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States of matter with a sharp Fermi-surface but no well-defined Landau quasiparticles arise in
a number of physical systems. Examples include: (i) quantum critical points associated with the
onset of order in metals; (ii) spinon Fermi-surface (U(1) spin-liquid) state of a Mott insulator;
(iii) Halperin-Lee-Read composite fermion charge liquid state of a half-filled Landau level. In this
work, we use renormalization group techniques to investigate possible instabilities of such non-Fermi-
liquids in two spatial dimensions to Cooper pairing. We consider the Ising-nematic quantum critical
point as an example of an ordering phase transition in a metal, and demonstrate that the attrac-
tive interaction mediated by the order parameter fluctuations always leads to a superconducting
instability. Moreover, in the regime where our calculation is controlled, superconductivity preempts
the destruction of electronic quasiparticles. On the other hand, the spinon Fermi-surface and the
Halperin-Lee-Read states are stable against Cooper pairing for a sufficiently weak attractive short-
range interaction; however, once the strength of attraction exceeds a critical value, pairing sets in.
We describe the ensuing quantum phase transition between (i) U(1) and Z2 spin-liquid states; (ii)
Halperin-Lee-Read and Moore-Read states.

I. INTRODUCTION

It is well-known that ordinary metals described by
Fermi-liquid (FL) theory are unstable to an arbitrarily
weak attractive interaction in the BCS channel, which
leads to Cooper pairing of electrons and drives the sys-
tem into a superconducting phase. The purpose of the
present paper is to examine the stability of certain non-
Fermi-liquid (nFL) states in two dimensions to Cooper
pairing. We study systems where the non-Fermi-liquid
behavior arises as a result of the interaction of a gapless
bosonic mode with fermions in the vicinity of the Fermi-
surface (FS). Specific examples we analyze are described
in the following subsections.

A. Quantum critical points in metals

Many correlated metals appear to possess quantum
critical points (QCPs) with fascinating properties.1–3

Frequently, there is a striking breakdown of Fermi liquid
theory in the vicinity of the QCP. Equally strikingly su-
perconductivity is often but not always strengthened near
the QCP. Indeed, a fairly common phase diagram (see
Fig. 1, top), shared for instance by cuprate, pnictide and
certain heavy-fermion materials, has a superconducting
dome around the putative ‘metallic’ QCP with ‘optimal’
transition temperature Tc right at the QCP. On the other
hand, there are prominent quantum critical heavy elec-
tron metals such as CeCu6−xAux and YbRh2Si2 where
superconductivity does not appear down to very low
temperatures.1 It thus appears that superconductivity is
enhanced at some but not all quantum critical points
in metals. Despite this there is currently limited under-

standing of the interplay between the quantum criticality,
the non-Fermi liquid ‘normal’ state, and the possible su-
perconductivity. Clearly, a theory of the relationship of
superconductivity and quantum criticality has to accom-
modate the absence of superconductivity at some and
enhancement at other quantum critical points.

It is important right away to recognize that there are
two fundamentally distinct classes of quantum critical-
ity in metallic systems. They are distinguished by the
fate of the electron Fermi surface as the metal undergoes
the quantum phase transition. In one class, the electron
Fermi surface evolves continuously through the critical
point but is distorted in some way. These QCPs are
typically associated primarily with the onset of a broken
symmetry characterized by a Landau order parameter in
a metal. Examples include the onset of ferromagnetism
or antiferromagnetism in a paramagnetic metal. The
proper theoretical framework to describe such a phase
transition is through coupling the low energy electronic
degrees of freedom at the Fermi surface to fluctuations
of the Landau order parameter.4 An alternate class of
quantum phase transitions involves a more violent trans-
formation of the electronic structure where the electron
Fermi surface (or a sheet of it) disappears completely
on crossing the critical point.5 Surprisingly, such a dis-
continuous evolution of the electron Fermi surface can
happen through a continuous phase transition. Exam-
ples include the so-called Kondo breakdown transition in
Kondo lattices6,7 and continuous Mott metal-insulator
transitions in two8 or three dimensions.9 There is cur-
rently only one known theoretical framework that yields
such a phase transition: this is based on slave-particle
methods and inevitably leads to a description in terms of
fractionalized slave-particles coupled to fluctuating emer-



2

Non-Fermi-liquid

Fermi liquidSC

h�i 6= 0 h�i = 0
x

xc

T

Fermi liquid

SC

Coherent electrons 
Quantum critical �

Fermi liquid

h�i 6= 0
x

xc

T

Fermi liquid

h�i = 0

FIG. 1: Top: Conventional phase diagram of a quantum crit-
ical point (QCP) associated with an order parameter φ, with
a superconducting dome (SC) partially overlapping the quan-
tum critical region of the ‘bare’ QCP of a metal. Bottom:
the phase diagram obtained in the present paper, with the
SC dome fully overlapping the incipient regime of incoherent
fermionic quasiparticles, while the quantum critical φ fluctu-
ations survive into higher temperatures in the normal state.

gent gauge fields.

In this paper we will consider examples of both kinds
of quantum critical points as case studies for the relation-
ship between quantum criticality, superconductivity, and
non-Fermi liquid physics. In the example studied of the
first class, where the Fermi surface is distorted through
the development of a broken symmetry, we show that
superconductivity is strongly enhanced near the critical
point. We suggest that this may be more generally true:
order parameter fluctuations enhance superconductivity.
In the example studied of the second class where the en-
tire electron Fermi surface is annihilated, we argue that
superconductivity is suppressed. This dichotomy may
explain the phenomenology described above where some
but not all QCPs show an enhancement of superconduc-
tivity.

We begin with QCPs associated with the onset of a
symmetry breaking order. Strong fluctuations of the or-
der parameter present at the QCP tend to decohere the
electronic quasiparticles: as the system is tuned to the
critical point, the residue Z and the Fermi-velocity vF of
quasiparticles approach zero. A common feature of such
QCPs is that there exists some pairing channel in which

the order parameter fluctuations mediate attraction. The
strength of the attraction increases as one approaches the
QCP, yet the same order parameter fluctuations, which
provide the pairing glue, also destroy the very quasiparti-
cles that are trying to pair. The central question is which
of these two competing effects wins. In particular, is such
a QCP in a metal inherently unstable to superconductiv-
ity, as empirical observations suggest?10

In the present paper we address the above question for
the class of metallic QCPs, where the order parameter

carries a wave-vector ~Q = 0 (for recent progress on the
~Q 6= 0 case, see Refs. 11,12). The most familiar exam-
ple of such a phase transition is the Stoner instability
associated with the development of ferromagnetic order.
Modern developments show that due to fluctuation ef-
fects the Stoner transition is likely modified at low tem-
perature and becomes first order (or develops an inter-
mediate spiral ordered phase).13–17 A different example
which does not suffer from these complications16,18 (see,
however, footnote 19) is the transition associated with
the onset of Ising-nematic order, characterized by spon-
taneous breaking of a four-fold rotational symmetry of
the lattice to a two-fold subgroup.18,20–29,31–36 The order
parameter in this case is just a real Ising field φ(x). Grow-
ing evidence for such order has been found in a number
of physical systems including cuprate,37–43 pnictide44–51

and ruthenate52 materials. From a theoretical viewpoint,
the Ising-nematic QCP is perhaps one of the simplest
phase transitions in metals. It, thus, provides a conve-
nient setting for studying the interplay between quantum
criticality, nFL and pairing physics.53

We perform a systematic renormalization group (RG)
analysis of the Ising-nematic QCP. Our approach uti-
lizes an idea introduced by D. T. Son in his study of
quark pairing by the color gauge field in dense baryonic
matter.54 We combine the conventional Fermi-liquid RG
treatment of Refs. 55,56 with the so-called “two-patch”
scaling approach of Refs. 18,57–59. Analytical control is
gained through the ε-expansion introduced in Ref. 60 and
its subsequent large-N improvement.32 We find that the
Ising-nematic QCP is always unstable to superconduc-
tivity. In particular, attractive pairing interaction medi-
ated by the order parameter fluctuations dominates over
other residual short range interactions (even if they are
repulsive) and drives a pairing instability as the QCP is
approached. However, the residual short range interac-
tions determine the angular momentum/spin channel in
which the pairing instability occurs; as a result, the pair-
ing symmetry is non-universal. The usual weak coupling
BCS formula, Tc ∼ exp(−1/|V |), relating the supercon-
ducting Tc to the strength of the short-range interac-
tion V clearly does not hold in the vicinity of the QCP.
Rather the superconductivity is strongly enhanced, and
Tc at the QCP scales in a power-law manner with the
coupling between order-parameter fluctuations and the
electrons. Thus, in this example we clearly demonstrate
the importance of quantum criticality in optimizing the
superconducting Tc. Moreover, in the regime where our
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calculation is controlled (small ε), the energy scale at
which superconductivity sets in is parametrically larger
than the energy scale at which electronic quasiparticles
are destroyed. Thus, the superconducting instability is so
strong that it preempts the nFL physics (see the bottom
figure in Fig. 1). The above results of our RG analysis are
in exact agreement with a direct solution of Eliashberg-
like integral equations, as is shown elsewhere by one of
us.61,62

Next, we proceed to the class of QCPs associated with
annihilation of the Fermi-surface. We take as an example
the Mott transition from a Fermi-liquid to an insulating
spin-liquid with a spinon Fermi-surface.8 Applying the
RG procedure described above, we show that spinon pair-
ing is suppressed both in the spinon Fermi-surface phase
and at the Mott transition itself. As a result, the Mott
transition and the FL phase in its vicinity will be stable
to superconductivity. We expect similar conclusions to
hold for the Kondo breakdown transition in the Kondo
lattice. First, however, we review the construction and
properties of the spinon Fermi-surface phase.

B. Spinon Fermi-surface phase

The spinon Fermi-surface phase is an exotic Mott-
insulating spin-liquid with emergent spin-1/2 fermionic
spinon excitations, fα(x), α =↑, ↓.63 The spinon disper-
sion is such that they form a Fermi-surface. This phase
may be accessed in the slave-particle (parton) treatment

of a lattice spin model, where electron spin operators ~Si
are represented as ~Si = 1

2f
†
iα~σαβfiβ , subject to the local

constraint, f†iαfiα = 1. While the spinons are neutral un-
der the physical electromagnetic field, they carry a charge
under an emergent U(1) gauge field aµ, hence this phase
is also often referred to as a U(1) spin-liquid. An effec-
tive Lagrangian of the spinon FS phase may be written
as,

Lf = f†α[∂τ − iaτ + ε(−i∇−~a)]fα+
1

2g2
(εµνλ∂νaλ)2 + . . .

(1.1)

where ε(~k) is the spinon dispersion and the ellipses de-
note additional perturbations, such as four-spinon inter-
actions.

