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Abstract

Inspired by the parity-time symmetry concept, we show that a judicious spatial modulation

of gain and loss in epsilon-near-zero metamaterials can induce the propagation of exponentially-

bound interface modes characterized by zero attenuation. With specific reference to a bi-layer

configuration, via analytical studies and parameterization of the dispersion equation, we show that

this waveguiding mechanism can be sustained in the presence of moderate gain/loss levels, and it

becomes leaky (i.e., radiative) below a gain/loss threshold. Moreover, we explore a possible rod-

based metamaterial implementation, based on realistic material constituents, which captures the

essential features of the waveguiding mechanism, in good agreement with our theoretical predic-

tions. Our results may open up new possibilities for the design of optical devices and reconfigurable

nanophotonics platforms.

PACS numbers: 42.25.Bs, 78.67.Pt, 78.20.Ci, 11.30.Er
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I. INTRODUCTION

The possibility to spatially modulate loss and gain brings about new dimensionalities in

the design of metamaterials, which extend far beyond traditional loss-compensation schemes.

Within this framework, particularly inspiring is the concept of parity-time (PT ) symmetry,

originally conceived in quantum physics.1–3 Against the standard assumptions in quantum

mechanics, Bender and co-workers1–3 proposed an extended theory where the Hermitian

property of the Hamiltonian was replaced by a weaker symmetry condition on the quan-

tum potential, V (x) = V ∗(−x), involving the combined parity (i.e., spatial reflection, P)

and time-reversal (i.e., complex-conjugation, T ) operator. They showed that, albeit non-

Hermitian, such PT -symmetric systems may still exhibit entirely real eigenspectra provided

that their eigenstates are likewise PT -symmetric. However, in view of the antilinear char-

acter of the PT operator, this last condition may not hold beyond some non-Hermiticity

threshold, and the system may undergo a “spontaneous symmetry breaking”, i.e., an abrupt

phase transition to a complex eigenspectrum.1–3

In view of the formal analogies between quantum mechanics and (paraxial) optics, such

concept can be translated to electromagnetic structures by means of spatial modulation of

loss and gain, which is becoming technologically viable. In particular, optical “testbeds”

of PT -symmetric Hamiltonians have been proposed,4,5 and experimentally characterized

in either passive6 (pseudo-PT -symmetric) and actual gain-loss7 configurations. Moreover,

a variety of PT -symmetry-inspired exotic effects have been observed in optical, plasmonic,

circuit-based, and metamaterial structures, including unidirectional propagation phenomena

(invisibility, tunneling, negative refraction), coherent perfect absorption, beam switching,

and absorption-enhanced transmission, with very promising potential applications to novel

photonic devices and components (see Refs. 8–32 for a sparse sampling). More recently,

potential applications have also been proposed in connection with magnetic33 and acoustic34

structures. It is worth stressing that the potential technical issues that have been recently

pointed out35 in connection with the PT -symmetric extension of quantum mechanics do not

affect these electromagnetic and acoustic analogues.

In this paper, we present a study of PT -symmetry-induced waveguiding in metamaterial

slabs. Wave propagation at an interface between two media typically requires one of them

to be conducting or with a negative real part of the permittivity. Here, on the contrary, we
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study the propagation of exponentially-bound modes that can be sustained at a gain-loss

interface under PT -symmetry conditions, without requiring any modulation of the real part

of permittivity across the interface. This intriguing propagation mechanism does not require

negative values of the permittivity (real-part), and it is characterized by a purely real prop-

agation constant (i.e., no attenuation). However, in order to achieve substantial localization

along the transverse direction, unfeasibly high values of gain are generally required.11 We

therefore suggest to operate in the epsilon near zero (ENZ) regime36 (i.e., vanishingly small

real part of the permittivities), in view of its well-known capabilities to dramatically enhance

the effects of relatively low levels of loss and/or gain.37–39

Accordingly, the rest of the paper is laid out as follows. In Sec. II, we introduce the

waveguiding mechanism and discuss its attractive features as well as its limitations. In Sec.

III, with specific reference to the ENZ regime, we analytically derive the dispersion equation

for a PT -symmetric bi-layer, and we identify a threshold condition on the gain/loss level

which separates the bound- and leaky-mode regions. In Sec. IV, we explore a possible

rod-based metamaterial implementation which relies on a realistic (semiconductor) gain

material. Finally, in Sec. V, we provide some concluding remarks and perspectives.

