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It was recently pointed out that Halperin’s 113 topological order explains the transport exper-
iments in the quantum Hall liquid at filling factor ν = 5/2. The 113 order, however, cannot be
easily distinguished from other likely topological orders at ν = 5/2 such as the non-Abelian Pfaffian
and anti-Pfaffian states and the Abelian Halperin 331 state in Fabry-Perot interferometry. In this
paper, we show that an electronic Mach-Zehnder interferometer provides a clear identification of
these candidate ν = 5/2 states. Specifically, the I-V curve for the tunneling current through the
interferometer is more asymmetric in the 113 state than in other ν = 5/2 states. Moreover, the
Fano factor for the shot noise in the interferometer can reach 13.6 in the 113 state, much greater
than the maximum Fano factors 3.2 in the Pfaffian and anti-Pfaffian states and 2.3 in the 331 state.

PACS numbers: 73.43.Jn, 73.43.Cd, 73.43.Fj, 05.30.Pr

I. INTRODUCTION

The fractional quantum Hall (FQH) state at filling
factor ν = 5/2 has attracted much interest since its
discovery1. Unlike the common FQH states at filling
factors with odd denominators, the ν = 5/2 FQH state
cannot be explained by a hierarchical construction2 of
variational wave functions based on the Laughlin state.
The fact that the filling factor has an even denomina-
tor indicates the possibility of electron pairing. Along
this line, a number of models3–11 were proposed to ex-
plain the ν = 5/2 FQH state (see Ref. 10 for an overview
of the proposed models). In some of those proposals,
quasiparticle excitations with non-Abelian statistics were
predicted. A collection of non-Abelian quasiparticles
span a degenerate ground state manifold which may be
useful for topological quantum computation12,13. Such
non-Abelian models3–7,10 include the Pfaffian state, the
SU(2)2 state, the anti-Pfaffian state and the anti-SU(2)2
state. At the same time, models8–10 predicting “ordi-
nary” Abelian quasiparticles, such as the Halperin 331
state, the K = 8 state and their particle-hole dual states,
were also constructed.

In all the proposed models, a fundamental quasipar-
ticle charge of e/4 was predicted. This fundamental
charge follows from a general argument14 for the even-
denominator quantum Hall states and has been observed
experimentally15–17. On the other hand, different mod-
els have different implications on the topological nature
of the ν = 5/2 state. Several experiments17–20,25–29,31

were designed to probe the topological order at ν = 5/2.
Refs. 17–19 measured the temperature and voltage de-
pendence of quasiparticle tunneling through a quantum
point contact. In the weak-tunneling regime, the zero-
bias tunneling conductance G scales with temperature T
according to a power law, G ∼ T 2g−2, where the expo-
nent g depends on the topological order in the bulk, a
manifestation of the edge-bulk correspondence2 in FQH
systems. The results of the tunneling experiments were
argued10 to agree with the Halperin 331 state after taking
into account the effect of long-range electrostatic inter-

action near the tunneling point. On the other hand, the
chiral 331 state does not explain the observation20 of an
upstream neutral mode on the edge of the ν = 5/2 liquid.
Overall, none of the above-mentioned models seems to fit
in the constraints set by the experiments, assuming the
effect of edge reconstruction is less important. Edge re-
construction is likely in a pure ν = 5/2 liquid,21,22 but is
expected to be suppressed in real samples with disorder,
as is evidenced by the recent experiment23 showing rel-
atively weak signals associated with edge reconstruction
and that such signals disappear at long distances20.

In a recent paper24, it was argued that Halperin’s 113
topological order provides a consistent explanation of the
transport data in the ν = 5/2 FQH liquid. The 113 or-
der is Abelian and comes with both spin-unpolarized and
spin-polarized versions. It supports an upstream neutral
edge mode and predicts the correct scaling behavior of
the zero-bias conductance observed in the tunneling ex-
periments. Distinguishing the 113 state from the other
possibilities, especially the 331 state, is a subtle experi-
mental task. The predictions of the 113 state and the 331
state are quite close in the tunneling experiments, whose
difference lies within experimental uncertainty.10,24 The
measurements of spin polarization25–28 are controversial
and do not help, since the 113 state and the 331 state al-
low both zero and full spin polarizations10,11,24. Data of
bulk thermopower measurement29 showed features that
may be associated with non-Abelian quasiparticles,30 but
the 113 and 331 states may exhibit similar features if
they host different quasiparticle species that are degen-
erate in energy. Results16,31 of an electronic Fabry-Perot
interferometer were interpreted32 to be compatible with
the non-Abelian states. However, the 113 state and the
331 state can produce similar signatures, in the pres-
ence of approximate or exact symmetry in the tunneling
behaviors of different species of quasiparticles.24,33 The
existence of an upstream neutral edge mode favors the
113 state and the anti-Pfaffian state over the 331 state
and the Pfaffian state. However, more experimental ef-
fort based on a variety of methods34–39 is needed before
one can draw a definite conclusion about the existence of
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upstream mode. Thus, it is necessary to have an alter-
native approach which offers additional data to test the
proposal of the 113 topological order.
In this paper, we show that an electronic Mach-