The spinon FS phase is expected to naturally arise in
so-called “weak” Mott insulators - ones proximate to a
metal-insulator transition. In this situation the spinon
FS state may be conveniently described within a slave
particle description of an electronic Hubbard model. We
write the electron operator as ciα = bifiα, where b is a
charge-e boson with zero spin, and fα is the spinon as
described above. This representation introduces a U(1)
gauge redundancy under which b carries gauge charge
−1 and fα carries gauge charge 1. We consider a state in
which fα form a Fermi surface. If in addition the boson b
is condensed, we obtain the usual metallic Fermi-liquid.
If, however, b is gapped, we obtain an electrical insulator

but with a spinon Fermi-surface coupled to a fluctuat-
ing U(1) gauge field. This is the spinon Fermi-surface
state introduced above. We note that right at the Mott
metal-insulator transition, the boson b is critical while
the spinon continues to form a Fermi-surface. For now,
we focus on the insulating spinon Fermi-surface phase;
properties of the Mott transition will be reviewed in the
next section.

There is numerical evidence for the presence of the
spinon FS spin-liquid phase in the triangular lattice
Hubbard model in the intermediate range of U/t.66–69

Moreover, it has been proposed as a candidate for
the quasi-2d triangular lattice organic insulators κ −
(BEDT− TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2
(abbreviated κET and DMIT below).66,67 These materi-
als have an estimated spin-exchange coupling J ∼ 250 K,
yet display no magnetic order down to 20− 30 mK tem-
perature. Moreover, these electrical insulators, supris-
ingly, show metallic behavior in their low temperature
spin-susceptibility (χs → const)70–72 and specific-heat
(C/T → const).73,74 DMIT also exhibits metallic thermal
transport at low temperature, κ/T → const,75 while κET
shows activated thermal transport, albeit with a rather
small gap ∆ ≈ 0.46 K.76 Both materials can be driven
metallic by an application of a moderate pressure of ∼ 0.4
GPa, with κET developing superconductivity below ∼ 3
K on the high-pressure side.77 At ambient pressure, κET
displays a phase transition (or a very rapid crossover) at
6K,78 resulting in partial loss of low-energy excitations as
evidenced by specific heat.73 It has been suggested that
this low-temperature anomaly may be due to a pairing
instability of the spinon FS.80,81

Current theoretical understanding of the spinon FS
phase is based on the following observations. The pres-
ence of gapless spinon excitations in the vicinity of the
FS strongly affects the gauge field dynamics. The longi-
tudinal fluctuations of the emergent electric field are De-
bye screened by the spinon FS and become gapped. The
fluctuations of the emergent magnetic field are Landau-
damped by the FS, but remain gapless. The coupling
of these Landau-damped magnetic field fluctuations to
spinons is expected to lead to “non-Fermi-liquid” behav-
ior of the spinon FS,57,58,64,65 e.g. the anomalous scaling
of specific heat C ∼ T 2/3.

In this paper we analyze whether the spinon FS phase
is stable to BCS pairing of spinons. We first observe
that the gapless fluctuations of the magnetic field medi-
ate a long-range repulsive interaction in the BCS channel
and hence are not expected to cause spinon pairing. In-
deed, fluctuations of the magnetic field mediate a current-
current interaction. The spinons in a BCS pair have
opposite momenta and opposite currents and hence, by
Ampere’s law, repel. Therefore, gapless gauge field fluc-
tuations suppress spinon pairing.82 However, in addition
to gauge field mediated long-range interactions, short-
range interactions between the spinons will generally be
present. Depending on the microscopic details of the sys-
tem, such short range interactions may be attractive in
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the BCS channel with some angular momentum and spin.
If the short range attraction is sufficiently strong, we ex-
pect the spinons to pair, developing a condensate 〈ff〉
(we leave the angular/spin structure of the pair wave-
function implicit for now). As in an ordinary supercon-
ductor, the spinon excitations acquire a gap, except pos-
sibly at symmetry dictated (or accidental) point nodes
on the FS. The pair condensate spontaneously breaks the
emergent U(1) gauge symmetry down to a Z2 subgroup.
As a result, the gauge field becomes gapped through the
Higgs mechanism. Gauge excitations now take the form
of gapped vortices carrying a magnetic flux π. Such
excitations are often referred to as visons. Visons and
spinons possess mutual semionic statistics. Thus, the
paired phase of spinons is just a Z2 spin-liquid.

We confirm the above intuitive picture with a system-
atic RG calculation. We show that the spinon FS phase,
is, indeed, stable as long as the strength of the short-
range attractive BCS interactions |Vm| is smaller than a
critical value |Vc| for all angular momentum channels m
(we employ a sign convention where V < 0 represents
an attractive interaction). However, once |Vm| > |Vc| for
some m, the spinon FS develops an instability to pair-
ing in angular momentum channel m. Vm = Vc, thus,
marks the quantum phase transition between the U(1)
spin-liquid and the Z2 spin-liquid. We find the phase
transition to be continuous and calculate the critical ex-
ponents using the ε-expansion of Refs. 32,60. Our find-
ings are contrary to previous claims83 that this phase
transition is driven first order by gauge field fluctuations.
We discuss the properties of the paired phase in the vicin-
ity of the transition. Right at the critical point we find
(at least to the order of the ε-expansion that we study)
that most experimentally accessible properties (specific
heat, uniform and finite wave-vector spin-susceptibility,
spin-chirality correlations) are not modified from those
in the spinon Fermi-surface phase itself. Our findings are
in exact agreement with an Eliashberg-like treatment of
the problem.61

Previously, the pairing quantum phase transition from
the spinon Fermi-surface state was considered in 3 di-
mensions by Chung et al.84 within an Eliashberg-like ap-
proximation. Our paper presents an RG analysis directly
in 2 dimensions, although there are some qualitative sim-
ilarities with the results of Chung et al.84 In particular,
Chung et al. have also concluded that a continuous pair-
ing transition is possible. However, we believe that some
of the results of Chung et al. are not generic. In par-
ticular, Chung et al. find that pairing can only occur
in angular momentum channels m ≥ 2. In contrast, we
believe that both in 2d and 3d pairing with arbitrary
angular momentum can be induced by tuning the appro-
priate Vm. Furthermore, we expect the power-law onset
of the pairing gap found by Chung et al. in 3d to be
modified by the renormalization of spinon quasiparticle
residue and Fermi-velocity. In fact, we anticipate that
the precise critical properties of the pairing transition
in 3d will be very similar to those of the 2d Halperin-

Lee-Read phase in the presence of long-range Coulomb
interactions, discussed in section I D.

C. Mott transition from a Fermi-liquid to a spinon
Fermi-surface phase

The Mott transition from a Fermi-liquid to a spinon FS
phase is an example of a QCP where the entire electron
FS disappears. As noted in the previous section, this
transition is driven by condensation of the slave boson b.
The transition may be described by the effective theory,

L = Lb + Lf (1.2)

where the Lagrangian Lb for the complex scalar field b is

Lb = |(∂τ − iaτ )b|2 + v2
b |(∇− i~a)b|2 + t|b|2 + u|b|4 (1.3)

and Lf is still given by Eq. (1.1). Note that here we are
considering a Mott transition occuring at fixed electron
density. When t is large and positive, the boson b is
gapped and can be integrated out, so the system is in
the spinon FS phase. On the other hand, when t is large
and negative, b is condensed, 〈b〉 6= 0. As a result, the
gauge field aµ becomes gapped via the Higgs mechanism;
furthermore, the electron cα = bfα and the spinon fα
are identified, cα → 〈b〉fα. Thus, the system is in the
ordinary FL phase.

We now discuss the fate of the system when t is tuned
to a critical value tc where b is gapless (for more de-
tails, see Ref. 8, whose findings we summarize here). If
the fluctuations of the gauge field aµ are ignored then
the spinon and boson sectors in Eq. (1.2) decouple, and
the boson sector undergoes a transition in the XY uni-
versality class, while the spinon sector remains a “spec-
tator” Fermi-liquid across the transition. Proceeding to
include gauge field fluctuations, we note that the longitu-
dinal electric field is again Debye screened by the spinon
Fermi-surface and so can be ignored. The fluctuations
of the magnetic field are again Landau-damped by the
spinon Fermi-surface, but remain gapless. It turns out
that such Landau-damped gauge fluctuations do not af-
fect the b-sector of the theory, which remains decoupled
from the spinon sector and continues to be described by
the XY critical theory. On the other hand, the b-sector
does affect the low energy gauge fluctuations. Integrating
the gapless b boson at the XY critical point out, one ob-
tains the following effective action for the magnetic field
fluctuations,

Sa =
1

2

∫
d2~xd2~x′dτ(∇×~a)(~x, τ)Π(~x− ~x′)(∇×~a)(~x′, τ)

(1.4)
where Π(~x) = vbσ/(4π

2|~x|), and σ ≈ 0.36 is the universal
conductivity of the XY model.85 Thus, the gauge-spinon
sector of the theory is described by the action

S =

∫
d2xdτLf + Sa (1.5)
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which will be the starting point for our theoretical anal-
ysis in this paper. We note that this action coincides
with that of the Halperin-Lee-Read state with Coulomb
interactions, discussed in section I D. Studying the the-
ory (1.5), one finds that gauge field fluctuations turn the
spinon FS at the Mott transition into a marginal Fermi-
liquid with a specific heat C ∼ −T log T , which domi-
nates the overall specific heat of the system. We remind
the reader that since the physical electron cα is a prod-
uct of the boson b and the spinon fα, the actual physi-
cal electron Green’s function displays a strong deviation
from Fermi-liquid theory at the Mott transition.

One may now ask whether the spinon FS at the Mott
transition is stable to BCS pairing of spinons. Before
we address this question, we would like to stress that
independent of whether the spinons pair, we expect no
long-range superconductivity exactly at the Mott transi-
tion. After all, at the Mott transition charge degrees
of freedom are on the verge of becoming localized so
long-range phase coherence will be supressed. Instead,
spinon pairing should be interpreted as a local tendency
of electrons to pair. Let us discuss the scenario where
spinon pairing does occur at the transition. In this case,
as we tune the system away from the Mott transition
to t < tc, a condensate 〈cc〉 ∼ 〈b〉2〈ff〉 appears, i.e.
the compressible phase adjacent to the Mott transition
is a superconductor rather than a Fermi-liquid. On the
other hand, the phase with t > tc, where the boson b
is gapped, is a Z2 spin-liquid insulator as discussed in
the previous section. Thus, if the spinons are paired the
Mott transition occurs between a superconductor and a
Z2 spin-liquid insulator.86 As we approach the transition
from the superconducting side, both the superconducting
Tc and the superconducting condensate 〈cc〉 will vanish,
however, the gap to a single electron cα will remain fi-
nite across the transition. In contrast, if the spinon FS
is stable against pairing then the single electron gap at
the transition will vanish.