II. BACKGROUND AND PROBLEM STATEMENT

A. Geometry

With reference to the schematic in Fig. 1, we start considering an isotropic, non-magnetic,

piece-wise homogeneous bi-layer composed of two slabs of identical thickness d, immersed

in vacuum, infinitely extent in the x, y plane, and paired along the z-direction. Our model

is hence parameterized by the relative permittivity distribution

ε (z) =



















1, |z| > d,

ε1, −d < z < 0,

ε∗1, 0 < z < d,

(1)

where ε1 = ε′ − iε′′, with ε′ > 0, ε′′ > 0. Under the assumed time-harmonic [exp(−iωt)]

convention, this implies that the regions −d < z < 0 and 0 < z < d are characterized by gain

and loss, respectively, and the structure fulfills the necessary condition for PT symmetry,

ε (z) = ε∗ (−z) . (2)
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B. PT -symmetry-induced surface-waves

In Ref. 11, it was pointed out that, for transverse-magnetic (TM) polarization (i.e., y-

directed magnetic field), the structure in Fig. 1 may support a PT -induced surface wave

exponentially bound at the gain-loss interface z = 0. This waveguiding mechanism is perhaps

more easily understood in the half-space limit d → ∞, for which the dispersion relationship

is simply given by (see Appendix A for details)

kx = k0

√

ε1ε∗1
ε1 + ε∗1

= k0

√

(ε′)2 + (ε′′)2

2ε′
, (3)

with k0 = ω/c0 = 2π/λ0 denoting the vacuum wavenumber (and c0 and λ0 the corresponding

wavespeed and wavelength, respectively). Accordingly, the field localization in the gain and

loss regions is controlled by the (complex) transverse wavenumbers

kz1 =
√

ε1k
2
0 − k2

x, Im (kz1) ≤ 0, (4)

and k∗

z1, respectively.

The dispersion relationship in (3) can be interpreted as a generalization of the Zenneck-

wave40 and surface-plasmon-polariton41 (SPP) cases, featuring oppositely signed imaginary

parts of the permittivities. By comparison with these two latter cases, the following obser-

vations are in order:

i) Both media exhibit the same positive value of permittivity (real-part), and therefore

the mechanism differs substantially from gain-assisted SPP-propagation schemes.42

ii) The PT -symmetry condition inherently yields a real-valued propagation constant kx,

i.e., unattenuated propagation along the gain-loss interface.

iii) From the physical viewpoint, such waveguiding mechanism is sustained by a transverse

(i.e., z-directed) component of the power flux from the gain- to the loss-region.

iv) The branch-cut choice in the gain region [cf. (4)] may appear somewhat arbitrary, given

that the usual radiation condition and decay at infinity cannot be used as an argument

in a gain background. Indeed, this a rather controversial issue in the literature (see,

e.g., Refs. 43–48 for a sparse sampling). We point out, however, that this choice

is irrelevant for the bi-layer scenario of actual interest here, and it only matters for
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the half-space configuration.47 This latter is, however, an unrealistic limit that we

consider only in view of the particularly simple form of the dispersion relationship.

Nevertheless, for several representative values of ε′ and ε′′ (within and beyond the

ENZ regime), we verified numerically that the choice in (4) yields results that are

consistently in agreement with those obtained by truncating (along z) the half-space

configuration at distances for which the field is sufficiently decayed.

The above waveguiding mechanism looks potentially attractive under many respects. For

instance, one may envision nanophotonics platforms where channels of gain media are suit-

ably embedded in a lossy background, so that the waveguiding may be selectively enabled

(and possibly reconfigured) by optically pumping certain spatial regions. So, effectively we

may have “waveguiding on demand”, where and when we want it. This may bring about

new perspectives and degrees of freedom in the design of optical switches, modulators, and

reconfigurable photonic networks.

C. Transverse localization vs. gain/loss level

Although, in view of (4), the half-space limit always features exponential decay (along

z) of the fields, one intuitively expects the localization to depend critically on the gain/loss

level (and to vanish in the absence of gain and loss). For a more quantitative assessment of

such localization properties, we show in Fig. 2 the decay length41

Ld =
1

|Im (kz1)|
, (5)

as a function of the imaginary part (absolute value) of the permittivity ε′′, for representative

values of the real part ε′ spanning several orders of magnitude. As evidenced by the log-log

scale, for a given wavelength and relative-permittivity real-part, the decay length decreases

algebraically with increasing values of the gain/loss level. In particular, localization on

subwavelength scales requires values of ε′′ that are of the same order or even larger than ε′.

Thus, assuming for instance ε′ = 10 (compatible with semiconductor materials at optical

wavelengths), gain/loss levels as high as ε′′ = 3 would be required to attain a decay length

Ld ∼ λ0/4. To give an idea, at the telecom wavelength λ0 = 1550 nm, this corresponds to a

gain coefficient γ = 4πIm
(√

ε1
)

/λ0 ∼ 38000 cm−1, i.e., about an order of magnitude larger

than the largest gain levels attainable with current technologies.42,49–51
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What also clearly emerges from Fig. 2 is that decreasing ε′ may allow working with

substantially lower gain/loss levels. For instance, assuming ε′ = 10−4, decay lengths Ld ∼
λ0/4 could be attained with gain/loss levels ε′′ ∼ 0.009, i.e., gain coefficients (at λ0 =

1550nm) γ ∼ 5000 cm−1.