Zehnder interferometer40–51 provides a clear identifica-
tion of the 113 state, the 331 state and the Pfaffian state,
while it exhibits identical characteristics in the Pfaffian
and anti-Pfaffian states. We have not included other
ν = 5/2 states in the analysis, because they are less prob-
able candidates as revealed by the experiments17–20. We
compute the tunneling current through the interferome-
ter in the 113 state and compare it with the currents45,48

in the 331 state and in the Pfaffian (or anti-Pfaffian)
state. In all of the four topological orders considered,
the current depends periodically on the magnetic flux
enclosed by the interferometer and is asymmetric under
the change of the sign of the applied voltage. The I-
V curve is most asymmetric in the 113 state. We have
also studied the low-frequency shot noise of the tunnel-
ing current and found that the Fano factor, defined as the
noise-to-current ratio, also oscillates periodically with the
magnetic flux. The Fano factor can achieve 13.6 in the
113 state, much greater than the maximum achievable
Fano factors in the 331 state and in the Pfaffian (or anti-
Pfaffian) state, which were previously found46,48 to be
2.3 and 3.2, respectively. These results, based on quasi-
particle braiding statistics, are not sensitive to the edge
structure, including edge reconstruction. Thus, a Mach-
Zehnder interferometer can serve as a useful probe of the
topological order at ν = 5/2.
The paper is organized as follows. In Sec. II, we review

the statistical properties of the 113 topological order. In
Sec. III, we explain the structure of an electronic Mach-
Zehnder interferometer and its operation in the 113 state.
In Sec. IV and Sec. V, we calculate the tunneling cur-
rent and shot noise in the 113 state at zero temperature,
and compare the results with those obtained in the 331
state and in the Pfaffian and anti-Pfaffian states. The
zero-temperature limit describes the situation where the
temperature is much lower than the applied voltage in
the interferometer. We explain the reason for the asym-
metric I-V curve and large shot noise in the 113 state.
We conclude in Sec. VI.

II. STATISTICAL PROPERTIES OF THE 113

TOPOLOGICAL ORDER

The 113 topological order has a spin-unpolarized ver-
sion and a spin-polarized version.24 Its statistical proper-
ties are captured by the standard K-matrix formalism2.
The spin-unpolarized 113 state has the K matrix

K =

(

1 3
3 1

)

, (1)

which encodes information about quasiparticle statistics,
and the charge vector q = (1, 1), which describes how
the excitations couple to the electromagnetic gauge field.

Its two fundamental quasiparticles, denoted by a and b,
are represented by the vectors la = (1, 0) and lb = (0, 1),
respectively, both with a quarter electron charge. The
statistical phase a fundamental quasiparticle acquires af-
ter it makes a full circle around another fundamental
quasiparticle of different or the same flavor is

φab = φba = 2πlaK
−1lTb = 3π/4 (2)

or

φaa = φbb = 2πlaK
−1lTa = −π/4, (3)

respectively. The two flavors of the fundamental quasi-
particles in the spin-unpolarized 113 state may be in-
tuitively understood as related to the two electron spin
species. A generic quasiparticle excitation can be viewed
as a linear combination of the fundamental quasiparti-
cles. For instance, the electron operators, defined as
quasiparticles having unit electron charge and obeying
fermionic statistics, are represented by the vectors (3, 1)
and (1, 3).
The spin-polarized 113 state can be interpreted as a

hierarchical FQH state, formed by condensing charge-2e
quasiholes on top of a ν = 1 integer quantum Hall state.
Its K matrix

K ′ =

(

1 2
2 −4

)

(4)

and charge vector q′ = (1, 0). The two fundamental
quasiparticles in the spin-polarized 113 state are repre-
sented by the vectors (0, 1) and (1,−1), both with e/4
charge and the same statistical phases as described in
Eqs. (2,3).
The two 113 states belong to the same topological

order.24 Indeed, their K matrices and charge vectors are
related by an SL(2,Z) transformationW : K = WTK ′W
and q = q′W , where

W =

(

1 1
0 1

)

. (5)

This means that the two states have the same collection
of quasiparticle species in terms of charge and braid-
ing statistics. As a result, Mach-Zehnder interferome-
try based on quasiparticle braiding is unable to distin-
guish between the spin-unpolarized and spin-polarized
113 states. In the following sections, we discuss the tun-
neling current and shot noise in the context of the spin-
unpolarized 113 state.