With the above remarks in mind, we now summarize
the conclusions of our RG analysis. As with the spinon
FS phase, we show that repulsive current-current interac-
tions mediated by the gauge field suppress spinon pairing
at the Mott transiton. As a result, as long as the strength
of short-range attraction between spinons |Vm| is below
a critical value |Vc|, the spinon FS at the Mott transition
is stable. We believe that in this regime a stronger state-
ment actually holds: no spinon pairing occurs on either
side of the Mott transition, in particular, no supercon-
ductivity develops in the FL phase adjacent to the Mott
transition. Thus, the Mott transition is an example of a
QCP in a metal, which is stable to superconductivity.

On the other hand, once |Vm| > |Vc| for some m, the
spinons at the Mott transition pair, developing a con-
densate 〈ff〉 6= 0. Thus, in this parameter regime the
Mott transition occurs between a superconductor and a
Z2 spin-liquid insulator, and the single electron gap re-
mains finite across the transition.

D. Halperin-Lee-Read phase

The RG formalism developed in this paper can be ap-
plied to analyze the stability of yet another exotic phase:
the Halperin-Lee-Read (HLR) phase. The HLR phase is
a compressible phase of the quantum Hall (QH) fluid at
a filling fraction ν = 1/2.87 It is believed to be experi-
mentally realized by the conventional 2DEG in the low-
est Landau level.88 When the Landau level is half-filled,
there are two magnetic flux quanta per each electron.
If one performs a transformation to composite fermions
(CF) by attaching two flux quanta to each electron, the
composite fermions will, on average, see no magnetic field
and form a Fermi-surface. Technically, flux attachment
is performed with an aid of a Chern-Simons (CS) U(1)
gauge field aµ, leading to the action

S =

∫
d2xdτ(Lf + LCS) + SU ,

Lf = f†[∂τ − iaτ −
1

2m
(∂i − iai + iAi)

2]f (1.6)

LCS =
i

2(4π)
εµνλaµ∂νaλ (1.7)

SU =
1

2

∫
d2~xd2~x′dτf†f(~x, τ)U(~x− ~x′)f†f(~x′, τ)

(1.8)

Here, f(x) is the composite fermion operator, ~A is the
vector potential for the external magnetic field and U(~x)
is the microscopic electron-electron interaction potential.
Integration over aτ produces the constraint,

∇× ~a = 2(2π)f†f (1.9)

linking the magnetic flux density of the CS field aµ to
the electron density f†f . This constraint can be used to
rewrite SU in terms of ∇× ~a.

At ν = 1/2, the flux of the CS gauge field aµ on aver-
age cancels the external magnetic field, however, fluctua-
tions of aµ about the average flux persist. The dynamics
of aµ are nearly the same as in the spinon FS phase with
the longitudinal electric field Debye screened and gapped,
and the magnetic field Landau damped and gapless. As
the electric field is gapped, the CS term in Eq. (1.7) is
irrelevant in the RG sense (more precisely, it generates a
charge-current interaction of composite fermions which is
supressed in the small momentum limit compared to the
current-current interaction). Therefore, the low-energy
effective theory of the HLR phase is nearly identical to
that of the spinon FS phase when the microscopic elec-
tron interaction U(~x) in the QH fluid is short ranged.
For a power law interaction,

U(~x) ∼ 1

|~x|1+ε
, (1.10)

with ε < 1, the electron density fluctuations and hence
the gauge field fluctuations are suppressed.87 In fact,
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for ε < 0, the composite fermion quasiparticles remain
sharply defined, while for Coulomb interaction, ε = 0,
the HLR phase is believed to be a marginal Fermi-liquid
with a specific heat C ∼ −T log T .60,87 For ε > 0, the
HLR phase is a true nFL,65,87,89,90 with a power law spe-
cific heat C ∼ T 2/(2+ε), however, the theory is under
analytical control in the limit ε� 1.32,60.

In passing, we note that the HLR phase may alter-
nately be described within a slave particle approach that
exposes the conceptual similarity to a spin-liquid Mott
insulator with a spinon Fermi-surface discussed above.
We represent the electron operator c as a product of a
charge-e boson b and a charge neutral fermion f : c = bf .
Then the bosons are at filling factor ν = 1/2 and we take
them to be in the bosonic Laughlin state at that filling.
Being neutral, the fermions f see no magnetic field, and
form a Fermi-surface. This slave particle description in-
troduces a U(1) gauge redundancy, with b and f carrying
opposite charges under an emergent gauge field aµ. The
corresponding gauge constraint fixes the number density
of the bosons to equal that of the f fermions. Being elec-
trically charged, the boson density is simply equal to the
physical electron density. Thus, the density of f fermions
also equals the physical electron density. Consequently,
the size of the f Fermi-surface is set by the physical elec-
tron density. Since the bosonic ν = 1/2 Laughlin state
is gapped, we can integrate the boson degrees of freedom
out, generating a Chern-Simons term (1.7) for the emer-
gent gauge field aµ. Thus, the slave particle description
is completely equivalent to the familiar flux-attachment
picture described above.

In this paper, we address the stability of the HLR
phase to BCS pairing of composite fermions. As with
the spinon FS phase, the long-range current-current in-
teraction mediated by gapless gauge field fluctuations
suppresses pairing in the BCS channel. Thus, we find
that the HLR phase is stable as long as the strength of
the short-range attractive BCS interaction |V | is smaller
than a critical value |Vc|. However, once |V | > |Vc|,
pairing of composite fermions will occur, giving rise to
an incompressible QH phase with a Hall conductivity
σxy = 1/2. A possible “microscopic” source of an at-
tractive BCS interaction is the short-distance part of
the charge-current interaction mediated by the CS gauge
field, which produces attraction in the p+ip channel.92 In
fact, if pairing occurs in the p+ ip channel, the resulting
phase is just the familiar Moore-Read (MR) “Pfaffian”
state.92 After the pairing transition, composite fermions
become gapped neutral fermion excitations of the MR
phase. Gauge excitations are also gapped through the
Higgs mechanism and appear in the form of vortices car-
rying magnetic flux π of aµ, which via Eq. (1.9), trans-
lates into physical electric charge q = e/4. Furthermore,
these vortices support Majorana zero modes of compos-
ite fermions in their core and, therefore, can be identi-
fied with q = e/4 non-Abelian quasiparticles of the MR
state. We find the phase transition between the HLR and
the MR phases to be continuous, consistent with numeri-

cal simulations94–96, but contrary to previous theoretical
claims.97 We describe how the neutral fermion gap and
the charge gap vanish as one approaches the QCP from
the MR side, and discuss the phenomenology of the MR
phase in the vicinity of the transition.

II. RENORMALIZATION GROUP ANALYSIS

Although various nFL states described above arise in
very different physical systems, they admit a unified the-

oretical treatment involving a gapless ~Q = 0 boson in-
teracting with the FS. We denote the boson as φ(x): it
represents the order parameter in the case of the Ising-
nematic QCP and the transverse component of the vec-
tor potential ~a in the case of the spinon FS phase, the
Mott critical point, and the HLR phase. We denote the
fermions (physical electrons in the Ising-nematic case,
spinons in the spinon FS phase/Mott transition case and
composite fermions in the HLR case) as fα. We take the
flavor index α to run from 1 to N . Physically, N = 2 (two
spin flavors) for the Ising-nematic QCP and spinon FS
phase/Mott transition, and N = 1 for the spin-polarized
HLR phase.

Due to Landau-damping, boson fluctuations with
wave-vector ~q → 0 interact most strongly with fermions
in the regions of the FS to which ~q is nearly tangent.57–59

We divide the FS into pairs of antipodal patches, labelled
by an index j, with

width Λy � kF

and thickness Λx ∼
Λ2

y

kF
� Λy � kF , (2.1)

where kF is the Fermi momentum; see Fig. 2. For simplic-
ity, we assume that the Fermi-surface is connected and
convex, and furthermore, that the local Fermi-surface
curvature K and Fermi momentum kF are comparable.

⇤y

⇤x

f+f�

FIG. 2: A pair of antipodal patches, labeled by a fixed j, on
the Fermi surface. The values of Λx and Λy are constrained
as in Eq. (2.1).
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Antipodal points ±~kj on the FS are chosen in patch
pair j and directions perpendicular (x̂j) and tangent (ŷj)

to the FS at ~kj defined. The fermion operator fα is then

expanded in terms of patch fields f j±,α(x) as,

fα(x) =
∑
j

(f j+α(x)ei
~kj ·~x + f j−α(x)e−i

~kj ·~x). (2.2)

We also define boson patch fields φj(x) to include only
momenta nearly tangent to the FS in patch j:

|qx| < |qy|
Λy

kF
, |qy| < Λy. (2.3)

The effective action S describing the fermion-boson in-
teraction then breaks up into decoupled actions for each
patch pair,

S =
∑
j

Sj , (2.4)

with18,32,59

Sj =

∫
d2xdτ(Lf [f j ] + Lint[f

j , φj ]) + Sφ[φj ], (2.5)

The Lagrangian densities are

Lf = f†+α

(
∂τ + vF (−i∂x −

∂2
y

2K
)

)
f+α

+ f†−α

(
∂τ + vF (i∂x −

∂2
y

2K
)

)
f−α (2.6)

Lint = vFφ(f†+αf+α + ζf†−αf−α) (2.7)

Sφ =
N

2g2

∫
d2~qdω

(2π)3
|qy|1+ε|φ(~q, ω)|2 (2.8)

Here, we have suppressed the patch index j. The Fermi-
surface curvature K, the Fermi-velocity vF and, in the
case of the Ising nematic transition, the coupling con-
stant g2, will generally vary along the Fermi-surface (i.e.
will be patch-dependent). The constant ζ = 1 for the
nematic QCP and ζ = −1 for the spinon FS phase/Mott
transition and the HLR phase.

For general ε, the action Sφ is non-local. For the
HLR state, this term encodes the long-range microscopic
electron-electron interation, U(~x) ∼ 1/|~x|1+ε. The im-
portant case of a Coulomb interaction corresponds to
ε = 0, while for a short-range interaction, ε = 1, and the
term (2.8) is local. In case of the nematic QCP or spinon
FS phase, the physical value of ε is ε = 1. However, one
may be able to access ε = 1 via an expansion around
ε = 0.32,60 We, thus, work in the regime 0 ≤ ε � 1
below. Proceeding finally to the case of the Mott transi-
tion, the screening of the gauge field by the gapless boson
b also generates a non-local term (1.4) in the gauge ac-
tion, i.e. the effective action for the gauge-spinon sector
is described by Eqs. (2.6)-(2.8) with ε = 0.

In the case of the Ising nematic transition, the La-
grangian also allows for a perturbation rφ2, which tunes
the system across the QCP. Below, we will work directly
at the QCP, setting r = 0. We also perform all our
RG calculations at temperature T = 0. As usual, we
treat finite T as an infra-red cut-off when running the
RG equations.