III. THE ENZ REGIME

From the above results and observations, it turns out that the ENZ regime,

ε′ ≪ ε′′ ≪ 1, (6)

seems particularly promising for the waveguiding mechanism of interest. While the desired

ENZ PT -symmetric characteristics cannot be found in natural materials, we show hereafter

(see Sec. IV below) that they can be artificially engineered based on realistic material

constituents. Before that, however, we study in detail the more realistic bi-layer (i.e., finite

d) scenario in Fig. 1 in the ENZ regime (6).

A. Dispersion equation: Bound vs. leaky modes

It can be shown (see Appendix B for details) that a PT -symmetric ENZ metamaterial

bi-layer [cf. Fig. 1] supports modes propagating along the x direction with a generally

complex propagation constant kx which satisfies the dispersion equation

ikz0{|τ1|2Re[ε21(k∗

z1)
2]− |ε1|2|k2

z1|} − |kz1|2Re(ε1k∗

z1τ
∗

1 ) = 0, (7)

where

kz0 =
√

k2
0 − k2

x, (8)

and

τ1 = tan (kz1d) . (9)

In view of the inherent geometrical symmetry, without loss of generality, we focus hereafter

on the case Re(kx) > 0 (i.e., propagation along the positive x direction). Among the

possible solutions of (7) in the complex kx plane, we are especially interested in bound

modes characterized by

Re (kx) > k0, Im (kz0) ≥ 0, (10)
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i.e., an exponential decay in the exterior vacuum region |z| > d. While it is well-known that

no such mode can be sustained by a low-permittivity slab in the absence of loss and gain,

it can be shown (see Appendix C for details) that this becomes possible for gain/loss levels

beyond a threshold value

ε′′t =

√

ε′(2− ε′)[ε′k0d(τ 20 − 1) + 2τ0]

k0d(ε′ − 2)(τ 20 − 1) + 2τ0
, τ0 = tanh (k0d) , (11)

and it also implies Im(kx) = 0 (i.e., no attenuation). Below such threshold, leaky modes can

instead be found, characterized by complex propagation constants

Re (kx) < k0, Im (kx) > 0, Im (kz0) ≤ 0. (12)

To avoid possible confusion, we stress that the complex character of these latter solutions is

by no means related to the aforementioned spontaneous symmetry breaking phenomenon in

PT -symmetric systems,1–3 as it would also arise in the absence of gain and loss.52 These so-

lutions exhibit exponential decay along the propagation direction x, and exponential growth

along the transverse direction z. Although such character appears clearly unphysical, they

have long been utilized in the antenna community to effectively model physical resonant

radiative states in waveguides.53

To illustrate the threshold phenomenon, Fig. 3(a) shows the numerically-computed prop-

agation constant kx as a function of ε′′, for given values of ε′ and the bi-layer electrical

thickness. As it can be observed, for increasing values of ε′′ there is a smooth transition

from a leaky [cf. (12)] to a bound [cf. (10)] mode solution. The separation between these

two regions occurs at the grazing condition kx = k0, and the corresponding gain/loss level

is in very good agreement with the analytical estimate of the threshold ε′′t in (11).

Figure 3(b) shows the behavior of such threshold as a function of the bi-layer electrical

thickness, for representative values of ε′. We observe that the threshold depends only mildly

on the bi-layer electrical thickness and, for sufficiently thick bi-layers (k0d ≫ 1, i.e., τ0 ≈ 1),

it approaches the asymptotic value

ε′′t∞ =
√

ε′ (2− ε′), (13)

which is consistent with enforcing |kx| > k0 in the asymptotic dispersion relationship (3).

Moreover, as it can be expected, the threshold increases with increasing values of ε′, but

maintains moderately small values within the ENZ regime of interest. We stress that the
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threshold in (11) and its asymptotic limit in (13) are only valid in the ENZ limit (6).

Therefore, the fact that ε′′t∞ in (13) vanishes for ε′ = 2, and it becomes imaginary for ε′ > 2,

by no means indicates that the threshold disappears for sufficiently thick bi-layers, but rather

than the ENZ approximation is no longer valid in those parameter ranges.

B. Representative results

Figures 4 and 5 illustrate some representative results for ε′ = 10−4 and two feasible

gain/loss levels. More specifically, for an above-threshold case [ε′′ = 0.02, cf. Fig. 3(b)],

Fig. 4(a) shows the numerically-computed dispersion relationship of a bound mode. As

theoretically predicted, we observe a purely real propagation constant (i.e., no attenuation),

which approaches the asymptotic prediction [cf. (3)] for d/λ0 & 0.3. To verify the physical

character of this mode and its actual excitability, Fig. 4(b) shows a numerically-computed

(see Appendix D for details) near-field map pertaining to a finite-size (along x) structure

excited by a magnetic line-source located at the gain-loss interface at x = 0. A bound-mode

structure is clearly visible, with a standing-wave pattern originating from the structure

truncation along the x direction. For a more quantitative assessment, Fig. 4(c) shows a

transverse (z) cut, which clearly exhibits an exponential localization, and is in excellent

agreement with the theoretical prediction (see Appendix B).