III. ELECTRONIC MACH-ZEHNDER

INTERFEROMETER

The structure of a Mach-Zehnder interferometer is
sketched in Fig. 1. Charge propagates from source S1
to drain D1 and from source S2 to drain D2 along the
FQH edges Edge1 and Edge2, respectively, as indicated
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FIG. 1: The structure of an electronic Mach-Zehnder interfer-
ometer. The arrows denote the direction of charge propaga-
tion from the sources S1,S2 to the drains D1,D2. Quasipar-
ticles can tunnel at the quantum point contacts QPC1 and
QPC2, between Edge1 and Edge2.

by the arrows. A and B are two points on Edge1 and
Edge2. Quasiparticles can tunnel at the quantum point
contacts QPC1 and QPC2. In the 113 state, the most
relevant quasiparticles that participate in tunneling at
low temperatures are the fundamental quasiparticles a, b
with e/4 charge.24 In a FQH liquid, low-energy excita-
tions only exist on the edge. The Hamiltonian of the
interferometer has the form

Ĥ = Ĥedge +
∑

µ=a,b

[(Γµ
1 T̂

µ
1 + Γµ

2 T̂
µ
2 )e

−i eV
4

t +H.c.], (6)

where Ĥedge is the Hamiltonian of Edge1 and Edge2, T̂ µ
1,2

are the tunneling operators for quasiparticle flavor µ at
QPC1,QPC2 with tunneling amplitudes Γµ

1,2, eV is the
chemical potential difference between the two FQH edges.
If S1 is kept at a higher chemical potential than S2, then
there is a net flow of quasiparticles from Edge1 to Edge2,
eventually absorbed by D2. In writing the Hamiltonian
we have set h̄ = 1.
The tunneling amplitudes for different quasiparticle

flavors are in general different. An interesting situation
happens when both flavors of fundamental quasiparticles
have identical tunneling behaviors, Γa

1,2 = Γb
1,2. In such a

limit, the interferometer exhibits elegant transport func-
tions, as we will show in Sections IV and V.
We assume small tunneling amplitudes at the point

contacts so that the quasiparticle tunneling rate between
Edge1 and Edge2 can be calculated using perturbation
theory. The assumption means that the average time
between two consecutive tunneling events at the point
contacts is much longer than the duration of an individ-
ual tunneling event. Moreover, we assume that the tun-
neled quasiparticles are fully absorbed by the drain D2,
leaving only their topological charges, characterized by
their statistical phases. With this assumption, individ-
ual tunneling events can be considered independent. The
residual topological charge at D2 can be understood as
a result of the entanglement between Edge1 and Edge2:
The topological charges on the two edges must add up
to vacuum. The quasiparticle tunneling rate depends
on the Aharonov-Bohm flux Φ enclosed by the loop A-
QPC2-B-QPC1-A in the interferometer, the topological

charge accumulated at D2 after the previous tunneling
event and the flavor of the quasiparticle being tunneled.
For a quasiparticle of type µ, the tunneling rate from
Edge1 to Edge2 is found to be

w+
s→s+µ = α(|Γµ

1 |
2 + |Γµ

2 |
2) + (βΓµ∗

1 Γµ
2e

i(φAB+φµs) + c.c.),
(7)

where s and s+ µ are the topological charges at D2 be-
fore and after the tunneling event respectively, φµs is
the statistical phase acquired by quasiparticle µ after it
makes a full circle about the topological charge s at D2,
φAB = 2πΦ/(4Φ0) with Φ0 = hc/e the flux quantum
is the Aharonov-Bohm phase due to the magnetic flux
through the interferometer, and α, β are functions of the
voltage bias V , the temperature T and the form factor
of the interferometer, assumed independent of the quasi-
particle flavor µ for simplicity. For our purpose, we do
not need the explicit expressions of α, β, which depend
on the details in the Hamiltonian (cf. Ref. 44). However,
we point out that α, β are in principle not sensitive to the
absolute distances between QPC1 and QPC2, but depend
on the difference of the distances between the QPCs along
different FQH edges. This property is a general advan-
tage of Mach-Zehnder interferometry,44,52,53 which allows
for the observation of quantum interference at large sys-
tem sizes. From Eq. (7), we see that the tunneling rate
depends on the history of quasiparticle tunneling through
the interferometer.