As already noted, distinct pairs of patches j 6= j′ are
decoupled in the above description and can be treated
independently. We will shortly discuss the crucial role
played by the inter-patch interactions in the pairing
physics, however, for now, let us ignore such couplings
and review the RG analysis of the two-patch theory (2.6)
- (2.8).32,60 The two-patch theory is described by a single
dimensionless coupling constant,

α ≡ g2vFΛ−εy
(2π)2

. (2.9)

The fermion part of the action (2.6) dictates the scaling
of frequency and momenta:

ω → e−zf `ω, qx → e−`qx, qy → e−`/2qy, (2.10)

with the bare dynamical exponent, zf = 1. As we will
see below, zf will generally be renormalized by inter-
actions, however, the “anisotropic” momentum scaling,
qx ∼ q2

y, is exact due to the non-renormalization of the

FS curvature K.18 The full interacting fermion Green’s
function G(ω, ~q) depends only on the distance to the FS,
qx + q2

y/(2K), so we may identify zf with the fermion
dynamical exponent. On the other hand, the full boson
propagator D(ω, ~q) of the two-patch theory depends only
on the momentum tangent to the FS, qy, so the above
scaling fixes the relationship18 between the boson dynam-
ical exponent zb and the fermion dynamical exponent zf ,

zb = 2zf . (2.11)

Under the above scaling with bare zf = 1, α flows as
dα/d` = (ε/2)α. Hence, the fermion-boson interaction is
irrelevant for ε < 0, relevant for ε > 0 and marginal at
tree-level for ε = 0. To compute quantum corrections to
the RG flow one can utilize either a perturbative expan-
sion in α (Ref. 60; however, see footnote 98) or a 1/N
expansion (Ref. 32). At leading order both expansions
give the same result. To one loop order (first order in
1/N), α and vF run as,

dα

d`
=

ε

2
α− α2

N
(2.12)

dvF
d`

= − α
N
vF (2.13)

and the fermion field acquires an anomalous dimension,

f(ω, qx, qy)→
[
1 +

(
7

4
− ηf

2

)
d`

]
f(ed`ω, ed`qx, e

d`/2qy)

(2.14)
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with ηf = α/N . For ε = 0, α flows logarithmically to
zero, and the system is a marginal Fermi-liquid with the
fermion self-energy,

Σ(ω) ∼ −i α
N
ω log

Λω
|ω| (2.15)

with Λω ∼ vFΛx - the energy cut-off. For ε > 0, the flow
(2.12) has an infra-red stable fixed point at α∗ = Nε/2.
If N is of O(1) then ε � 1 ensures that the fixed-point
occurs at weak coupling. On the other hand, if N � 1,
we take ε ∼ O(1/N) to make α∗ ∼ O(1) and obtain a
well-defined large-N limit. In either case, at the fixed
point,

dvF
d`

= − ε
2
vF , ηf =

ε

2
(2.16)

implying a fermionic dynamical exponent

zf = 1 +
ε

2
, (2.17)

and a fermion self-energy

Σf (ω) ∼ ω1−ηf . (2.18)

The exponent zf directly manifests itself in the nFL spe-
cific heat,

C ∼ T 1/zf . (2.19)

We note that the expression for zf in Eq. (2.17) holds
to all orders in ε: this is tied to the non-analytic nature of
the qy dependence in Sφ, which undergoes no renormal-
ization. On the other hand, for ε = 1, Sφ is analytic in qy

and, in principle, can undergo renormalization. Our abil-
ity to access the physically important ε = 1 point through
an expansion around ε = 0 is, thus, tied to such renormal-
izations being absent. No renormalization of Sφ in the
ε = 1 theory has been found up to three loop order,18

however, a general proof of this statement is currently
lacking.

We next return to consider the effect of inter-patch in-
teractions, which have been mostly ignored in previous
studies. However, as we demonstrate below, such cou-
plings must be included in the theory, as they are auto-
matically generated in the RG process. This fact was first
noted in Ref. 54 in the context of 3d QCD at finite quark
density, and here we closely follow the RG treatment pro-
posed by Ref. 54. So far, we have left the precise RG pro-
cedure somewhat implicit. Recall that under the scaling
we advocated for the two-patch theory, qx → e−`qx and
qy → e−`/2qy, so in the RG process we reduce both the
fermion momentum cut-off perpendicular to the FS, Λx,
and the cut-off tangent to the FS, Λy. While Λx can
be, as usual, shrunk by integrating out gapped fermion
excitations away from the FS, reducing Λy in the same
manner would require integration over gapless fermions
on the FS, which is illegal. Instead, during each RG step
we re-partition the FS into smaller patches with width
Λ′y = e−`/2Λy, while the reduction in the patch thickness

Λ′x = e−`Λx is still performed by integrating out gapped
fermions away from the FS. Simultaneously, in each RG
step we integrate out boson fluctuations with momenta
e−`/2Λy < |~q| < Λy; see Fig. 3. Before the RG step, such
boson fluctuations mediate non-local intra-patch interac-
tions between the fermions. However, after the RG step,
these generate a local four-fermion inter-patch interac-
tion, as shown in Fig. 3 (bottom).

As is well known from ordinary FL theory, a very re-
stricted set of four-fermion inter-patch couplings on the
FS is kinematically allowed.55,56 Only forward-scattering
and BCS scattering interactions survive as the shell of
fermion states around the FS is shrunk in the RG pro-
cess. As we are interested in the physics of pairing, in
the present paper we concentrate only on four-fermion
interactions in the BCS channel, which can be described
by the action,

SBCS = −1

4

∫ 4∏
i=1

d2~kidωi
(2π)3

f†α(k1)f†β(k2)fγ(k3)fδ(k4)(2π)3δ3(k1 + k2 − k3 − k4)

×
(

(δαγδβδ + δαδδβγ)V a(~k1,~k2;~k3,~k4) + (δαγδβδ − δαδδβγ)V s(~k1,~k2;~k3,~k4)
)

(2.20)

Here, V s/V a are, respectively, symmetric/antisymmetric

under exchanging ~k1 ↔ ~k2, and ~k3 ↔ ~k4. Only the
values of the interaction for BCS-matched momenta,

V s,a(~k1,−~k1;~k2,−~k2), play a role; furthermore, ~k1,2 can
be taken to lie on the FS. From now on, we assume that
the system is rotationally invariant,99 so we may write

V s,a(~k1,−~k1;~k2,−~k2) = V s,a(θ1 − θ2), with θ1,2 - angles
on the FS. Performing an expansion in angular harmon-

ics,

V s,a(θ1 − θ2) =

∞∑
m=−∞

V s,am eim(θ1−θ2) (2.21)

V s involves only even angular momentum components
and V a - odd. It is convenient to define dimensionless
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FIG. 3: Top: Our RG procedure. During each RG step, each patch of the Fermi-surface is divided into two smaller patches.
The relationship between the widths and heights of the patches remains as in Eq. (2.1). Bottom: Single boson exchange
mediates a non-local intra-patch interaction (left). Here and below, solid/dashed lines are fermion/boson propagators. As high
momentum boson modes are integrated out in the RG process, a local inter-patch four-Fermi interaction in the BCS channel

δV (~k1,−~k1;~k2,−~k2) is generated (right).

BCS interaction constants,

Ṽ s,am ≡ kF
2πvF

V s,am . (2.22)

In the absence of the coupling to the gapless boson (i.e.
in a Fermi-liquid), the RG flow of the BCS interaction
(2.20) can be determined as in Refs. 55,56. The RG in
their work involves only the rescaling of Λx, which is the
same as that in Fig. 3 (top). Our rescaling of Λy plays no
role in the renormalization of the BCS interaction, and

so we can read off the renormalization of Ṽ s,am from their
results: this interaction is marginal at tree level, and
acquires the following flow at one-loop level (see Fig. 4),

dṼ s,am

d`
= −(Ṽ s,am )2 (2.23)

Thus, in a Fermi-liquid, if the initial value of the BCS
interaction is repulsive, V s,am > 0, then V s,am flows loga-
rithmically to zero, while if the inital value of the inter-
action is attractive, V s,am < 0, V s,am runs away to −∞ at

an energy scale, ∆BCS ∼ Λω exp(−1/|Ṽ s,am |), signaling an
instability to fermion pairing.

Next, we study how the flow of the four-fermion BCS
interactions (2.23) is modified by the presence of the
gapless boson φ. In the limit α � 1 (or N � 1),

Ṽ � 1, the leading modification comes from the diagram
in Fig. 3 (bottom, left), which represents the one-boson

exchange contribution to the four-fermion BCS ampli-
tude. As already noted, integration over intermediate
large-momentum φ modes in Fig. 3 generates an inter-
patch four-fermion interaction,

δV s,a(~k1,−~k1;~k2,−~k2) = −ζ
2
v2
FD>(0,~k1 − ~k2) (2.24)

where D(ω, ~q) is the boson propagator and the subscript
“>” indicates that only modes in the momentum shell
e−`/2Λy < |~q| < Λy should be kept. We remind the
reader that the constant ζ distinguishes between the dif-
ferent nFLs: we have ζ = 1 for the Ising-nematic case,
and ζ = −1 for the spinon Fermi-surface phase/Mott
transition and HLR cases. Note that the frequencies of
the external fermions and, hence, of the boson in Fig. 3
(bottom) can be set to 0. Eq. (2.24) gives δV for the

case of small angle scattering, ~k1 → ~k2; the result for
~k1 → −~k2 is determined by symmetry. The static boson
propagator is given by D(0, ~q) = g2/(N |~q|1+ε). Comput-
ing the angular harmonics corresponding to (2.24),

δṼ s,am = −2

(
kF

2πvF

)
ζ

2
v2
F

∫
dθ

2π
D>(0, kF θ)e

−imθ

= −ζg
2vF

2π2N

∫ Λy

e−`/2Λy

dq

q1+ε
cos(mq/kF ) = −ζ α

N
`

(2.25)
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FIG. 4: Renormalization of the BCS interaction
V (~k1,−~k1;~k2,−~k2) in a FL.

In the last step, we have dropped the factor cos(mq/kF )
as Λy � kF . Thus, the process in Fig. 3 (bottom) con-

tributes a term dṼ s,am /d` = −ζα/N to the RG flow of V ,
which combines with Eq. (2.23) to give,

dṼ s,am

d`
= −ζ α

N
− (Ṽ s,am )2 (2.26)

There are also terms of order αṼ s,am which arise from ver-
tex corrections and the flow of vF in the definition (2.22),
but we have dropped them because they are are higher
order in ε. Note that the flow (2.26) is independent of
the angular momentum and spin channel; hence we drop
the angular momentum/spin indices on V below. The
flow equation (2.26) for the inter-patch BCS interaction
in conjunction with the flow of the intra-patch coupling
constant α in Eq. (2.12) determines the physics of the
nFL states considered. We next analyze these RG equa-
tions and discuss their consequences. However, we first
point out that in the regime of analytical control ε� 1,
all the conclusions of our RG treatment can be repro-
duced by solving the Eliashberg equation for the pairing
vertex, as has been shown elsewhere.61 This lends further
support to our results.