Figures 5(a)–5(c) illustrate the corresponding results for a subthreshold gain/loss level

[ε′′ = 0.006, cf. Fig. 3(b)]. More specifically, in the dispersion relationship [Fig. 5(a)] we

now observe a complex propagation constant, which is indicative of a leaky mode [cf. (12)].

As also evident from the near-field map in Fig. 5(b), this represents a physical resonant

radiative state supported by the bi-layer. As a further confirmation, Fig. 5(c) compares the

numerically-computed (far-field) radiation pattern with the theoretical leaky-mode-based

prediction,53

∣

∣H(ff)
y

∣

∣

2
(θ) ∼ A cos2 θ

{

α2 + β2

[

k2
0 sin

2 θ − (β2 − α2)
]2

+ (2αβ)2

}

, (14)

where kx = β + iα is the complex propagation constant [cf. (12)], A is a normalization

constant, and the angle θ is measured with respect to the z axis. A good agreement is

observed, with the discrepancies attributable to the finite-size aperture (along x) of the

bi-layer.
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C. Some remarks

In essence, from a physical viewpoint, the threshold phenomenon implies that for low

gain/loss levels, the transverse power flow from the gain to the loss region is not sufficient

to sustain a bound mode, and the structure tends to radiate [at an angle and with a beam-

width strictly related to the complex propagation constant,53 cf. (14)]. This is similar to

what is observed in standard (lossless, gainless) low-permittivity slabs.52 By increasing the

gain/loss level, the radiation direction progressively departs from the z axis, and becomes

grazing at the threshold value ε′′t in (11). Beyond this threshold, the transverse-power-flow

mechanism becomes sufficiently effective for the structure to sustain a bound mode.

Incidentally, we found a similar threshold phenomenon (with identical parameterization)

in a previous study24 dealing with the surface-wave-mediated tunneling of impinging waves

through the same structure as in Fig. 1. This is not surprising, based on reciprocity

arguments.

Another interesting aspect of the above described waveguiding mechanism is that the

propagation constant in the above-threshold (bound-mode) region is inherently real, irre-

spective of the gain/loss level and electrical thickness. In other words, these bound modes

are not subject to the spontaneous symmetry breaking phenomenon that generally occurs

in PT -symmetric systems.1–3 This is quite unusual, and not observable in other waveguid-

ing mechanisms. To give an idea, for ε′ > 1, a PT -symmetric bi-layer could also support

higher-order guided modes, which may be viewed as the complex-valued transpositions of

the standard guided modes supported by a dielectric (lossless, gainless) slab waveguide.

For such modes, parameters could be tuned so as the propagation constant would stay real

within certain ranges. However, by increasing the gain/loss level and/or the electrical thick-

ness, spontaneous symmetry breaking would eventually occur, and the propagation constant

would become complex.

IV. POSSIBLE IMPLEMENTATION

A typical implementation of ENZ metamaterials at optical wavelengths is based on mul-

tilayers combining thin subwavelength layers of positive- (e.g., dielectric) and negative-

permittivity (e.g., metals or oxides) materials. In such implementations, the use of gain
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has been proposed in order to compensate the unavoidable loss effects.54,55 However, since

an interface between a positive- and negative-permittivity material is naturally capable to

support a surface wave also in the absence of balanced gain and loss, such implementation

may not allow a clear-cut visualization and interpretation of the PT -symmetry-induced

waveguiding phenomenon of interest here.

For a more effective illustration of our arguments, we therefore take inspiration from

all-dielectric implementations of near-zero-refractive-index metamaterials based on periodic

arrays of high-permittivity cylindrical rods exhibiting Dirac-cone dispersion at the center of

the Brillouin zone.56,57

A. Effective parameters

As schematically illustrated in the unit-cell shown in Fig. 6(a), we consider a possible

implementation consisting of non-magnetic cylindrical rods of radius rc and relative permit-

tivity εc = ε′c − iε′′c arranged according to a square lattice with period a. As in Ref. 56, we

model such metamaterial by means of the effective-medium theory developed in Ref. 58. In

essence, as illustrated in Fig. 6(b), such model assumes a vacuum-coated cylinder of total

radius r0 embedded in an effective medium of unknown parameters εe and µe. The radius

r0 is chosen so that the area of the coated cylinder is the one of the actual square unit-cell,

and the effective parameters are computed by self-consistency, i.e., by enforcing that the

total scattering of an electromagnetic wave vanishes. In particular, in the limit ker0 ≪ 1,

we obtain58 the simple equations59

εe −
J1 (k0r0)

k0r0J ′

1 (k0r0)

εe −
Y1 (k0r0)

k0r0Y ′

1 (k0r0)