At finite temperature, quasiparticle tunneling happens
from Edge2 at a lower chemical potential to Edge1 at a
higher chemical potential. The tunneling rate for such
an inverse tunneling process is related to that for tun-
neling from Edge1 to Edge2 by the principle of detailed
balance: w−

s+µ→s = exp[−eV/(4kBT )]w
+
s→s+µ. At low

temperatures, w−
s+µ→s is suppressed. We will assume in

the later calculations that the temperature is much lower
than the applied voltage at the quantum point contacts,
so that w−

s+µ→s can be neglected.

In Sec. V, we will study the shot noise of the tun-
neling current through the interferometer. We focus on
the noise at low frequency. As was shown in Ref. 46,
high-frequency noise does not carry information about
quasiparticle statistics, while it manifests the fractional
charge of the tunneled quasiparticles.

To calculate tunneling current and shot noise in the
Mach-Zehnder interferometer, one needs to understand
the topological degeneracy as seen by the tunneling
quasiparticle, i.e., all possible inequivalent topological
charges that can be present at the drain D2. In the 113
state, these topological charges are linear combinations
of the fundamental quasiparticles. Assuming there have
been Na quasiparticle a and Nb quasiparticle b absorbed
by D2, their total topological charge can be represented
by [Na, Nb]. Certain linear combinations result in trivial
topological charge (trivial statistical phase as the tunnel-
ing quasiparticle encircles D2), for instance, [3, 1], [1, 3]
and their integer multiples. The inequivalent topologi-
cal charges are defined as [Na, Nb] (mod [3, 1], [1, 3]). In
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FIG. 2: The structure of topological degeneracy in the 113
state, (a) in the general situation, and (b) in the presence of
flavor symmetry. The vertices represent the eight inequiva-
lent states in the degeneracy. The solid and dashed arrows
denote transitions due to tunneling of quasiparticles a and b,
respectively, at zero temperature. Transition rates are labeled
explicitly for the flavor-symmetric case, panel (b).

Abelian states, the fusion channels of quasiparticles are
unique and the topological degeneracy admits the alge-
braic structure of a finite Abelian group, encoded in the
K matrix. The level of degeneracy, or the group order,
equals the determinant of K matrix,54 given the topol-
ogy of the interferometer in Fig. 1. For the 113 state, the
group is Z8 with the generator being either of the funda-
mental quasiparticles. Tunneling of quasiparticles defines
multiplication of group elements. In Fig. 2(a), we show
the structure of topological degeneracy in the 113 state.
We use solid arrows and dashed arrows to denote the
transitions between inequivalent states due to tunneling
of quasiparticles a and b, respectively, at zero temper-
ature. The tunneling current and shot noise measured
at D2 are the averaged quantities over all inequivalent
states in the degeneracy.
The classification of the algebraic structure of topolog-

ical degeneracy does not alone determine the current and
noise in the interferometer. One also needs the explicit
transition rates between inequivalent states in the degen-
eracy, defined by the quasiparticle tunneling rates at the
point contacts. In Table 1, we list the transition rates at
zero temperature. We define a set of functions

pµk = Rµ[1 + cµ cos(2πΦ/(4Φ0) + πk/4 + δµ)], (8)

where k = 0, 1, . . . , 7, Rµ = α(|Γµ
1 |

2 + |Γµ
2 |

2), cµ =
2|βΓµ

1Γ
µ
2 |/[α(|Γ

µ
1 |

2 + |Γµ
2 |

2)] and δµ = arg(βΓµ∗
1 Γµ

2 ). In

the presence of flavor symmetry in quasiparticle tunnel-
ing, Γa

1,2 = Γb
1,2, we define R = Ra = Rb, c = ca = cb,

δ = δa = δb, pk = pak = pbk, and draw the kinetic dia-
gram in Fig. 2(b), where we have labeled explicitly the
transition rates. We merged the vertices representing
topological charges [1, 0] and [0, 1] into a single vertex,
because the two vertices are identical from kinetics point
of view. The same happened to the vertices [3, 0] and
[2, 1]. We emphasize that there are always eight inequiv-
alent states in the topological degeneracy, whether or not
there is flavor symmetry.

s [0, 0] [1, 0] [2, 0] [3, 0] [4, 0] [0, 1] [1, 1] [2, 1]

w+
s→s+a

pa0 pa7 pa6 pa5 pa4 pa3 pa2 pa1

w+
s→s+b

pb0 pb3 pb6 pb1 pb4 pb7 pb2 pb5

TABLE I: Zero-temperature transition rates from the state
with topological charge s to the states with topological
charges s+ a and s+ b in the topological degeneracy.