III. RESULTS: ISING-NEMATIC QCP

We first discuss the solution to RG Eqs. (2.12), (2.26)
for the nematic QCP. In this case, the constant ζ = 1 in
Eq. (2.26), so the fluctuations of the order parameter cap-
tured by the first term in Eq. (2.26) drive the short-range
interaction V negative (attractive), as expected. In fact,
as discussed in appendix A, we find that independent of
the initial values of α and V , V flows to −∞ at a fi-
nite ` = `p, indicating an instability of the Ising-nematic
QCP to superconductivity. Thus, we expect both the
zero temperature electron pairing gap ∆ and the super-
conducting critical temperature Tc to be proportional to
∆ ∼ Tc ∼ Λωe

−`p . Unlike in the ordinary Fermi-liquid,
the run-away flow V → −∞ occurs even if the initial
value of V is repulsive: gapless order parameter fluctua-
tions eventually drive V attractive. However, the magni-
tude of `p and hence the pairing gap does depend on the

initial value of V : the smaller the initial V - the larger
the gap. As already noted, the flow equations for V s,am

in different angular momentum/spin channels decouple
and are identical. We, thus, expect pairing to occur in
the channel where V s,am diverges first, i.e. one which has
the smallest initial V s,am . Hence, the pairing symmetry is
non-universal.

It is interesting to compare the pairing scale ∆ with
the energy scale EnFL = Λωe

−`nFL at which electronic
quasiparticles get destroyed. Here, we identify EnFL as
the energy at which the Fermi-velocity vF , whose flow is
determined by Eq. (2.13), starts to deviate significantly
from its bare value. We find that as long as our cal-
culation is controlled, (i.e. ε � 1), EnFL � ∆, so the
superconducting instability preempts the destruction of
quasiparticles and associated nFL behavior. This is quite
distinct from the physics of many materials where nFL
behavior is observed at energies/temperatures well above
the superconducting Tc. As we take the artificial control
parameter ε to its physical value ε = 1, the two scales
EnFL and ∆ approach each other, however, at this point
we loose analytical control.

We now briefly illustrate the above conclusions for sev-
eral regimes of ε, α, V (see appendix A for more details).
First, consider the case ε = 0. Here, we find

∆ = Λω exp

[
− 1√

α̃

(
π

2
+ tan−1 Ṽ√

α̃

)]
(3.1)

with

α̃ ≡ α

N
. (3.2)

If the bare short-range interaction Ṽ is small compared to

the long-range interaction, |Ṽ | �
√
α̃, then Eq. (3.1) re-

duces to ∆ = Λω exp(−π/(2
√
α̃)). On the other hand, if

the bare short-range interaction Ṽ is large and repulsive,

Ṽ �
√
α̃, ∆ = Λω exp(−π/

√
α̃), i.e. the gap is reduced

by a factor of two on the logarithmic scale compared to

the case of small Ṽ . Finally, if the bare short-range in-

teraction is large and attractive, Ṽ < 0, |Ṽ | �
√
α̃, the

gap takes the standard BCS form, ∆ = Λω exp(−1/|Ṽ |).
The scale at which nFL effects become appreciable is
EnFL ∼ Λω exp(−1/α̃). Thus, as long as α̃ � 1, the
pairing gap ∆ is parametrically larger than the nFL scale
EnFL. We note in passing that the result (3.1) is identi-
cal to one obtained for the problem of quark pairing by
color gauge fields in 3d dense baryonic matter,54 and for
electron pairing near a ferromagnetic QCP in 3d.100

Proceeding to the case ε > 0 (which may be conti-
nously connected to the physical case ε = 1), we find
that the nFL scale is still given by EnFL ∼ Λω exp(−1/α̃)
for α̃ � ε, as well as for α̃ ∼ O(ε), while for α̃ � ε,
EnFL ∼ Λω(α̃/ε)2/ε. The pairing scale ∆ is still given by
the expression in Eq. (3.1) for α̃ � ε2, so the relation

EnFL � ∆ holds. For α̃� ε2 and Ṽ > 0 (or Ṽ < 0, but
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transition to the paired phase.

|Ṽ | � ε/ log ε2

α̃ ), we obtain

∆ ∼ Λω

(
α̃

ε2

)2/ε

(3.3)

so ∆ depends on the coupling constant α̃ in a power-law
manner and EnFL/∆ ∼ ε2/ε � 1. Eq. (3.3) has been
previously obtained within an Eliashberg-like treatment
in Ref. 62. Naive extrapolation of the above result to the
physically relevant value ε = 1 gives, ∆ ∼ EnFL ∼ α̃2Λω,
i.e. the pairing and nFL scales become parametrically
equal. This conclusion is again supported by the direct
solution of Eliashberg-like equations.101,102

Note that in the above analysis, we have ignored
the d-wave dependence of the coupling between the
Ising-nematic order parameter and electrons on the an-
gle around the FS. We don’t expect the d-wave form-
factor to affect the maximum magnitude of the pairing
gap strongly, however, it will certainly affect its angu-
lar dependence. In fact, recent results of Maier and
Scalapino103 and Lederer et al.104 suggest that the angu-
lar dependence of the gap at the QCP may be quite singu-
lar. These authors study the regime where the system is
tuned sufficiently away from the Ising-nematic QCP that
the standard weak coupling BCS machinery can be ap-
plied. They find that as the QCP is approached, the su-
perconducting gap becomes strongly peaked around the
angle where the coupling between the order parameter
and the electrons is maximal (i.e. around the anti-node).
It is interesting whether this result survives all the way
to the QCP. In the future, we hope to settle this question
by extending our RG analysis to the physical case with
no rotational symmetry.

While our RG analysis is performed exactly at the
metallic critical point, superconductivity will survive
when one tunes the system slightly away from the QCP
with the perturbation rφ2. Recall that r induces a finite
correlation length for the order parameter, ξφ ∝ r−ν ,
ν = (1 + ε)−1, with the corresponding energy scale
Eφ ∼ ξ−zbφ ∼ r(2+ε)/(1+ε). Away from the QCP, Eφ serves

as an IR cut-off on the RG equation (2.26). Therefore,
the pairing gap ∆(r) will be essentially unmodified from
its QCP value ∆0 = ∆(r = 0), as long as Eφ(r) � ∆0.
We may then estimate the characteristic width of the

superconducting dome as δr ∼ ∆0
(1+ε)/(2+ε) (here, we

consider the most interesting regime when pairing at the

QCP is dominated by order parameter fluctuations rather
than the bare short-range BCS attraction V ). As always,
the precise shape of the dome for |r| ∼ δr cannot be de-
termined from RG considerations alone. The dome will
generally have tails extending to r � δr, where the gap
(Tc) will be strongly suppressed compared to ∆0. The
precise form of ∆(r) in these tails can be obtained by
running the RG equation (2.26) for the BCS coupling up
to the energy scale Eφ. It is easy to see that for r � δr,

|Ṽ (Eφ)| � 1, i.e. the system at energy Eφ is in the weak-
coupling regime. Below the energy Eφ, φ is not critical,
and the system is described by Fermi-liquid theory, so the
BCS coupling continues to flow according to Eq. (2.23).

Therefore, if Ṽ (Eφ) < 0, then the system will develop su-

perconductivity, with ∆(r) = Eφ exp(−1/|Ṽ (Eφ)|). On

the other hand, if Ṽ (Eφ) > 0, no superconducting in-
stability will occur. Thus, if the bare V is attractive,
the tails of the superconducting dome will extend to all
r (as long as one remains in the regime of applicability
of the critical theory). On the other hand, if the bare V
is repulsive, then the dome will terminate at a finite r,
corresponding to V (Eφ) = 0.

We would like to note that in the above discussion, r
denoted the deviation from the “metalic” QCP. As we
saw, this QCP is unstable to superconductivity, so the
true Ising-nematic QCP will occur inside the supercon-
ducting dome. In addition, its location will generally
shift away from that of the putative metallic QCP at
r = 0 to r = rc. On general scaling grounds, we ex-
pect |rc| ∼ δr. The universality class of the true QCP at
r = rc depends on whether pairing gives rise to a fully
gapped or a nodal superconductor. If the superconductor
is fully gapped, this transition will be in the classical 3D
Ising univerality class. The character of this transition
in a nodal d-wave superconductor has been discussed in
Ref. 105. The critical behavior associated with the true
QCP will only be observable for T � ∆0, and the system
will cross over to the metallic critical behavior discussed
in this paper for T � ∆0.

IV. RESULTS: SPINON FS PHASE AND HLR
PHASE

We now turn to the solution of the RG equations
Eqs. (2.12), (2.26) for the spinon FS phase and HLR
phase. The constant ζ in Eq. (2.26) now takes the value

ζ = −1, hence gauge field fluctuations drive Ṽ repulsive,
in accordance with intuition. We first solve Eqs. (2.12),
(2.26) when ε > 0 (with an eye to describing the phys-
ical spinon FS phase and the HLR phase with short-
range interactions, where ε = 1). Here, the coupling
α flows to the fixed point α∗ = Nε/2, and we may sub-
stitute this fixed point value into the RG equation for
V , (2.26). We then find two perturbatively accessible

fixed points for Ṽ : Ṽ ±∗ = ±
√
ε/2, see Fig. 5. The fixed

point Ṽ +
∗ is infra-red stable; as long as the initial value
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of Ṽ is greater than Ṽ −∗ , Ṽ flows to Ṽ +
∗ . Thus, the

spinon FS and HLR phases are controlled by the fixed

point (α∗, Ṽ +
∗ ) and are stable to fermion pairing. How-

ever, if the initial value of Ṽ s,am in some angular momen-

tum/spin channel is smaller than Ṽ −∗ , Ṽ s,am runs away to

−∞, and fermion pairing occurs. Ṽ = Ṽ −∗ , thus, marks
the phase transition between the U(1) and Z2 spin-liquid
phases (HLR and incompressible QH phases). Note that
unlike in a Fermi-liquid, a finite strength of the attrac-

tive short-range interaction |Ṽ | > |Ṽ −∗ | > 0 is needed
to overcome the long-range repulsion mediated by the
gauge field and cause fermion pairing. Pairing in a given
angular-momentum/spin channel can be driven by tun-

ing the corresponding Ṽ s,am . The pairing transition is
continuous and the spinon (neutral fermion) gap onsets

in a power law fashion, ∆ ∼ (Ṽ −∗ − Ṽ )zν , where

1

zν
=

d

dṼ

(
dṼ

d`

)∣∣∣∣
Ṽ=Ṽ −∗

=
√

2ε (4.1)

This is, again, distinct from an ordinary FL where the
electron gap has the familiar exponential form ∆ ∼
exp(−1/|Ṽ |).