=
Y ′

1 (k0r0)

iJ ′

1 (k0r0)

(

D1

1 +D1

)

, (15)

µe +
2J ′

0 (k0r0)

k0r0J0 (k0r0)

µe +
2Y ′

0 (k0r0)

k0r0Y0 (k0r0)

=
Y0 (k0r0)

iJ0 (k0r0)

(

D0

1 +D0

)

, (16)

which can readily be solved analytically in closed form. In (15) and (16), kc = k0
√
εc, Jν

and Yν are the νth-order Bessel and Neumann functions,60 respectively, the prime denotes
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differentiation with respect to the argument, and

Dν =
kcJ

′

ν (kcrc) Jν (k0rc)− εck0Jν (kcrc)J
′

ν (k0rc)

εck0Jν (kcrc)H
′(1)
ν (k0rc)− kcJ ′

ν (kcrc)H
(1)
ν (k0rc)

, (17)

with H
(1)
ν denoting the νth-order Hankel function of the first kind.60 Referring to Ref. 58

for a thorough assessment of the range of applicability of the above model, we stress that

the underlying approximation does not require k0r0, k0rc and kcrc to be small, and thus its

validity can extend beyond the standard long-wavelength limit.

B. Model generalizations

In view of the generally magnetic character of the effective medium, our PT -symmetric

model in Fig. 1 needs to be generalized, by assuming also a relative permeability distribution

µ (z) =



















1, |z| > d,

µ1, −d < z < 0,

µ∗

1, 0 < z < d,

(18)

where µ1 = µ′ − iµ′′, with µ′ > 0, µ′′ > 0. Accordingly, the dispersion relationship of a

TM-polarized bound mode in the asymptotic (d → ∞) limit can be generalized as follows

(see Appendix A for details)

kx = k0

√

ε1ε
∗

1 (ε1µ
∗

1 − ε∗1µ1)

ε21 − (ε∗1)
2

= k0 |ε1|
√

ε′′µ′ − ε′µ′′

2ε′′ε′
, (19)

subject to the further condition

Im

(

kz1
ε1

)

= 0, (20)

where

kz1 =
√

k2
0ε1µ1 − k2

x, Im (kz1) ≤ 0. (21)

For the bi-layer (i.e., finite d) case, the dispersion equation remains formally identical to

(7), but with kz1 defined in (21). In principle, it is also possible to generalize the threshold

condition in (11), but the derivation is rather cumbersome. Instead, we consider the asymp-

totic limit d/λ0 ≫ 1 (of direct interest for our subsequent studies), for which the existence
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of a bound mode can be established by enforcing in (19) real-valued solutions with kx > k0,

which yields
µ′′

ε′′
<

µ′

ε′
− 2

(ε′′)2 + (ε′)2
. (22)

C. Synthesis

In view of the simple analytical structure of the effective-medium model in (15) and (16),

and the limited number of parameters, we found it computationally effective to synthesize

the metamaterial via a constrained parameter search. In what follows, we focus on the

synthesis of the gain region, which entails ε′′c > 0; it is easily verified from (15) and (16) that

the lossy counterpart can be obtained by changing the sign of ε′′c .

In our synthesis, we fix the real part of the relative permittivity of the rods ε′c = 11.38

(compatible with typical semiconductor materials), and vary its imaginary part

0 < ε′′c < 0.35, (23)

the normalized period

0.1 < a/λ0 < 0.7, (24)

and the normalized cylinder radius

0 < rc/a < 0.5. (25)

The above constraints account for the technological feasibility of the required gain level,42,49–51

the range of validity of the effective-medium model,58 and the geometrical consistency of

the unit cell, respectively. Figure 6(c) shows, in the 3-D parameter space (ε′′c , a/λ0, rc/a), a

set of possible candidate configurations that satisfy the asymptotic condition in (22) for the

existence of an unattenuated bound mode.

D. Results

As an example, among the possible configurations in Fig. 6(c), we consider ε′′c = 0.25,

a = 0.465λ0, and rc = 0.375a, which yields the effective parameters [cf. (15) and (16)]

ε1e = 0.002 − i0.107 and µ1e = 0.567 − i0.013 for the gain region. Accordingly, the lossy

region (ε∗1e = 0.002 + i0.107 and µ∗

1e = 0.567 + i0.013) can be synthesized by utilizing the
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same parameters, but ε′′c = −0.25. Assuming an idealized PT -symmetric bi-layer with such

effective parameters and d = 4.65λ0, numerical solution of the dispersion equation (7) [with

(21)] predicts an unattenuated bound mode with kx = 1.283k0.

Figure 7(a) shows the numerically-computed field map pertaining to the actual rod-based

metamaterial structure excited by a magnetic line source at the gain-loss interface. Also in

this case, a bound mode is clearly visible and, although the transverse localization is mostly

dictated by the microstructure geometry, we can verify that the propagation constant is in

quantitative good agreement with the theoretical predictions. To this aim, we consider an

infinite (along x) structure illuminated by an evanescent plane wave, and plot in Fig. 7(b)

the (normalized) field magnitude at the interface z = 0 as a function of the kx wavenumber.