IV. TUNNELING CURRENT

We now compute the tunneling current through the
interferometer. We focus on the steady-state current at
zero temperature and neglect the contribution from in-
verse tunneling processes. The tunneling current is the
averaged transition rates over all inequivalent states in
the topological degeneracy,

I =
e

4

∑

s,µ

fsw
+
s→s+µ, (9)

where s runs over the eight inequivalent topological
charges, µ = a, b and the transition rates are given in
Table 1. The probability fs that the interferometer is in
the state with topological charge s satisfies the master
equations

dfs
dt

=
∑

µ

(fs−µw
+
s−µ→s − fsw

+
s→s+µ), (10)

with the normalization condition
∑

s fs = 1. At steady
state, dfs/dt = 0, and we solve the equations for the
current. Using Fig. 2(b), we find the expression of current
in the presence of flavor symmetry,

I =
e

4
R

2− 2c2 + c4

4 (1− cos (2πΦ/Φ0 + 4δ))

1− (34 + 1
4
√
2
)c2 + c4

16 [(1 +
1√
2
)(1 − cos (2πΦ/Φ0 + 4δ)) + 1√

2
sin (2πΦ/Φ0 + 4δ)]

. (11)

The current depends periodically on the magnetic flux
through the interferometer with the period of one

flux quantum Φ0. This agrees with the Byers-Yang
theorem55. Under the change of the sign of voltage
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FIG. 3: Steady-state tunneling current as a function of the
Aharonov-Bohm flux Φ. (a) Comparison of the currents in
the 113 state, the 331 state and the Pfaffian (or anti-Pfaffian)
state. We assume flavor symmetry in both the 113 and 331
states. For the 113 state, we set R = c = 1 and δ = 0. The
current in the 331 state is acquired from Eq. (9) in Ref. 48,
with u = 1 and δ = 0. The current in the Pfaffian state
is acquired from Eq. (8) in Ref. 45, with λ = 1 and δ = 0.
For a better comparison, we have rescaled the heights of the
currents in the 331 and Pfaffian states to match the current
in the 113 state. (b) Current in the 113 state at different
γ = Rb/Ra values. For the cases without flavor symmetry,
we set Ra = 1, ca = cb = 1 and δa = δb = 0.

bias at the point contacts, the current acquires an over-
all minus sign and the change of the sign in front of
sin (2πΦ/Φ0 + 4δ) in the denominator. The I-V curve
is thus asymmetric, like what was found45,48 in the Pfaf-
fian state and in the 331 state. In Fig. 3(a), we plot the
current in the 113 state with flavor symmetry and com-
pare it with those in the Pfaffian state and in the flavor-
symmetric 331 state. The current in the anti-Pfaffian
state is identical to that in the Pfaffian state.48 We see
that the current in the 113 state is more asymmetric than
those in the other ν = 5/2 topological orders.

It is useful to quantify the asymmetry of current curves
in Fig. 3(a). To this end, we notice that the currents in
all three ν = 5/2 states can be written in the general form

I ∝ 1+r1 cos (2πΦ/Φ0)
1+r2 cos (2πΦ/Φ0)+r3 sin (2πΦ/Φ0)

= 1+r1 cos (2πΦ/Φ0)
1+A cos (2πΦ/Φ0−φ) ,

up to an overall factor, where A =
√

r22 + r23 and φ =
tan−1 (r3/r2). It is easy to verify that A < 1. The quan-
tity A characterizes the degree of asymmetry of the cur-

rent curve. A = 0 for fully symmetric current, while a
large nonzero A implies large asymmetry. Substituting
the settings in Fig. 3(a), we find A = 0.11, 0.28, 0.64 for
the 331, Pfaffian, 113 states, respectively.

Without flavor symmetry, the expression of tunneling
current is lengthy and not enlightening. In Fig. 3(b), we
plot the current at different values of γ = Rb/Ra. The
minima in the current correspond to the flux at which
most of the transition rates in the kinetic diagram are
suppressed. The special case γ = 0 is particularly in-
teresting. In this limit, pbk = 0 so that only quasiparti-
cle a can tunnel. The current becomes fully symmetric
with the period of the Aharonov-Bohm oscillation cut
in half. The new period is easily understood with the
help of Fig. 2(a). When only one flavor of quasiparticles
can tunnel, the system must experience eight tunneling
events to complete a cycle and return to the same state
at an earlier time, e.g., by following those solid arrows,
with a total tunneled charge of 8 × (e/4) = 2e. This is
in contrast to the situation where both flavors of quasi-
particles can tunnel and a complete cycle only consists of
four tunneling events. The 2e tunneled charge per cycle
gives the Φ0/2 period of the Aharonov-Bohm oscillation,
the same periodicity one finds in the physical quantities
in a superconducting state with annular geometry.