We note that to the leading order in ε discussed above,
the presence of inter-patch interations V does not af-
fect the flow of the intra-patch coupling constant α,
Eq. (2.12), and the Fermi-velocity vF , Eq. (2.13). As a
result, most physical properties (fermion and boson dy-
namical exponents zf , zb; specific heat; 2kF exponents32

etc.), at the two fixed points V = V ±∗ are identical. This
conclusion may be true to all orders in ε, since, perturba-
tively, BCS interactions do not influence the single par-
ticle properties (vF , Z) in a FL.

We next discuss the marginal case ε = 0, which de-
scribes the QH fluid with Coulomb interactions. Here,
the coupling constant α logarithmically flows to 0. The

combined flow of α̃, Ṽ is shown in Fig. 6 (see appendix
B for details). The flow is characterized by a single

fixed-point α̃ = 0, Ṽ = 0 and features an attractor line

Ṽ =
√
α̃ and a separatrix Ṽ = −

√
α̃. As long as the

initial values of Ṽ , α̃ satisfy Ṽ > −
√
α̃, the couplings

flow to the attractor line Ṽ =
√
α̃ and then into the fixed

point α̃ = 0, Ṽ = 0. So, the HLR phase with Coulomb
interactions is stable in a finite region of parameter space.

On the other hand, if the initial Ṽ < −
√
α̃, Ṽ runs away

to −∞ and fermion pairing occurs. Thus, the separa-

trix Ṽ = −
√
α̃ describes the transition between the HLR

phase and the paired QH phase. Note that this separa-
trix also logarithmically flows into the fixed point α̃ = 0,

Ṽ = 0, so the stable and the unstable fixed points Ṽ ±∗ ,
found for ε > 0, merge into a single fixed-point here. The
pairing transition is continuous and the fermion gap turns
on as the separatrix is crossed in an unusual super-power
law fashion,

∆ ∼ exp

[
− 1

16
log2(Vc − V )

]
(4.2)

with Vc ≈ −
√
α̃.

V. RESULTS: MOTT TRANSITION

As already noted, the ε = 0 theory also describes the
QCP between the spinon FS phase and a Fermi-liquid
phase. Thus, the results in section IV imply that the
spinon Fermi-surface at the Mott transition is stable as

long as the initial values of (Ṽ , α̃) lie to the right of the
separatrix in Fig. 6. On the other hand, if the initial

values of (Ṽ , α̃) lie to the left of the separatrix, the spinon
acquires a gap, and the Mott transition occurs between
a Z2 spin-liquid and a superconductor.

In the former regime Ṽ > −α̃, where the spinon FS
at the Mott transition is stable, we expect that an even
stronger statement holds: the spinon Fermi-surface re-
mains stable as one tunes the system slightly away from
the Mott transition. Indeed, if one tunes the system into
the compressible phase, t < tc in Eq. (1.3), the gauge
field becomes Higgsed by the condensate 〈b〉 6= 0 below
a momentum scale qa ∼ (tc − t)ν , where ν is the cor-
relation length exponent of the XY universality class.
The corresponding energy scale Ea ∼ q2

a will serve as

an IR cut-off on the RG equations for the flow of (Ṽ ,
α̃), (2.12), (2.26). Below this energy scale, gauge fluc-
tuations become non-critical and the spinon FS will be
described by FL theory. Now, as we discussed in section

IV, for energies above Ea, the flow of (Ṽ , α̃) tends to the

attractor line Ṽ (`) =
√
α̃(`) ≈ `−1/2 > 0. Thus, at the

crossover scale Ṽ (Ea) > 0, so no spinon pairing will oc-
cur as one futher lowers the energy into the Fermi-liquid
regime. Consequently, the Fermi-liquid phase adjacent to
the Mott transition will not develop superconductivity.

Likewise, if one tunes the system into the insulating
phase, t > tc in Eq. (1.3), the screening (1.4) of the gauge
field by b will cease at a momentum scale qa ∼ (t− tc)ν ,
with the corresponding energy scale Ea ∼ q2

a. Below this
energy scale the system is effectively in the spinon FS

phase. Again, by the time the scale Ea is reached, (Ṽ , α̃)

will approach the attractor line Ṽ (`) =
√
α̃(`) ≈ `−1/2 >

0. Since, as we discussed in section IV, a finite strength
of attraction Ṽ < Ṽ −∗ is needed to destabilize the spinon
Fermi-surface phase, we conclude that no spinon pairing
will occur on the insulating side of the transition, as well.

VI. Z2 SPIN-LIQUID AND QH STATES NEAR
THE PAIRING TRANSITION

As we showed in section IV, spinon FS and HLR phases
can be driven through a continuous pairing transition.
We now comment on some properties of the paired phase
in the vicinity of the transition. In many ways, these
paired states are analogous to ordinary superconduc-
tors. As we already noted, the paired phase supports
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FIG. 6: RG flow of the intra-patch coupling constant α̃ and

the inter-patch BCS interaction Ṽ s,a
m in the HLR phase with

Coulomb interactions (ε = 0). Note the attractor line Ṽ ≈
√
α̃

(dashed red curve) and the separatrix Ṽ ≈ −
√
α̃ (solid red

curve). The HLR phase is controlled by the logarithmic flow

of the attractor line into the fixed point (Ṽ , α̃) = (0, 0). The
phase transition to the paired CF phase is controlled by the
logarithmic flow of the separatrix into the same fixed point

(Ṽ , α̃) = (0, 0).

two kinds of fundamental excitations: spinons/neutral
fermions and vortices of the gauge field. The latter are
visons of the Z2 spin-liquid/charge e/4 excitations of the
paired CF phase. The vortex excitations are, thus, par-
ticularly important in the QH context as their energy
determines the charge gap. So far, we have only deter-
mined the scaling of the fermion gap ∆ near the pair-
ing transition. We now crudely estimate the magnitude
of the vortex gap. The fermion pair-condensate is su-
pressed in the vortex core, whose radius we take to be
the fermion correlation length ξ ∼ ∆−1/zf . Thus, the
vortex gap Ev ∼ (εn − εp)ξ2, where εn − εp is the energy
density difference between the “normal” phase and the
paired phase. The scaling of the energy density at the
pairing transition is ε ∼ ω1+1/zf (e.g. recall the specific
heat C ∼ T 1/zf both in the gapless FS phase and at
the pairing transition), so setting the characteristic en-
ergy scale ω in the paired phase to the fermion gap ∆,
εn − εp ∼ ∆1+1/zf and Ev ∼ ∆1−1/zf . Therefore, the vi-
son/charge gap vanishes as one approaches the de-pairing
transition, although more slowly than the spinon/neutral
fermion gap. For the physically interesting case of the
spinon FS or the QH system with short-range electron-
electron interactions, ε = 1, zf = 3/2 and Ev ∼ ∆1/3.
Note that our estimate of the vortex gap strictly only ap-
plies to the case ε > 0, for ε = 0, zf = 1+ and we expect

Ev to vanish logarithmically as ∆→ 0.

As is well-known, superconductors can be classified as
type-I or type-II depending on their response to an ex-
ternal (orbital) magnetic field H. Both types of super-
conductors are characterized by a Meissner effect (full
expulsion of magnetic flux) for small H. As the mag-
netic field is increased, a (3d bulk) type-I superconductor
undergoes a 1st order transition to a fully normal state
at a critical value H = Hc. On the other hand, in a
type-II superconductor, an array of Abrikosov vortices
is induced for magnetic fields H > Hc1 and the normal
state is recovered only for H > Hc2 > Hc1. The type of
a conventional superconductor is determined by the ra-
tio of the electron correlation length ξ and the magnetic
penetration depth λ. For λ � ξ, the superconductor is
type-I, while for λ� ξ - it is type-II.

Related “typology” also exists in paired
spinon/composite fermion phases.106,107. However
we first need to understand what plays the role of the
external magnetic field H in these systems. In the
quantum Hall case, the flux of the emergent magnetic
field is simply the electron density. Thus, the analog
of the external magnetic field is the electron chemical
potential µ. For the spinon FS phase on the trian-
gular lattice, based on symmetry considerations, we
expect an external orbital magnetic field H to couple
linearly to the flux of the emergent gauge field, ∇ × ~a:
δL = −βH(∇ × ~a), with β - a coupling constant.108.
Recall that the emergent gauge flux is physically

identified with the spin-chirality ~S1 · (~S2 × ~S3) of the
elementary triangles.108 Moreover, starting with the
electron Hubbard model on the triangular lattice, in the
insulating limit t � U , one finds that a coupling of the
external orbital magnetic field to the spin-chirality is,
indeed, induced at order t3/U2, so β ∼ (t3/U2)(a2/Φ0),
where a is the lattice spacing and Φ0 - the elementary
flux quantum.108 Thus, in this case a physical orbital
magnetic field directly plays the analog of an external
magnetic field, coupling to the emergent magnetic field
∇×~a and, thereby, to the spinons, albeit with a reduced
strength.

Like ordinary superconductors, the paired spin liq-
uid/paired quantum Hall phases exhibit two length
scales: ξ and λ, characteristic of fermion (spinon/neutral
fermion) excitations and gauge field fluctuations, respec-
tively. In the vicinity of the de-pairing transition, the be-
havior of these length scales is controlled by the RG fixed
point describing the transition. Our scaling theory indi-

cates that fermions disperse as ω ∼ (|~k|−kF )zf and gauge
fluctuations disperse as ω ∼ qzb with zb = 2zf = 2 + ε.
As noted above, this relation holds both in the gap-
less spinon FS/HLR phase and at the pairing transition.
Upon entering the paired phase, a characteristic energy
scale ω = ∆ - the fermion gap is generated, which gives
ξ ∼ λ2 ∼ ∆−1/zf . So, as one approaches the transi-
tion, ∆ → 0, and both the correlation length ξ and the
“penetration depth” λ diverge, albeit with different ex-
ponents. In particular, ξ � λ, so the paired phase in the
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vicinity of the transition is in the type-I regime, as was
argued on general grounds in Ref. 106. Further, the rela-
tion Ev � ∆ obtained above is again typical of a type-I
superconductor. Note that for ε = 1, λ ∼ ∆−1/3, which
is the standard expression for the scaling of the physical
(non-local Pippard) penetration depth in a conventional
type-I superconductor.109