We observe that the response is strongly peaked around kx = 1.234k0, thereby indicating a

phase-matching with a propagation constant that is only ∼ 3% different than the theoretical

prediction above.

As a further confirmation, we decrease the gain/loss level in the rods to ε′′c = 0.05, leaving

all other parameters unchanged. This yields the effective parameters ε1e = 0.007 − i0.021

and µ1e = 0.567− i0.003, for which the bound-mode condition in (22) is no longer satisfied.

Accordingly, numerical solution of the dispersion equation (7) [with (21)] now predicts a

leaky mode with kx = (0.147 + i3.4 · 10−5)k0.

Figure 8 shows the results pertaining to the actual rod-based structure. In particular,

from the field map in Fig. 8(a) the radiative character of the mode is quite evident. Also in

this case, looking at the (far-field) radiation patterns in Fig. 8(b) we find a good agreement

with the theoretical prediction [cf. (14)].

Overall, the above results indicate that the rod-based metamaterial implementation,

based on realistic material constituents, reproduces fairly well the waveguiding mechanism

of interest, with good agreement between numerical simulations and theoretical predictions.

As previously mentioned, the reliance on material constituents with positive (real-part) per-

mittivity removes possible ambiguities on the actual nature of the phenomenon, which can

thus be clearly attributed to the PT -symmetry.
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V. CONCLUSIONS AND PERSPECTIVES

To sum up, we have shown that ENZ metamaterial bi-layers can support PT -symmetry-

induced bound modes at the gain-loss interface. These modes propagate without attenuation

provided that the gain/loss level exceeds a critical threshold, and otherwise exhibit a leaky

(radiative) character. Starting from the analytical studies and parameterizations, we have

designed and simulated possible rod-based metamaterial implementations.

Overall, our results indicate that this intriguing PT -symmetry-induced waveguiding

mechanism can be observed in the presence of gain/loss levels that are compatible with

current technological constraints. This may set the stage for interesting applications to

reconfigurable nanophotonic platforms, as well as novel strategies for the design of optical

switches and modulators. Besides these potential applications, we are currently explor-

ing possible alternative metamaterial implementations, as well as the use of more realistic

physical models of gain materials.

Appendix A: Details on the asymptotic dispersion relationships (3) and (19)

Assuming the more general (electric and magnetic) scenario of PT -symmetric half-spaces,

ε (z) =







ε1, z < 0,

ε∗1, z > 0.
, µ (z) =







µ1, z < 0,

µ∗

1, z > 0,
(A1)

a modal solution exponentially bound at the gain-loss interface can be written as

Hy (x, z) = C exp (ikxx)







exp (ikz1z) , z < 0,

exp (ik∗

z1z) , z > 0,
(A2)

where C denotes a normalization constant, and the continuity condition at the interface z = 0

is enforced. From the relevant Maxwell’s curl equation, we then calculate the tangential

electric field,

Ex (x, z) =
η0

ik0ε (z)

∂Hy

∂z
(x, z) , (A3)

where η0 denotes the vacuum characteristic impedance. Finally, by enforcing its continuity

at the interface z = 0, we obtain
kz1
ε1

=
k∗

z1

ε∗1
, (A4)
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from which the dispersion relationship in (19) readily follows by squaring and solving with

respect to kx. Note that, as a consequence of the squaring, (19) may yield spurious solutions

which do not satisfy (A4). Hence, the additional constraint (20) [which derives directly from

(A4)] needs to be enforced.

The dispersion relationship in (3) immediately follows by particularizing (19) to the non-

magnetic case µ1 = 1.

Appendix B: Details on the dispersion equation (7)

For the PT -symmetric bi-layer in Fig. 1, a modal solution exponentially bound at the

gain-loss interface z = 0 can be expressed as

Hy (x, z) = exp (ikxx)



























C1 exp (−ikz0z) , z < −d,

C2 exp (ikz1z) + C3 exp (−ikz1z) , −d < z < 0,

C4 exp (ik
∗

z1z) + C5 exp (−ik∗

z1z) , 0 < z < d,

C6 exp (ikz0z) , z > d,

(B1)

with kz1 and kz0 given in (4) and (8), respectively, and the unknown expansion coefficients

Cj, j = 1, ..., 6 to be calculated by enforcing the continuity of the magnetic [(B1)] and

electric [cf. (A3) with (1)] tangential fields at the three interfaces z = 0 and z = ±d. This

yields a 6 × 6 homogeneous linear system of equations, whose nontrivial solutions can be

found by zeroing the system-matrix determinant, viz.,

det = ε∗1k
2
z1τ1 (k

∗

z1 − iε∗1kz0τ
∗

1 )

+ ε21kz0k
∗

z1τ1 (ε
∗

1kz0 − ik∗

z1τ
∗

1 )

+ ε1kz1
[

2iε∗1kz0k
∗

z1 + (ε∗1)
2 k2

z0τ
∗

1 + (k∗

z1)
2 τ ∗1

]

= ikz0
{

|τ1|2Re
[

ε21 (k
∗

z1)
2]− |ε1|2 |kz1|2

}

− |kz1|2Re (ε1k∗

z1τ
∗

1 )− Re
(

|ε1|2 ε1k2
z0k

∗

z1τ1
)

, (B2)

where the last equality follows from simplifications exploiting the PT -symmetric character.