The asymmetric current at γ 6= 0 and the symmet-
ric current at γ = 0 can be understood in the following.
For γ 6= 0, let us consider the simple limit of flavor-
symmetric tunneling. Suppose now we tune the mag-
netic field such that Φ/Φ0 is an integer multiple of 4,
then the transition rate p4 ≈ 0, assuming c ≈ 1 and
δ = 0 in Eq. (8). Among the other transition rates,
p3, p5 are relatively small comparing to p0, p1, p7, while
p2, p6 are intermediate in magnitude. Imagine initially
the system is in the state with topological charge [4, 0].
After a period of time through several tunneling events,
the system will return to the same initial state. More
than one paths in the kinetic diagram can be chosen
for this return process. For example, one may follow
the “hard” path [4, 0] → [0, 1] → [1, 1] → [2, 1] → [4, 0]
with a smaller probability p4p3p2p5, or the “easy” path
[4, 0] → [0, 1] → [2, 0] → [2, 1] → [4, 0] with a larger
probability p4p7p6p5. The system can even go through
multiple cycles by visiting the [0, 0] state before it ar-
rives at the [4, 0] state for the first time. Now imagine
one gradually changes Φ/Φ0 from 0 to 1. As Φ/Φ0 varies,
some of the “easy” paths deform into “hard” paths, and
vice versa. In the 113 state, “hard” paths convert to
“easy” paths at a slower rate from Φ/Φ0 = 0 to 0.5 than
the rate at which “easy” paths convert to “hard” paths
from Φ/Φ0 = 0.5 to 1. As a result, the current is asym-
metric as shown in the figure. In general, the larger the
inhomogeneity in the probability among different paths
connecting the same initial and final states in the ki-
netic diagram, the larger the difference in rate between
the “hard”-to-“easy” conversion of paths in the first half
of the period of the Aharonov-Bohm oscillation and the
“easy”-to-“hard” conversion of paths in the second half
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of the period, and thus the larger the asymmetry of the
current. Fully symmetric I-V curves were found in the
Laughlin states,44 where no bypaths exist in the kinetic
diagrams. Our analysis finds that this is also the case in
the 113 state at γ = 0, which thus exhibits symmetric
current.
In the 331 state or in the Pfaffian state, the proba-

bility is more balanced along different paths connecting
the same two states in the kinetic diagram. Thus, the
currents are less asymmetric in those topological orders
than the current in the 113 state.
In practice, the shape of the current helps distinguish

the 113 state from other topological orders, provided that
the system is not too far away from the flavor-symmetric
point. The 331 state and the Pfaffian state may not be
easily distinguished via current measurement, in which
case shot noise measurement is needed, as we will show
in the next section. At γ ≈ 0, the 113 state and the 331
state have very similar current features. Nonetheless, in
this limit the Abelian orders differ from the non-Abelian
orders in the periodicity of the current.

V. SHOT NOISE

As shown in Ref. 46, low-frequency shot noise in the
Mach-Zehnder interferometer contains information about
quasiparticle statistics in the FQH state. In the follow-
ing we calculate the shot noise in the 113 state at zero
temperature and compare it with the results46,48 in the
Pfaffian (or anti-Pfaffian) state and in the 331 state.
We define shot noise as the Fourier transform of

current-current correlation function

S(ν) =
1

2

∫ +∞

−∞
〈Î(0)Î(t) + Î(t)Î(0)〉eiνtdt. (12)

The low-frequency shot noise can be related to the
tunneling current through the definition of an effective
charge e∗, Sν→0 = e∗I. The ratio e∗/e is the Fano fac-
tor. As we show below, the Fano factor in the 113 state
can be as large as 13.6, well exceeding the maximum Fano
factors in the Pfaffian (or anti-Pfaffian) state and in the
331 state.
Shot noise at low frequency can be viewed as the fluctu-

ation in tunneled charge Q(τ) through the interferometer
over a long measurement time τ ,

Sν→0 = δQ2(τ)/τ, (13)

where the bar denotes average over all possible tunneled

charges after time τ and δQ2(τ) = Q2(τ) − Q(τ)
2
. The

steady-state tunneling current I = Q(τ)/τ . Without loss
of generality, let us assume that initially the topological
charge at the drain D2 is [0, 0], and that Q(0) = 0. After
time τ , we may observe at D2 that n quasiparticles have
tunneled through the point contacts whose topological
charges altogether fuse into the topological charge s. The
tunneled electric charge during τ is then Q(τ) = ne/4.

