos

(
kx
2

)
cos
(
ky
2

))
16 x y δµx δνy

√
2
(
δα↑δβ↑ cos

(
kx
2

)
sin
(
ky
2

)
− δα↓δβ↓ sin

(
kx
2

)
cos
(
ky
2

))
17 y x δµy δνx

√
2
(
δα↑δβ↑ cos

(
kx
2

)
sin
(
ky
2

)
− δα↓δβ↓ sin

(
kx
2

)
cos
(
ky
2

))
18 x y δµx δνy

√
2
(
δα↑δβ↑ sin

(
kx
2

)
cos
(
ky
2

)
− δα↓δβ↓ cos

(
kx
2

)
sin
(
ky
2

))
19 y x δµy δνx

√
2
(
δα↑δβ↑ sin

(
kx
2

)
cos
(
ky
2

)
− δα↓δβ↓ cos

(
kx
2

)
sin
(
ky
2

))
20 d d δµd δνd (δα↑δβ↑ − δα↓δβ↓) (cos kx − cos ky) /

√
2

21 d d δµd δνd (δα↑δβ↑ − δα↓δβ↓) (cos kx + cos ky) /
√

2

22 d d δµd δνd (δα↑δβ↑ − δα↓δβ↓) (sin kx − sin ky) /
√

2

23 d d δµd δνd (δα↑δβ↑ − δα↓δβ↓) (sin kx + sin ky) /
√

2

TABLE VI. The first 23 of 46 basis functions for the Sx = 0 channel for the case of an AFM in the

x-direction. For each l-index, χlµν,αβ(k) is nonzero only for the µν−pair given in the second and third

columns of each table. The full function is shown in the fourth column.
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l µ ν χ lµν,αβ(k)