The dispersion relationship in (A4) readily follows by zeroing (B2) and neglecting [in view

of the assumed ENZ regime, cf. (6)] the third-order term in ε1.
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Appendix C: Details on the leaky-to-bound mode transition

We now prove that, for gain/loss levels beyond the threshold ε′′t in (11) the PT -symmetric

ENZ bi-layer in Fig. 1 supports a bound mode [cf. (10)] with real propagation constant

(i.e., no attenuation). To this aim, it is expedient to rewrite the dispersion equation (A4) as

F (kx) = 0, (C1)

with

F (kx) = −α0{|τ1|2Re[ε21(k∗

z1)
2]− |ε1|2|k2

z1|}

− |kz1|2Re(ε1k∗

z1τ
∗

1 ), (C2)

and

α0 = −ikz0 =
√

k2
x − k2

0. (C3)

In such a way, the real character of the dispersion equation in the parameter range of

interest kx ≥ k0 is emphasized, and a simple bracketing strategy can be exploited to prove

the existence of real-valued roots.

First we consider the asymptotic limit kx ≫ k0, for which we straightforwardly obtain

from (C3) and (4)

α0

∣

∣

kx≫k0
∼ kx, kz1

∣

∣

kx≫k0
∼ −ikx (C4)

and hence, from (9),

τ1
∣

∣

kx≫k0
∼ −i. (C5)

By substituting (C4) and (C5) in (C2), we then obtain

F (kx)
∣

∣

kx≫k0
∼ k3

x

[

ε′ + Re
(

ε21
)

+ |ε1|2
]

≈ ε′k3
x > 0, (C6)

where the last approximate equality stems from neglecting [in view of the assumed ENZ

regime, cf. (6)] second-order terms in ε1. We have thus shown that the left-hand-side of the

dispersion equation (C1) is always positive in the asymptotic limit kx ≫ k0.

Next, we consider the grazing condition kx = k0, for which (C3), (4) and (9) yield

α0

∣

∣

kx=k0
= 0, kz1

∣

∣

kx=k0
= k0

√
ε1 − 1 ≈ k0

(ε1
2
− i

)

, (C7)
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and

τ1
∣

∣

kx=k0
≈ −iτ0 − i

ε1k0d

2

(

τ 20 − 1
)

, (C8)

respectively, with the approximate equality stemming from first-order McLaurin expansions

in ε1. Substitution of (C7) and (C8) in (C2) finally yields

F (k0) ≈ −k3
0 |ε1 − 1|

4

[

2τ0
(

|ε1|2 − 2ε′
)

+ |ε1|2 k0d (ε′ − 2)
(

τ 20 − 1
)]

. (C9)

Recalling the asymptotic behavior in (C6), we can conclude that if F (k0) < 0, the dispersion

equation in (C2) must admit a real-valued solution kx ≥ k0, which corresponds to a bound

mode [cf. (10)]. By solving (C9) with respect to the gain/loss level ε′′, this condition can

be parameterized as

ε′′ > ε′′t , (C10)

with the threshold ε′′t given in (11). Moreover, since it can be numerically verified that,

within the parameter range of interest, F (kx) is a monotonic function, the above condition

turns out to be not only sufficient, but also necessary.

For subthreshold gain/loss levels, complex-valued solutions are found instead, which gen-

erally exhibit the leaky-mode character in (12).

Appendix D: Details on the numerical simulations

All the numerical simulations in our study are carried out by means of the finite-element-

based commercial software package COMSOL Multiphysics.61 In particular, we utilize the

RF module and the frequency-domain solver.