Let fs,n(τ) be the probability of such an observation. fs,n
satisfies the master equations

dfs,n(τ)

dτ
=

∑

µ

(fs−µ,n−1w
+
s−µ→s − fs,nw

+
s→s+µ), (14)

where we note that s and n are not independent in
fs,n. For example, if the drain D2 is found to be in
the state with topological charge s = [0, 0] after time
τ , then the tunneled quasiparticles must altogether fuse
into trivial topological charge and n can only be an in-
teger multiple of 4. We solve Eq. (14) for the steady-
state situation where τ is chosen to be long enough such
that fs,n no longer depends on τ , dfs,n/dτ = 0. Fol-
lowing Ref. 46, we introduce the generating function
fs(x, τ) =

∑

n fs,n(τ)x
n, where n runs over all possible

values for the given s. We can write

Q(τ) =
∑

s,n

ne

4
fs,n(τ) =

e

4

∑

s

d

dx
fs(x, τ)

∣

∣

∣

∣

x=1

Q2(τ) =
∑

s,n

(
ne

4
)2fs,n(τ) = (

e

4
)2
∑

s

d

dx
x
d

dx
fs(x, τ)

∣

∣

∣

∣

x=1

(15)

and the master equations

dfs(x, τ)

dτ
=

∑

µ

(xfs−µw
+
s−µ→s − fsw

+
s→s+µ)

≡
∑

s′

Mss′(x)fs′(x, τ), (16)

where we have defined the kinetic matrix M(x), which
has a finite rank. At steady state, dfs(x, τ)/dτ = 0.
Thus, fs(x, τ) is the kernel of matrix M(x), subject to
the normalization condition

∑

s fs(1, τ) = 1. We apply
the Rorbach theorem56 to solve the eigenvalue problem
of M(x). Let λ(x) be the largest eigenvalue of M(x). At
x = 1, all diagonal elements of the matrix are negative,
all off-diagonal elements are non-negative, and the sum of
the elements in each column equals zero. By the theorem,
λ(1) = 0 and is nondegenerate. All other eigenvalues are
negative. At x close to 1, λ(x) is close to zero and is
still nondegenerate. Thus, for large τ , one can neglect
the sub-leading terms and write fs(x, τ) = ηs exp[λ(x)τ ],
where ηs is some constant. We find

I =
e

4
λ′(1)

Sν→0 = (
e

4
)2[λ′(1) + λ′′(1)]

e∗

e
=

1

4
[1 +

λ′′(1)

λ′(1)
], (17)

where λ′(1) and λ′′(1) can be obtained by differentiating
the characteristic polynomial of M(x).46 In the presence
of flavor symmetry, Eq. (17) reproduces the current ob-
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tained in the previous section, and the Fano factor

e∗

e
=

1

ζ2

[

8+2

3
∑

k=0

p2k+1

p2k

( 2R

p2k
+
p2k+3

p2k+2

)

−
(

3
∑

k=0

p2k+1

p2k

)2]

,

(18)

where ζ = 4 +
∑3

k=0(p2k+1/p2k) and we have used the
convention pk = pk+8l with l an integer. In Fig. 4, we
plot the Fano factor in the flavor-symmetric 113 state,
along with the Fano factors in the flavor-symmetric 331
state and in the Pfaffian state. The anti-Pfaffian state
has the same shot noise profile as the Pfaffian state. We
set c = 1 for the 113 state to maximize the visibility of
the Aharonov-Bohm oscillation. Experimentally, c = 1
can be realized by adjusting the bias voltages at QPC1
and QPC2 such that Γ1 = Γ2 and α = β. The lat-
ter condition is fulfilled at small bias voltage V and low
temperature T , i.e., eV, T < hv/L, where v is the veloc-
ity of the slowest edge excitation and L is the difference
of the distances between QPC1 and QPC2 on Edge1 and
Edge2.44,52,53 In all these ν = 5/2 topological orders, the
Fano factors are periodic functions of the magnetic flux
with the period Φ0, in agreement with the Byers-Yang
theorem55. The Fano factor in the 113 state peaks at the
height of 13.6, much higher than the Fano factor peaks
3.2 in the Pfaffian state and 1.4 in the flavor-symmetric
331 state. The peaks of the Fano factors occur near the
minima of the tunneling currents, where charge transfer
is suppressed.
The large Fano factor in the 113 state arises from the