24 d d δµd δνd (δα↑δβ↓ + δα↓δβ↑) /
√

2

25 x x δµx δνx (δα↑δβ↓ − δα↓δβ↑) /
√

2

26 y y δµy δνy (δα↑δβ↓ − δα↓δβ↑) /
√

2

27 d x δµd δνx

(
δα↑δβ↓ cos

(
kx
2

)
+ δα↓δβ↑ sin

(
kx
2

) )
28 x d δµx δνd

(
δα↑δβ↓ cos

(
kx
2

)
− δα↓δβ↑ sin

(
kx
2

) )
29 d x δµd δνx

(
δα↑δβ↓ sin

(
kx
2

)
− δα↓δβ↑ cos

(
kx
2

) )
30 x d δµx δνd

(
δα↑δβ↓ sin

(
kx
2

)
+ δα↓δβ↑ cos

(
kx
2

) )
31 d y δµd δνy

(
δα↑δβ↓ cos

(
ky
2

)
+ δα↓δβ↑ sin

(
ky
2

))
32 y d δµy δνd

(
δα↑δβ↓ cos

(
ky
2

)
− δα↓δβ↑ sin

(
ky
2

))
33 d y δµd δνy

(
δα↑δβ↓ sin

(
ky
2

)
− δα↓δβ↑ cos

(
ky
2

))
34 y d δµy δνd

(
δα↑δβ↓ sin

(
ky
2

)
+ δα↓δβ↑ cos

(
ky
2

))
35 x y δµx δνy

√
2
(
δα↑δβ↓ cos

(
kx
2

)
cos
(
ky
2

)
− δα↓δβ↑ sin

(
kx
2

)
sin
(
ky
2

))
36 y x δµy δνx

√
2
(
δα↑δβ↓ cos

(
kx
2

)
cos
(
ky
2

)
− δα↓δβ↑ sin

(
kx
2

)
sin
(
ky
2

))
37 x y δµx δνy

√
2
(
δα↑δβ↓ sin

(
kx
2

)
sin
(
ky
2

)
− δα↓δβ↑ cos

(
kx
2

)
cos
(
ky
2

))
38 y x δµy δνx

√
2
(
δα↑δβ↓ sin

(
kx
2

)
sin
(
ky
2

)
− δα↓δβ↑ cos

(
kx
2

)
cos
(
ky
2

))
39 x y δµx δνy

√
2
(
δα↑δβ↓ cos

(
kx
2

)
sin
(
ky
2

)
+ δα↓δβ↑ sin

(
kx
2

)
cos
(
ky
2

))
40 y x δµy δνx

√
2
(
δα↑δβ↓ cos

(
kx
2

)
sin
(
ky
2

)
+ δα↓δβ↑ sin

(
kx
2

)
cos
(
ky
2

))
41 x y δµx δνy

√
2
(
δα↑δβ↓ sin

(
kx
2

)
cos
(
ky
2

)
+ δα↓δβ↑ cos

(
kx
2

)
sin
(
ky
2

))
42 y x δµy δνx

√
2
(
δα↑δβ↓ sin

(
kx
2

)
cos
(
ky
2

)
+ δα↓δβ↑ cos

(
kx
2

)
sin
(
ky
2

))
43 d d δµd δνd (δα↑δβ↓ − δα↓δβ↑) (cos kx − cos ky) /

√
2

44 d d δµd δνd (δα↑δβ↓ − δα↓δβ↑) (cos kx + cos ky) /
√

2

45 d d δµd δνd (δα↑δβ↓ − δα↓δβ↑) (sin kx − sin ky) /
√

2

46 d d δµd δνd (δα↑δβ↓ − δα↓δβ↑) (sin kx + sin ky) /
√

2

TABLE VII. The second 23 of 46 basis functions for the Sx = 0 channel for the case of an AFM in the

x-direction. For each l-index, χlµν,αβ(k) is nonzero only for the µν−pair given in the second and third

columns of each table. The full function is shown in the fourth column.
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Parity invariant operators
Singlet Triplet

χ̂1 χ̂24

χ̂2

χ̂3

1√
2

(χ̂4 − χ̂5) 1√
2

(χ̂27 + χ̂30)

1√
2

(χ̂6 + χ̂7) 1√
2

(χ̂28 + χ̂29)

1√
2

(χ̂8 − χ̂9) 1√
2

(χ̂31 + χ̂34)

1√
2

(χ̂10 + χ̂11) 1√
2

(χ̂32 + χ̂33)

1√
2

(χ̂12 + χ̂13) 1√
2

(χ̂35 + χ̂38)

1√
2

(χ̂14 + χ̂15) 1√
2

(χ̂36 + χ̂37)

1√
2

(χ̂16 − χ̂17) 1√
2

(χ̂39 + χ̂42)

1√
2

(χ̂18 − χ̂19) 1√
2

(χ̂40 + χ̂41)

χ̂20 χ̂45

χ̂21 χ̂46

TABLE VIII. Operators invariant under the action of BK, where B is defined in Eq. (D10) and K is

complex conjugation. (The q dependence of the χ̂l’s is suppressed).

In the new basis, the interaction vertices defined in Appendix C must be rewritten as

V̄(q) = BV(q)BT . (D9)

The remainder of the calculation presented in Appendix C is identical save with 46× 46 matrices

instead of 92× 92.

The Hamiltonian is additionally invariant under the transformation

B : cµα(k)→ ηµνcνα(−k), ηµν = diag(1,−1,−1) . (D10)

(The ηµν factor is due to the gauge choice of Eq. (A1)). Combined with complex conjugation, there

are 24 invariant operators remaining, which are listed in Table VIII. Instead of working directly

with these operators, we instead work with those given in Tables VI and VII and afterwards

ensure that all all eigenvectors satisfy this symmetry.
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13 H. Meier, C. Pépin, M. Einenkel, and K. B. Efetov, Phys. Rev. B 89, 195115 (2014).
14 V. S. de Carvalho and H. Freire, Ann. Phys. 348, 32 (2014).
15 S. Whitsitt and S. Sachdev, Phys. Rev. B 90, 104505 (2014).
16 A. Allais, J. Bauer, and S. Sachdev, Phys. Rev. B 90, 155114 (2014).
17 A. Allais, J. Bauer, and S. Sachdev, Indian J. Phys. 88, 905 (2014).
18 D. Chowdhury and S. Sachdev, Phys. Rev. B 90, 245136 (2014).
19 Y. Wang and A. Chubukov, Phys. Rev. B 90, 035149 (2014).
20 A. Melikyan and M. R. Norman, Phys. Rev. B 89, 024507 (2014).
21 A. M. Tsvelik and A. V. Chubukov, Phys. Rev. B 89, 184515 (2014).
22 S. Bulut, W. A. Atkinson, and A. P. Kampf, Phys. Rev. B 88, 155132 (2013).
23 W. A. Atkinson, A. P. Kampf, and S. Bulut, New Journal of Physics 17, 013025 (2015).
24 M. H. Fischer, S. Wu, M. Lawler, A. Paramekanti, and E.-A. Kim, New Journal of Physics 16, 093057

(2014).
25 T. A. Maier and D. J. Scalapino, Phys. Rev. B 90, 174510 (2014).
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