For the finite-size configurations in Figs. 4(b), 5(b), 7(a) and 8(a), we utilize a magnetic

line-current excitation located at the center of the structure (x = z = 0), perfectly-matched-

layer terminations for the computational domain, and a triangular mesh with adaptive

element size. This results in a number of elements on the order of 2.8 · 105 and 1.3 · 106

for the idealized [cf. Figs. 4(b) and 5(b)] and rod-based [cf. 7(a) and 8(a)] configurations,

respectively. The (far-field) radiation patterns [cf. Figs. 5(c) and 8(b)] are straightforwardly

obtained by utilizing the post-processing tools in the RF module.61
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The results in Fig. 7(b) refer instead to an infinite (along x) structure, simulated by

means of a unit-cell consisting of a single row of rods with phase-shift boundary conditions,

and excited via a wave-port61 by an evanescent plane-wave.
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FIG. 1. (Color online) Problem schematic. A PT -symmetric bi-layer consisting of two slabs

of identical thickness d, and relative permittivity distribution as in (1), which can support TM-

polarized modes exponentially bound and the gain-loss interface z = 0, and propagating without

attenuation along the x direction.
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FIG. 2. (Color online) Geometry as in Fig. 1, but in the asymptotic limit d → ∞. Decay length

[cf. (5)], scaled by the vacuum wavelength, as a function of the gain/loss level ε′′, for various

representative values of the relative-permittivity real part: ε′ = 10−4 (squares), ε′ = 10−3 (circles),

ε′ = 10−2 (up-triangles), ε′ = 0.1 (down-triangles), ε′ = 1 (diamonds), ε′ = 10 (stars).
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FIG. 3. (Color online) Geometry as in Fig. 1, for ε′ = 10−4 and d = 0.5λ0. (a) Real- (blue-

solid; left axis) and imaginary-part (red-dashed; right axis) of the numerically-computed [from (7)]

propagation constant, as a function of the gain/loss level ε′′, illustrating the transition from leaky

to bound modes occurring at the threshold ε′′t = 0.014 (black-dotted vertical line). (b) Gain/loss

level threshold [cf. (11)] as a function of d/λ0, for ε
′ = 10−4 (squares), ε′ = 10−3 (circles), ε′ = 10−2

(triangles).
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FIG. 4. (Color online) (a) As in Fig. 3(a), but as a function of d/λ0 (dispersion relationship), for

ε′ = 10−4 and ε′′ = 0.02 (above-threshold case). Also shown (black-dotted horizontal line), as a

reference, is the asymptotic limit (3). (b) Numerically-computed field magnitude (|Hy|) map for a

bi-layer with d = 0.5λ0 and finite-size (along x) width of 25λ0 (delimited by a black-solid rectangle),

excited by a magnetic line source located at x = z = 0. Values are sampled so as to avoid the

singularity at the source, and are normalized with respect to the maximum. (c) Transverse cut

(magenta-dashed) at x = 4.17λ0, compared with analytical bound-mode prediction [black-solid; cf.

(B1)] with kx = 1.414k0.
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FIG. 5. (Color online) (a), (b) As in Figs. 4(a) and 4(b), respectively, but for ε′′ = 0.006

(subthreshold case). (c) Numerically-computed radiation pattern (with the angle θ measured

with respect to the z axis) compared with leaky-mode-based theoretical prediction in (14) for

kx = (0.486 + i0.02)k0.
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FIG. 6. (Color online) Metamaterial implementation. (a) Unit-cell describing a 2-D array of non-

magnetic cylindrical rods of radius rc and relative permittivity εc = ε′c− iε′′c arranged according to

a square lattice with period a. (b) Schematics of the effective-medium model: vacuum-coated rod

embedded in an effective medium of unknown parameters εe and µe. The radius r0 is chosen so that

the area of the coated rod is that of the actual square unit-cell in (a). (c) Representative results

from the synthesis problem in the 3-D parameter space (ε′′c , a/λ0, rc/a), assuming ε′c = 11.38: each

marker represents a candidate configuration that satisfies the (asymptotic) condition in (22) for

the existence of an unattenuated bound mode.
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FIG. 7. (Color online) (a) As in Fig. 4(b), but for a rod-based metamaterial implementation

with d = 4.65λ0 and finite-size (along x) width of 27.9λ0. Each half of the bi-layer consists of a

10× 60 square array of cylindrical rods, with period a = 0.465λ0, radius rc = 0.375a, and relative

permittivity εc = 11.38 ∓ i0.25 (for the gain and loss region, respectively). The corresponding

effective parameters [cf. (15) and (16)] are ε1e = 0.002 − i0.107 and µ1e = 0.567 − i0.013 for

−d < z < 0 (gain), and ε∗1e = 0.002 + i0.107 and µ∗

1e = 0.567 + i0.013 for 0 < z < d (loss). (b)

Field magnitude (|Hy|, normalized with respect to the excitation amplitude at a reference plane)

at the gain-loss interface z = 0 for an infinite (along x) structure illuminated by an evanescent

plane wave, as a function of the kx wavenumber. Also shown as a reference (black-dotted vertical

line) is the theoretical bound-mode propagation constant [cf. (19)].
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FIG. 8. (Color online) (a) As in Fig. 7(a), but for ε′′c = ±0.05, i.e., εe = 0.007 − i0.021 and

µe = 0.567 − i0.003. (b) Numerically-computed radiation pattern (with the angle θ measured

with respect to the z axis) compared with leaky-mode-based theoretical prediction in (14) for

kx = (0.147 + i3.4 · 10−5)k0.
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