same reason for the asymmetric I-V characteristics, i.e.,
the large difference in the probabilities between different
paths connecting the same initial and final states in the
kinetic diagram, Fig. 2(b). Again, let us imagine that
initially the system is in the [4, 0] state and Φ/Φ0 has
been tuned to be an integer multiple of 4 such that p4 ≈
0. In such a case, the system will dwell in the initial
state for a long time before it moves to the next state via
tunneling of a quasiparticle. Once the system leaves the
initial state, it quickly passes through the other states in
the kinetic diagram before it gets trapped again in the
[4, 0] state for another long stay. If there were only one
unique path connecting successive prolonged stays in the
[4, 0] state and the time the system spent in the [4, 0]
state was much longer than the total time it spent in all
other states, then the effective charge e∗ equals the total
charge tunneled in each cycle, between two successive
[4, 0] states. This is what happens in a Laughlin state.46

However, this is not the case in the 113 state with flavor
symmetry. For example, there is a large probability that
the system goes over multiple cycles via the states in the
left half of Fig. 2(b), before it returns to the [4, 0] state.
As a result, the effective charge e∗ can be very large in
the 113 state. In the 331 state and the Pfaffian state,
there are also bypaths connecting two states (or the same
state) in the kinetic diagrams. However, the probabilities
on different bypaths are close in these two topological
orders, giving rise to much smaller Fano factors.
In the absence of flavor symmetry, the height e∗peak/e of

0.0 0.5 1.0 1.5 2.0 2.5
F�F00

2

4

6

8

10

12

e*� e

Pfaffian

331

113

FIG. 4: Comparison of the Fano factors in the 113 state,
the 331 state48 and the Pfaffian (or anti-Pfaffian) state46, as
functions of the Aharonov-Bohm flux Φ. We assume flavor
symmetry in the 113 and 331 states.

FIG. 5: The height e∗peak/e of the Fano factor peaks in the
Aharonov-Bohm oscillation in the 113 state, as a function of
γ = Rb/Ra and ∆ = δb − δa.

the Fano factor peaks in the Aharonov-Bohm oscillation
is a function of the ratio γ = Rb/Ra between tunneling
amplitudes of two quasiparticle flavors and the phase dif-
ference ∆ = δb−δa, as shown in Fig. 5. ∆ vanishes in the
flavor-symmetric case but is nonzero in general. We find
that e∗peak/e is a periodic function of ∆. This is expected

from Eq. (8) where the phases δa, δb are defined collinear
with the Aharonov-Bohm phase. Our numerics show that
the maximal value e∗max(γ)/e of e∗peak/e at a given γ de-

creases monotonically with γ, from e∗max(1)/e = 13.6 to
e∗max(0)/e = 2. At γ = 0, the 113 state behaves like a
Laughlin state and e∗max equals the total tunneled charge
2e per cycle.

In reality, neither flavor-symmetric tunneling (γ = 1)
nor single-flavor tunneling (γ = 0) may happen. A more
likely situation is in between.57 Nonetheless, e∗max/e well
exceeds the maximum achievable Fano factor 3.2 in the
non-Abelian topological orders, provided that γ > 0.1.
At the same time, the domain in the parameter space for
the Fano factor to exceed 2 in the 331 state is small.48 In
general, the maximum achievable Fano factor in the 113
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state is larger than those in the 331 and Pfaffian states
for most values of the parameters. Experimentally, we
expect such differences to be measurable with current
instrumental precision58.

VI. CONCLUSIONS

In conclusion, we have shown that an electronic Mach-
Zehnder interferometer can be used as a tool to identify
different topological orders at ν = 5/2. We have cal-
culated the zero-temperature tunneling current and shot
noise through the interferometer in the Halperin 113 state
and compared the results with those in the Halperin 331
state and in the non-Abelian Pfaffian and anti-Pfaffian
states, the latter two states having identical interference
characteristics. We find that the I-V curve in the 113

state is more asymmetric than those in the 331 state and
in the Pfaffian state. In addition, the maximum Fano
factor 13.6 in the 113 state, found in the case of flavor-
symmetric quasiparticle tunneling, is much greater than
the maximum Fano factors 2.3 in the 331 state and 3.2
in the Pfaffian and anti-Pfaffian states. In practice, the
combination of tunneling current and shot noise measure-
ments can provide clear discrimination of these ν = 5/2
topological orders.
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