As discussed above, the most dramatic manifestation
of the type-I/type-II distinction in an ordinary super-
conductor is the response to an external magnetic field
H. There is also an analog of this phenomenon for
paired spinon/composite fermion phases.106,107 Let us
begin with the QH case and first consider short-range
electron-electron interactions. In this case the analog
of the external magnetic field H is the electron chemi-
cal potential µ. The paired QH phase is incompressible,
so for deviations of chemical potential |µ| smaller than
some critical value, the system does not respond. (This
is the analog of the Meissner effect in the superconduc-
tor). However, above a critical µ, the electron density
starts to change. This can occur in two ways: i) once
µ > µc1 = 4Ev, charge e/4 quasiparticles (gauge field
vortices) start to be nucleated. If the interactions be-
tween these quasiparticles are repulsive, we expect a sta-
ble dilute quasiparticle lattice to form. The Hall plateaux
then persists for µ > µc1, as well as when one sweeps
the physical magnetic field away from half-filling (hold-
ing the electron density constant). This QH counter-
part of type-II superconducting behavior is thought to
be realized in most conventional QH experiments. ii)
It is possible that the charge e/4 quasiparticles attract
rather than repel, making the vortex lattice unstable.
We then expect a first order phase transition between
the paired QH phase and the HLR phase to occur at
µ = µc < 4Ev, accompanied by a jump in the electron
density. This is the QH analogue of type-I superconduct-
ing behavior. We now show that this type-I scenario is,
indeed, realized by paired QH states in the vicinity of
the de-pairing transition. We can estimate the “thermo-
dynamic” critical chemical potential µc, by equating the
energy-densities of the paired state and the HLR state:
εp = εn− 1

2κµ
2
c , where κ is the compressibility of the HLR

phase. (We are measuring the chemical potential relative
to the chemical potential of the HLR state at half-filling).
Recalling our estimate, εn − εp ∼ ∆1+1/zf , we conclude

µc ∼ ∆1/2+1/(2zf ) = ∆5/6 � Ev ∼ ∆1/3. Thus, the first
order transition to the HLR phase occurs before individ-
ual e/4 quasiparticles can be excited, so the system is in
the type-I regime. The magnitude of the density jump
across the first-order transition is δnc = κµc ∼ ∆5/6 (see
footnote 110 for some caveats). For short-range electron-
electron interactions, if one sweeps the magnetic field
(holding the electron density fixed) away from ν = 1/2,
the system phase separates into macroscopic domains of
the paired CF phase and the HLR phase. In practice,
however, the first order transition between paired quan-
tum Hall and the HLR phases will be rendered second
order by the effect of impurities. Nevertheless, it is con-

ceptually important to understand the nature of the tran-
sition in the clean limit. Long-range electron-electron in-
teractions U(~x) ∼ 1/|~x|1+ε with 0 ≤ ε ≤ 2 frustrate the
macroscopic phase separation, so one expect the forma-
tion of “micro-emulsion”-like bubble/stripe phases in the
vicinity of ν = 1/2.106

A similar phenomenon can also occur in the Z2 spin-
liquid phase in the vicinity of the de-pairing transition to
the spinon FS phase. Now, repeating the arguments pre-
sented above for the QH case, we expect an application of
an external orbital magnetic field to induce a first order
transition from the Z2 spin-liquid phase to the spinon
FS phase at βHc ∼ ∆5/6, accompanied by a jump of
magntidue ∼ ∆5/6 in the spin-chirality. For spin-singlet
pairing of spinons, the critical orbital field Hc should be
compared to the critical Zeeman field HZ = ∆/(geµB)
needed to break up the Cooper pairs. In the strict ∆→ 0,
HZ is parametrically smaller than Hc, so the orbital ef-
fects may be neglected. This trend is further enhanced
by the suppression of the coupling constant β in the in-
sulating regime t� U .

VII. DISCUSSION

We briefly discuss in sections VII A - VII C a number of
experimental phenomena to which our work is pertinent.
In section VII D, we briefly note another system for which
our RG results are relevant: the nematic phase in the
continuum.

A. Superconductivity near quantum critical points

One of the main results of this paper is a controlled
theory of the superconducting instability of a quantum
critical metal. As an illustration we studied the Ising-
nematic quantum critical point. Many of our results
are expected to carry over to metals near other Pomer-
anchuk transitions. One of our main conclusions is that
superconductivity is strongly enhanced near such quan-
tum critical points. This gives a firm theoretical basis
to the empirical observation of superconducting domes
with Tc optimized near some putative quantum criti-
cal points. The results on the Ising-nematic transition
should be contrasted with those on the Mott transition
from the spinon Fermi-surface spin-liquid insulator to a
Fermi-liquid. We find that at such a Mott transition the
pairing instability is supressed. The Mott transition be-
longs to a qualitatively different class of QCPs in metals,
one where an entire sheet of the electronic Fermi sur-
face disappears through a continuous transition,6–9 and
so displays a very different behavior compared to “con-
ventional” symmetry-breaking transitions.

Returning to symmetry-breaking transitions, we recall
that the problem of superconductivity near the spin-
density-wave quantum critical point was addressed in
Refs. 11,12. It was found there that non-Fermi liquid
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effects in the electron spectrum and pairing corrections
arose at similar energy scales, which preempted identifi-
cation of a clear-cut non-Fermi liquid regime in the nor-
mal state.

For the specific case of the Ising-nematic transition,
experiments48 on electron-doped iron superconductor
Ba(Fe1−xCox)2As2 show that a quantum critical point
associated with such order likely lies directly underneath
the superconducting dome. This quantum critical point
appears to be separated from a different one associated
with onset of spin density wave order that occurs at lower
x. It is tempting to attribute the optimality of the su-
perconducting Tc to the enhanced fluctuations of the un-
derlying Ising-nematic quantum critical point. For this
scenario to be legitimate it is necessary that other fluc-
tuations (for instance in the spin density) have much
weaker effects in the normal state at optimal doping.
A contrasting scenario likely applies to a different iron
superconductor BaFe2(As1−xPx)2 obtained by isovalent
substitution.3 In this case, optimal Tc occurs around
x = 0.30, which is roughly where the Neel temperature
associated with spin density wave (SDW) order (present
at low x) extrapolates to zero. The strong enhancement
of the NMR relaxation rate near the optimal doping fur-
ther suggests the presence of an SDW critical point.111

The low-x material also displays Ising-nematic order but,
according to some reports,49 it disappears at a larger x
that is near the overdoped edge of the superconducting
dome. So the SDW fluctuations seem to dominate over
any nematic fluctuations near optimal doping in this ma-
terial.

Quantum critical nematic fluctuations may also play
a role in the physics of nearly optimally doped cuprates,
and our results may provide a foundation to assessing
their effects.

A different aspect of our theoretical results is the re-
lationship between non-Fermi liquid physics and super-
conductivity near the Ising-nematic QCP. In the small-
ε regime where our calculations are controlled we found
that the superconductivity is so strong that it sets in at a
temperature scale parametrically larger than the scale at
which non-Fermi liquid effects set in. For ε = 1 we expect
that there is no such separation and the two phenomena
happen at parametrically the same scale. In this case, it
is possible that the superconductivity will rear its head
before the non-Fermi liquid physics has fully developed.
It is then interesting to ask what happens when the su-
perconductivity is suppressed with an external magnetic
field. Presumably, this will expose the non-Fermi liquid
physics of the Ising-nematic quantum critical point down
to low temperatures. In particular, the specific heat will
follow the predicted power law C ∼ T

2
3 . Some aspects

of the non-Fermi liquid physics predicted for the criti-
cal point will likely be suppressed by the magnetic field,
along with the superconductivity. A good example is the
low-energy tunneling density of states, which in the ab-
sence of the magnetic field was found to be power-law
suppressed at the QCP18,32. This effect arises primar-

ily from enhanced Cooper pairing fluctuations32. Since
these will be suppressed in a magnetic field, so will the
singularity in the tunneling density of states.

B. When is superconductivity enhanced near a
quantum critical point?

Based on our results we now suggest an answer to the
empirical puzzle that superconductivity is enhanced at
some, but not all, metallic quantum critical points. As
we emphasized in the introduction, there are actually
two qualitatively distinct classes of such quantum critical
points distinguished primarily by the fate of the electron
Fermi surface. For criticality associated primarily with
the onset of broken symmetry order, the electron Fermi
surface evolves continuously but is distorted by the bro-
ken symmetry. On the other hand, there are continuous
quantum phase transitions where the electron Fermi sur-
face evolves discontinuously. The associated quantum
critical points are dominated by fluctuations of the elec-
tronic structure itself.

The specific examples studied in this paper lead us to
suggest more generally that quantum critical points asso-
ciated primarily with the onset of broken symmetry will
show enhanced superconductivity, while those associated
primarily with a discontinuous jump of the Fermi surface
may not. Apart from the specific results in this paper,
this suggestion finds theoretical support in many pre-
vious approximate treatments of superconductivity due
to order parameter fluctuations, e.g. at the SDW on-
set QCP. There are currently very few theoretical exam-
ples of transitions in the second class (with a disappear-
ing Fermi surface). One known example is given by the
Mott transition from a spinon FS spin-liquid insulator to
a Fermi-liquid; here we showed that pairing is supressed
at the QCP. Whether this is a general property of the
second class of transitions is a good target for future re-
search. As we noted in section I C, the lack of long-range
superconducivity at a Mott transition is not surprising;
a far more non-trivial conclusion of our analysis is the
supression of local pairing correlations near the transi-
tion, reflected in the vanishing of the single electron gap
at the QCP, and the absence of superconductivity in the
Fermi-liquid phase adjacent to the QCP.

Our suggestion finds empirical support in the ab-
sence of superconductivity in the heavy fermion materi-
als CeCu6−xAux and YbRh2Si2 near their quantum crit-
ical points. These have long been thought1 to be sys-
tems where the Fermi surface evolves discontinuously and
the electronic structure changes due to the breakdown of
Kondo screening. A futher complication in these materi-
als is that the critical point seems to involve fundamental
changes of the electronic structure accompanied also by
the onset of antiferromagnetic order. There is currently
no theoretical understanding of why the discontinuous
Fermi surface change coincides with the onset of bro-
ken symmetry. Nevertheless, it is natural to expect that
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the fate of superconductivity will then be determined by
a delicate interplay between two competing effects: the
pairing tendencies of order parameter fluctuations and
the strong non-Fermi liquid effects due to the electronic
fluctuations. We hope that the present paper sets the
stage for future progress on this issue.

C. Quantum Hall states at ν = 1/2.

In this paper, we have developed a systematic theory of
the transition between the compressible HLR phase and
the incompressible Moore-Read phase of the quantum
Hall fluid. We have demonstrated that contrary to pre-
vious theoretical claims97 a direct continuous transition
between these phases is allowed. In a conventional GaAs
system, the HLR phase is believed to be realized at filling
factors ν = 1/2, ν = 3/2, while the Moore-Read phase is
a candidate for the plateaux at ν = 5/2. In a large mag-
netic field, when the mixing between Landau levels can
be neglected, the physics of a partially filled Landau level
is determined by the projection of the electron-electron
interaction onto the states in the Landau level. The pro-
jection is different for different Landau levels, which is
believed to explain the above contrasting behaviors ob-
served in the lowest (n = 0) and first (n = 1) Landau
levels.93,94 Since both the electron-electron interactions
and the form of the single-particle states in GaAs is diffi-
cult to tune, the realization of a direct transition between
the Moore-Read phase and the HLR phase in GaAs is
challenging. However, it was recently suggested that this
transition may be realized in bilayer graphene, by tuning
the strength of the perpendicular electric field.112,113 The
introduction of the perpendicular electric field modifies
the form of the single-particle states forming the Lan-
dau level and hence the effective interactions within the
Landau level. We, thus, hope that bilayer graphene will
provide an experimental avenue to test our predictions.

D. Nematic phase in the continuum

In this paper, we have concentrated on the Pomer-
anchuk instability in the presence of a lattice, where a
discrete rotational symmetry is spontaneously broken. It
is also interesting to consider a system in the continuum,
which posesses a full SO(2) rotational symmetry. In this
case, the nematic phase where SO(2) is spontaneously
broken to a discrete two-fold subgroup will possess a gap-
less Goldstone mode. A curious feature of this phase is
that unlike in systems involving spontaneous breaking
of internal (non-spatial) symmetries, here the Goldstone
mode couples to electrons near the FS in a non-derivative
manner.23 As a result, the entire nematic phase was pre-
dicted to exhibit non-Fermi-liquid behavior.23 In fact, it
is easy to see, that the coupling of the Goldstone mode
to the FS is essentially the same as for the gapless criti-
cal mode φ at the Ising-nematic QCP. Therefore, the ef-

fective theory of the “continuum”-nematic phase will be
identical to that of the Ising-nematic QCP studied above.
In particular, according to the results of our ε-expansion,
the entire continuum-nematic phase will become super-
conducting and the non-Fermi-liquid behavior of Ref. 23
will be preempted.
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Appendix A: Solution of RG equations:
Ising-nematic QCP

In this appendix we provide a detailed solution of the
RG equations, (2.12), (2.26) for the Ising-nematic QCP
(ζ = 1 in Eq. (2.26)). We use the notation α̃ = α/N .

We begin by considering the case ε = 0. Then α̃ runs
logarithmically to zero,

α̃(`) =
α̃(0)

1 + α̃(0)`
, vF (`) =

vF (0)

1 + α̃(0)`
(A1)

and the non-Fermi liquid corrections become appreciable
below an energy scale of order e−`nFL with `nFL ∼ 1/α̃.

Since the flow of α̃ is slow, in order to analyze the flow

of Ṽ , let us first assume that α̃ is constant. We see that

the flow is then towards Ṽ = −∞ signaling a pairing
instability. Solving Eq. (2.26),

Ṽ (`) =
√
α̃ tan

(
−
√
α̃`+ tan−1 Ṽ (0)√

α̃

)
(A2)

We see that Ṽ diverges at

`p =
1√
α̃

(
π

2
+ tan−1 Ṽ (0)√

α̃

)
(A3)

and we expect a pairing gap ∆ ∼ Λωe
−`p . Let us dis-

cuss various limits of Eq. (A3). If the “bare” short range
interaction is small compared to the long-range interac-
tion,

`p ≈
π

2
√
α̃
, |Ṽ | �

√
α̃ (A4)

On the other hand, if the bare short range interaction is
large and repulsive,

`p ≈
π√
α̃
, Ṽ �

√
α̃ (A5)
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i.e. the magnitude of the gap is reduced by a factor of
two on the logarithmic scale compared to the case (A4),
Finally, if the bare short range interaction is large and
attractive,

`p ≈
1

|Ṽ |
, Ṽ < 0, |Ṽ | �

√
α̃ (A6)

which is just the usual BCS result. In any case, α̃`p <

π
√
α̃ � 1 hence the running of α̃ can, indeed, be ne-

glected in estimating the size of the gap. Moreover,
`p < π/

√
α̃ � `nFL ∼ 1/α̃, hence the non-Fermi-liquid

physics is preempted by pairing.

If we turn on a finite ε, the flow of Ṽ to −∞ persists.
Let us estimate the size of the gap. In the present case
α̃ and vF run as,

α̃(`) =
α̃(0)eε`/2

1 +
2α̃(0)

ε
(eε`/2 − 1)

vF (`) =
vF (0)

1 +
2α̃(0)

ε
(eε`/2 − 1)

. (A7)

Note that for α̃ ∼ α̃∗ = ε/2 the scale at which non-
Fermi-liquid effects become manifest is `nFL ∼ 1/ε. For
α̃ � ε, one first observes logarithmic running of vF for
` & `nFL ∼ 1/α̃, and then power law running for ` & 1/ε.
Finally, if α̃ � ε, `nFL ∼ 2

ε log(ε/α̃). Proceeding to

the flow of Ṽ , we observe that if α̃ � ε2, the flow of
α̃ can be ignored for the purpose of estimating the pair-
ing scale and previous results Eqs. (A2) and (A3) hold.
Comparing the pairing scale and the non-Fermi-liquid
scale, we find that the former is always parametrically
higher in this regime. Indeed, for α̃ ∼ O(ε) and α̃ � ε,

`p < π/
√
α̃ � `nFL ∼ 1/α̃, while for ε2 � α̃ � ε,

`p < π/
√
α̃ � `nFL ∼ 2

ε log ε
α̃ . In the remaining regime

α̃ . ε2, the flow of α̃ cannot be ignored. However, this
regime can be effectively analyzed as a part of a wider
range α̃ � ε. As is already clear from the arguments
above, if we start with α̃� ε, α̃ will remain in this range
throughout the evolution. Hence, in this regime, we may
approximate,

dα̃

d`
=
ε

2
α̃ (A8)

α̃
dṼ

dα̃
= −2

ε
(α̃+ Ṽ 2) (A9)

We may eliminate the ε dependence from Eq. (A9) by

defining α̃ = ε2ᾱ, Ṽ = εV̄ . Then,

ᾱ
dV̄

dᾱ
= −2(ᾱ+ V̄ 2) (A10)

The solution to Eq. (A10) is,

V̄ (ᾱ) = −
√
ᾱ(J1(4

√
ᾱ) + CY1(4

√
ᾱ))

J0(4
√
ᾱ) + CY0(4

√
ᾱ)

(A11)
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FIG. 7: Determination of the pairing scale `p and the corre-
sponding value ᾱp in the regimes α̃ ∼ O(ε2) and α̃ � O(ε2)
(see Eqs. (A13), (A15)).

where initial conditions fix the constant C to be,

C = −
√
ᾱ(0)J1(4

√
ᾱ(0)) + J0(4

√
ᾱ(0))V̄ (0)√

ᾱ(0)Y1(4
√
ᾱ(0)) + Y0(4

√
ᾱ(0))V̄ (0)

(A12)

Observe that V̄ has a divergence at ᾱ = ᾱp with

J0(4
√
ᾱp)

Y0(4
√
ᾱp)

= −C (A13)

As is clear from Fig. 7, irrespective of the value of C, if α
(ᾱ) is of O(ε2) (of O(1)) or less, the above equation has
a solution with ᾱp at most of O(1). Hence,

`p =
2

ε
log

ε2ᾱp
α̃
� `nFL ∼

2

ε
log

ε

α̃
(A14)

Thus, in this regime pairing also always occurs before
non-Fermi-liquid effects become significant. Having es-
tablished this, we will not analyze the full behaviour of

the pairing scale as a function of initial α̃ and Ṽ in this
regime, but will only discuss the case of smallest coupling,
α̃� ε2 (ᾱ� 1). Then, Eq. (A13) may be rewritten as,

Y0(4
√
ᾱp)

J0(4
√
ᾱp)
≈ Y0(4

√
ᾱ)

J0(4
√
ᾱ)
− 1

2πV̄
(A15)

The function Y0(x)/J0(x) is increasing wherever it is
continuous (see Fig. 7). Hence, as we need a solution with
ᾱp > ᾱ, for V̄ > 0 we conclude that 4

√
ᾱp > x0, with

x0 ≈ 2.405 - the first zero of J0(x). Moreover, as Y0(x) ≈
2
π log x for x→ 0, the right-hand-side of Eq. (A15) tends
to −∞, hence,

ᾱp ≈
x2

0

16
≈ 0.361, V̄ > 0, α̃� ε2, (A16)

and the pairing scale can be obtained from Eq. (A14).
Now, if V̄ < 0 but |V̄ | � (log 1

ᾱ )−1, the right-hand-side
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of Eq. (A15) tends to +∞ and Eq. (A16) still holds.
Finally, if V̄ < 0 and |V̄ | � (log 1

ᾱ )−1, ᾱp � 1 and from
Eq. (A15) we obtain

ᾱp = ᾱe1/2|V̄ |, V̄ < 0, |V̄ | �
(

log
1

ᾱ

)−1

, α̃� ε2

(A17)
which gives the standard BCS result `p = 1

|Ṽ | .

Appendix B: Solution of RG equations: HLR phase
with Coulomb interactions

In this appendix we provide a detailed solution of the
RG equations, (2.12), (2.26), for the HLR phase with
Coulomb interactions. We, thus, set ζ = −1 in Eq. (2.26)
and ε = 0 in Eq. (2.12).

The flow in the (Ṽ , α̃) plane takes the form shown in
Fig. 6. Note that part of the phase space is controlled by

the fixed point Ṽ = 0, α̃ = 0, while the rest of the flow

trajectories are towards Ṽ = −∞. We will show below

that the two regions are separated by the line Ṽ = −
√
α̃.

Let us proceed to solve the flow equations. The flow
of α̃ is the same as for the Ising-nematic case, Eq. (A1).

Defining Ṽ =
√
α̃g,

dg

d`
=
√
α̃(1− g2) +

1

2
α̃g (B1)

In the limit α̃ → 0, we can neglect the last term in
Eq. (B1). Then,

dg

dα̃
= −α̃−3/2(1− g2) (B2)

which gives,

g(`) =
(g(0) + 1) exp

[
4(α̃(`)−1/2 − α̃(0)−1/2)

]
+ (g(0)− 1)

(g(0) + 1) exp
[
4(α̃(`)−1/2 − α̃(0)−1/2)

]
− (g(0)− 1)

(B3)
As α̃ flows to zero the following cases are possible. If

g(0) > −1, i.e. Ṽ (0) > −
√
α̃(0), then g flows to 1,

Ṽ (`)→
√
α̃(`) ≈ 1√

`
, Ṽ > −

√
α̃ (B4)

If one starts exactly on the transition line, g(0) = −1,
then g remains fixed at g = −1,

Ṽ (`) = −
√
α̃(`) ≈ − 1√

`
, Ṽ = −

√
α̃(0) (B5)

Finally, if g(0) < −1, i.e. Ṽ (0) < −
√
α̃(0), Ṽ (`) flows to

−∞ and diverges at ` = `p, with

`p =
1

16

(
log

Ṽ −
√
α̃

Ṽ +
√
α̃

+ 4α̃−1/2

)2

− α̃−1 (B6)

In particular, as Ṽ approaches the transition line, δV =

Ṽ +
√
α̃→ 0−, the pairing gap ∆ ∼ Λωe

−`p vanishes as,

∆ ∼ Λω exp

(
− 1

16
log2 |δV |

)
= |δV | 1

16 log 1
|δV | (B7)
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